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Abstract

This paper reports on the NTIRE 2023 Quality Assess-
ment of Video Enhancement Challenge, which will be held
in conjunction with the New Trends in Image Restoration
and Enhancement Workshop (NTIRE) at CVPR 2023. This
challenge is to address a major challenge in the field of
video processing, namely, video quality assessment (VQA)
for enhanced videos. The challenge uses the VQA Dataset
for Perceptual Video Enhancement (VDPVE), which has a
total of 1211 enhanced videos, including 600 videos with
color, brightness, and contrast enhancements, 310 videos
with deblurring, and 301 deshaked videos. The challenge
has a total of 167 registered participants. 61 participating
teams submitted their prediction results during the develop-
ment phase, with a total of 3168 submissions. A total of 176
submissions were submitted by 37 participating teams dur-
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ing the final testing phase. Finally, 19 participating teams
submitted their models and fact sheets, and detailed the
methods they used. Some methods have achieved better re-
sults than baseline methods, and the winning methods have
demonstrated superior prediction performance.

1. Introduction
The importance of video quality assessment (VQA) in

the field of video processing is self-evident. It can guide the
development of video processing algorithms such as video
capture, enhancement, transmission, and display. There-
fore, VQA methods have been widely used to evaluate the
quality of various videos, such as user-generated content
(UGC) videos [65], high dynamic range (HDR) videos [54],
tone-mapped videos [85], compressed videos [39], and so
on. Recently, after capturing a large number of videos,
people would like to first enhance certain attributes of the
videos, such as contrast, brightness, and color, and then
upload these enhanced videos to social medias. There-
fore, many video enhancement methods have been proposed
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[8,22,40,41,60,61,93]. However, the quality levels of these
videos processed by various video enhancement methods
are different, and evaluating the quality of these enhanced
videos is not easy. Therefore, it is very important to propose
an efficient VQA method to accurately predict the quality of
enhanced videos.

This NTIRE 2023 Quality Assessment of Video En-
hancement Challenge aims to promote the development of
the VQA methods for enhanced videos to guide the im-
provement and enhancement of the performance of video
enhancement methods, thereby improving the viewing ex-
perience of videos [43, 59]. We use the VQA Dataset for
Perceptual Video Enhancement (VDPVE) [15] for this chal-
lenge. This dataset has 1211 videos with different enhance-
ments, which can be divided into three sub-datasets: the first
sub-dataset has 600 videos with color, brightness, and con-
trast enhancement; the second sub-dataset has 310 videos
with deblurring; and the third sub-dataset has 301 deshaked
videos. Each enhanced video in the VDPVE has 20 subjec-
tive opinion scores.

This is the first time that a quality assessment of video
enhancement challenge is held at the NTIRE workshop.
The challenge has a total of 167 registered participants. 61
participating teams submitted their prediction results during
the development phase, with a total of 3168 submissions. A
total of 176 prediction results were submitted by 37 par-
ticipating teams during the final testing phase. Finally, 19
valid participating teams submitted their final models and
fact sheets. They have provided detailed introductions to
their VQA methods for enhanced videos. We provide the
detailed results of the challenge in Secion 4 and Secion 5.
We hope that this challenge can promote the development
of VQA methods for video enhancement.

This challenge is one of the NTIRE 2023 Workshop 1

series of challenges on: night photography rendering [62],
HR depth from images of specular and transparent sur-
faces [90], image denoising [36], video colorization [29],
shadow removal [71], quality assessment of video enhance-
ment [42], stereo super-resolution [75], light field image
super-resolution [77], image super-resolution (×4) [95],
360° omnidirectional image and video super-resolution [5],
lens-to-lens bokeh effect transformation [10], real-time 4K
super-resolution [11], HR nonhomogenous dehazing [3], ef-
ficient super-resolution [35].

2. Related Work

2.1. VQA dataset

The successful construction of VQA datasets is the foun-
dation for proposing effective VQA models. The first suc-
cessful VQA dataset is the LIVE Video Quality Database

1https://cvlai.net/ntire/2023/

[58], which has 160 videos with compression and trans-
mission distortions. IVP [92] provides 138 videos with
compression and transmission distortions. MCL-V [38]
contains 96 distorted videos with two typical video distor-
tion types: compression and compression followed by scal-
ing. MCL-JCV [74] is an H.264/AVC coded video qual-
ity dataset consisting of 30 video clips of a wide content
variety. In recent years, due to the explosion in the num-
ber of UGC videos, many researchers have created VQA
datasets for UGC videos. For example, Nuutinen et al. in-
troduced the CVD2014 [55], which consists of 234 videos
captured by 78 different video capture devices. The authors
in [24] constructed one of the most famous VQA datasets
for UGC videos, called KoNViD-1k. This dataset has 1200
UGC videos with authentic distortions. The other two pop-
ular VQA datasets for UGC videos are the LIVE-VQC
[63] and the YouTube-UGC [76], with 585 and 1380 UGC
videos, respectively. Besides, we provided a VQA dataset
for video enhancement called the VDPVE [15]. The videos
in this dataset were processed by various video enhance-
ment methods, including 600 videos with color, brightness,
and contrast enhancements, 310 videos with deblurring, and
301 deshaked videos. This dataset is used to test the perfor-
mance of methods proposed by different participating teams
in this challenge.

2.2. VQA model

The traditional VQA methods are handcrafted feature-
based models. This kind of methods first calculate the
quality of each frame of a video by extracting quality fea-
tures, and then obtain the video quality score [16, 52, 91].
For example, V-BLIINDS [56] is a spatio-temporal natural
scene statistics (NSS) model, which can quantify motion
coherency in video scenes. TLVQM [31] is based on the
idea of calculating features at two levels, that is, first cal-
culating the low complexity features of the entire sequence,
and then extracting high complexity features from subsets
of representative video frames. VIDEVAL [69] calculates
video quality by extracting abundant spatio-temporal fea-
tures such as motion, jerkiness, blurriness, noise, blocki-
ness, color, and so on. RAPIQUE [70] combines the ad-
vantages of both quality-aware scene statistics features and
semantics-aware deep convolutional features to calculate
video quality.

In addition to traditional VQA methods, deep learning-
based VQA methods also attract researchers’ attention [6,
17,50,66,86,96]. For example, VSFA [33] first extracts se-
mantic features from a pre-trained convolutional neural net-
work (CNN), and then uses a gated recursive unit network
to extract the temporal relationship between semantic fea-
tures of video frames to predict video quality. BVQA [45]
uses a feature encoder to directly extract spatio-temporal
representations from videos to predict video quality. Sim-
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pleVQA [65] trains an end-to-end spatial feature extraction
network to directly learn quality-aware spatial features from
video frames, and extracts motion features to measure tem-
porally related distortions that cannot be modeled by spatial
features at the same time to predict video quality.

3. NTIRE 2023 Quality Assessment of Video
Enhancement Challenge

We organize the NTIRE 2023 Quality Assessment of
Video Enhancement Challenge in order to promote the de-
velopment of objective VQA methods for video enhance-
ment. The main goal of the challenge is to predict the per-
ceptual quality of enhanced videos, which can also promote
the development of video enhancement methods. Details
about the challenge are as follows:

3.1. Overview

The challenge has only one track, that is, the task of pre-
dicting the perceptual quality of an enhanced video based
on a set of prior examples of videos and their perceptual
quality labels. The challenge uses the training, validation,
and testing sets as defined in the VDPVE [15]. As the final
result, the participants in the challenge are asked to submit
predicted scores for the given testing set.

3.2. Dataset

The VDPVE has 1211 videos with different enhance-
ments, which can be divided into three sub-datasets: the first
sub-dataset has 600 videos with color, brightness, and con-
trast enhancements; the second sub-dataset has 310 videos
with deblurring; and the third sub-dataset has 301 deshaked
videos. The resolution of all videos in the VDPVE is
1280× 720. The video length is 8s or 10s.

In the first sub-dataset, eight enhancement methods are
utilized to enhance the color, brightness, and contrast of
79 videos: ACE [19], AGCCPF [21], BPHEME [73],
MBLLEN [51], SGZSL [100], DCC-Net [97], and two
commercial software: CapCut and Adobe Premiere Pro. In
the second sub-dataset, we utilize five enhancement meth-
ods to deblur the 62 blurred videos, including ESTRNN
[101], DeblurGANv2 [32], FGST [37], BasicVSR++ [8],
and Adobe Premiere Pro. In the third sub-dataset, seven en-
hancement methods are utilized to stabilize 43 videos, in-
cluding GlobalFlowNet [27], DIFRINT [9], PWStableNet
[99], Yu [89], CapCut (most stable mode), CapCut (mini-
mum cropping mode), and Adobe Premiere Pro.

We invited 21 subjects (20 valid subjects) to rate all en-
hanced videos in the VDPVE. After normalizing and aver-
aging the subjective opinion scores, the mean opinion score
(MOS) of each video can be obtained. Furthermore, we
randomly split the enhanced videos in the VDPVE into a
training set, a validation set, and a testing set according to

the ratio of 7 : 1 : 2. The enhanced videos generated from
the same original video are divided into the same set. The
numbers of enhanced videos in the training set, validation
set, and testing set are 839, 119, and 253, respectively.

3.3. Evaluation protocol

In the challenge, the main scores are utilized to deter-
mine the rankings of participating teams. We ignore the sign
and calculate the average of Spearman rank-order correla-
tion coefficient (SRCC) and Person linear correlation coef-
ficient (PLCC) as the main score:

Main Score = (|SRCC|+ |PLCC|)/2. (1)

SRCC measures the prediction monotonicity, while PLCC
measures the prediction accuracy. Better VQA methods
should have larger SRCC and PLCC values. Before calcu-
lating PLCC index, we perform the third-order polynomial
nonlinear regression. By combining SRCC and PLCC, the
main scores can comprehensively measure the performance
of participating methods.

3.4. Challenge phases

The whole challenge consists of two phases: the devel-
oping phase and the testing phase. In the developing phase,
the participants can access to the enhanced videos of the
training set and the corresponding MOSs. Participants can
be familiar with dataset structure and develop their VQA
methods. We also release the enhanced videos of the valida-
tion set without corresponding MOSs. Participants can uti-
lize their VQA methods to predict the quality scores of the
validation set and upload the results to the server. The par-
ticipants can receive immediate feedback and analyze the
effectiveness of their methods on the validation set. The
validation leaderboard is available. In the testing phase, the
participants can access to the enhanced videos of the testing
set without MOSs and upload the final predicted scores of
the testing set before the challenge deadline. Each partici-
pating team needs to submit a source code/executable and
a fact sheet, which is a detailed description file of the pro-
posed method and the corresponding team information. The
final results are then sent to the participants.

4. Challenge Results

A total of 37 teams participated in the testing phase
of NTIRE 2023 Quality Assessment of Video Enhance-
ment Challenge, and 19 teams submitted their final
codes/executables and fact sheets. Table 1 summarizes
the main results and important information of the 19 valid
teams. The methods of these teams are briefly introduced in
Section 5 and the team members are listed in Appendix B.



Table 1. Quantitative results for the NTIRE 2023 Quality Assessment of Video Enhancement Challenge.

Rank Team Leader Main Score SRCC PLCC

1 TB-VQA Yilin Li 0.8576 0.8493 0.8659
2 QuoVadis Kai Zhao 0.8396 0.8408 0.8383
3 OPDAI Heng Cong 0.8289 0.8261 0.8317
4 TIAT Hang Shi 0.8199 0.8163 0.8236
5 VCCIP Zhiliang Ma 0.7994 0.7962 0.8026
6 IVL Mirko Agarla 0.7859 0.7896 0.7822
7 HXHHXH Zhiwei Huang 0.7850 0.7879 0.7821
8 fmgtv Hongye Liu 0.7727 0.7756 0.7698
9 KK-ARC Ironhead Chuang 0.7635 0.7663 0.7607
10 DTVQA Haotian Fan 0.7325 0.7357 0.7294
11 sqiyx Shiqi Zhou 0.7302 0.7246 0.7358
12 402Lab Yu Lai 0.7136 0.7150 0.7123
13 one for all Wenqi Wang 0.6990 0.7087 0.6893
14 NTU-SLab Haoning Wu 0.6972 0.7019 0.6924
15 HNU-LIMMC Chunzheng Zhu 0.6923 0.6975 0.6872
16 Drealitym Shiling Zhao 0.6863 0.6900 0.6826
17 LION Vaader Hanene Brachemi Meftah 0.6596 0.6674 0.6518
18 Caption Timor Tengfei Shi 0.6499 0.6524 0.6475
19 IVP-LAB Azadeh Mansouri 0.5851 0.5887 0.5814

Baseline

FastVQA 0.7330 0.7350 0.7310
BVQA 0.6835 0.6995 0.6674

SimpleVQA 0.6347 0.6340 0.6354
VSFA 0.5648 0.5871 0.5424

V-BLIINDS 0.5578 0.5652 0.5503
TLVQM 0.5492 0.5474 0.5509

RAPIQUE 0.5414 0.5434 0.5393
VIDEVAL 0.4865 0.5005 0.4724

4.1. Baselines

We compare the performance of submitted methods with
several state-of-the-art NR VQA methods on the testing set,
including V-BLIINDS [56], TLVQM [31], VIDEVAL [69],
RAPIQUE [70], FastVQA [80], VSFA [33], BVQA [45],
and SimpleVQA [65]. V-BLIINDS [56], TLVQM [31],
VIDEVAL [69], and RAPIQUE [70] are the handcrafted
feature-based VQA models. FastVQA [70], VSFA [33],
BVQA [45] and SimpleVQA [65] are deep learning-based
VQA models. VSFA [33], BVQA [45], and SimpleVQA
[65] utilize CNN models as the network backbone, while
FastVQA [70] utilizes the transformer as the network back-
bone.

4.2. Discussion

The main results of 19 teams’ methods and the baseline
methods are shown in Table 1, It can be seen that most of
existing NR VQA methods are not ideal on VDPVE testing

set, while the submitted methods have basically achieved
good results. It means that these methods are closer to
human visual perception when used to evaluate enhanced
videos. 9 teams achieve relatively better performance than
FastVQA, which has good performance on the in-the-wild
VQA task. Furthermore, the main scores of 4 teams exceed
0.8. The championship team achieves the SRCC score of
0.8576 and the PLCC score of 0.8396. Figure 1 shows scat-
ter plots of predicted scores versus MOSs for the 19 teams’
methods on VDPVE testing set. The curves shown in Figure
1 are obtained by a four-order polynomial nonlinear fitting.
We can observe that the predicted scores obtained by the
top team methods have higher correlations with the MOSs.
They can not only meet the need to predict quality scores
for enhanced videos but also contribute to improving the
performance of video enhancement methods.
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Figure 1. Scatter plots of the predicted scores vs. MOSs. The curves are obtained by a four-order polynomial nonlinear fitting

5. Challenge Methods

5.1. TB-VQA

Team TB-VQA is the final winner of the challenge. They
propose a NR VQA method [83] based on Swin Trans-
former with improved spatio-temporal feature fusion and
data sample augmentation strategy. The network is devel-
oped on top of SimpleVQA [65] and is composed of two
key components: the spatial feature extraction module and
spatio-temporal feature fusion module. In the spatial feature
extraction module, inspired by its strong modeling capabil-
ities and representative performance of visual priors includ-
ing hierarchy, locality, and translation invariance, they ex-
ploit Swin Transformer V2 [46], pre-trained on ImageNet-
1K [12], as the backbone network to extract spatial features.
Specially, they adopt the features extracted from the last
two Transformer blocks to take advantage of deep semantic
information in video quality representation. In the spatio-
temporal feature fusion module, they introduce an 1 × 1
convolutional layer, which deepens the spatial features ex-
tracted from the intermediate stages of the pre-trained net-

work, to mitigate the gap between shallow and deep fea-
tures. The semantic features, the deepened features, and the
temporal features (originally from the motion feature ex-
traction module in [65]) are flattened and fused as the final
features for video quality prediction. To further enhance
the robustness of the model, a data augmentation strategy
is performed to increase the number of video frames in the
training phase. Specially, they first train their model on the
LSVQ [87] dataset. Then, they build a dataset similar to
the VDPVE training set and further train the model on the
dataset they built, and then fine-tune it on the VDPVE train-
ing set. Particularly, multiple temporal frames are randomly
sampled from each segment of videos, which efficiently in-
creases the volume of the training dataset. As a compari-
son, only one frame per segment with fixed sampling order
is utilized as a training sample in [65].

There are 29.77 million trainable parameters in the
model. In the training phase, the input frames are re-
sized to 320 × 320 and randomly cropped with a resolu-
tion of 256 × 256. Batch size is set as 16 and Adam op-
timizer with β1 = 0.9, β2 = 0.999 is utilized for opti-



mization. The learning rate is initialized as 10−5 and de-
cayed by γ = 0.95 every two epochs. During testing, the
input frames are resized to 320 × 320, and the “torchvi-
sion.transforms.TenCrop” function is used to crop 10 image
patches with a resolution of 256×256, which are located at
the four corners and the center, respectively, as well as the
horizontally flipped version of the previous crops.

5.2. QuoVadis

Team QuoVadis wins second place in the challenge.
They propose a dual-branch VQA network for enhanced
videos [98]. As is shown in Figure 2, the overall architec-
ture consists of two parts: the image-based network and the
video-based network. The image-based network receives
single images as input and generates quality prediction in
a global view, while the video-based one obtains shuffled
fragments and predicts prediction focusing on textural dis-
tortions.

Specially, the architecture used for the image-based net-
work is ConvNext-Tiny [48], following a regression head.
To analyze the overall quality of the video, they uniformly
sample two frames per second and input them into the net-
work. For each frame, they scale the shorter side to 512 and
maintain the same scaling ratio for the longer side. They
then crop a 320 × 320 region from the center as the net-
work input to obtain the global quality information of the
image. They further attach a patch-weighted quality pre-
diction head as [84]. And the final prediction is generated
by the multiplication of each patch’s score and weight. The
outputs generated by all frames are averaged as the whole
quality of the video. During training, the network is opti-
mized using a smooth L1 regression loss. Given a video
X and corresponding sampled frames {x1, x2, ..., xn}, the
optimization objective can be written as:

min Lreg = min
1

n

n∑
i=1

||F(xi)− y||1,

where F(·) is the mapping function of the network, and y
is the labeled MOS for the video.

Unlike the above image-based network, the video-based
network receives video clips as input. Following [80], each
clip contains 32 frames sampled uniformly. To preserve
the original video quality and obtain local texture infor-
mation which benefits quality assessment, they utilize the
sampling strategy of fragments used in FastVQA. The frag-
ments are obtained through uniform grid mini-patch sam-
pling. This method vastly reduces the computational cost
by 97.6% compared with computing attention on the whole
resolution. The image-based network structure described
above can perceive global semantic information. To com-
plement this, they redefine the form of the fragments and
further randomly shuffle the positions of the mini-patches

in space, allowing the network to pay more attention to
low-quality texture information (such as noise, blur, block
effects, etc.) and reduce its focus on higher-level seman-
tics. Then the shuffled fragments are sent into an attention
network of Video Swin-Tiny [49]. During training, specif-
ically, a PLCC-induced loss and a ranking-based loss are
utilized. Assume there are m videos in the training batch.
Given the predicted quality scores {y′1, y′2, ..., y′m} and the
MOS values {y1, y2, ..., ym}, the PLCC-induced loss is de-
fined as:

Lplcc = (1−
∑m

i=1(y
′
i − a′)(yi − a)√∑m

i=1(y
′
i − a′)2

∑m
i=1(yi − a)2

)/2,

where a′ and a are the mean values of m predicted quality
scores and MOSs respectively. And the ranking-based loss
can be denoted as:

Lrank =
1

m2

m∑
i=1

m∑
i=1

max(0, |yi−yj |−e(yi, yj)·(y′i−y′j)),

where e(yi, yj) is 1 if yi ≥ yj , else is −1 if yi<yj . And the
optimization objective can be written as:

min Lplcc + β · Lrank,

and β is the coefficient for balancing. In practice, it is set to
0.3.

There are 55 million parameters in the entire model. In
ConvNext-Tiny, the batch size is set to 32, the epoch is set to
30, the learning rate is initialized as 10−4, and AdamW with
10−2 weight decay is utilized for optimization. In Video
Swin-Tiny, the batch size is set to 16, the epoch is set to 30,
the learning rate is initialized as 10−3, and AdamW with
10−2 weight decay is utilized for optimization. During the
testing phase, the video is analyzed using the dual-branch
network structure based on both images and videos, and the
prediction results from both branches are averaged to obtain
the final prediction quality.

5.3. OPDAI

Team OPDAI wins third place in the challenge. They ap-
ply image quality assessment into VQA. Specifically, they
combine one VQA method and four image quality assess-
ment methods for this competition. The VQA is based on
DOVER [82]. The four image quality assessment models
are main model SwinTransfromer [47], main model Con-
vnextV2 [78], using SwinTransformer as backbone extract-
ing feature and using stacked transformer to regress quality
score, and main model CDCNN [94], respectively. Then,
they bagging 5 models to obtain the final results. The mean
absolute error (MAE), mean square error (MSE), norm-in-
norm loss and Kullback-Leibler (KL) divergence loss are
used for training. It is worth noting that not only the pro-
vided NTIRE 2023 dataset, but also part of Youtube-UGC



Figure 2. The overview of QuoVadis team proposed dual-branch VQA network for enhanced videos.

[76] dataset and PIPAL [28] are used for pretraining the
model. They used a cosine annealing learning rate descent
method with warming-up. Minibatch size is set to 60, and
the learning rate is initialized as 4 × 10−5. They utilize
AdamW optimizer setting β1 = 0.9, β2 = 0.999.

5.4. TIAT

TIAT proposes a deep learning based VQA model. In or-
der to try their best to make use of the information contained
in the target video, the spatial information and temporal in-
formation in each video are extracted and fused through
segmented processing of the target video. The model is
based on SimpleVQA [65] and they modify the spatial fea-
ture extraction module. Specifically, they utilize Swin-
b [47] network pre-trained on ImageNet [12] and slowfast
r50 [14] network pre-trained on Kinetics [7] as the feature
extraction model.

There are totally 87.30 million parameters in the model.
In the training phase, minibatch size is set to 6, the train-
ing epoch is set to 40, and the learning rate is initialized as
10−5. They utilize Adam optimizer setting β1 = 0.9, β2 =
0.999.

5.5. VCCIP

Team VCCIP proposes a VQA network model for chan-
nel fusion, which integrates information from different
channels of three consecutive frames in time. This network
takes into account both spatial and temporal information,
which enables better performance. Additionally, they add a
subtask to identify the category of enhancement method to
optimize and train the network model more effectively.

The architecture of CF-VQA is illustrated in Figure 3,
which comprises of a Swin Transformer [47] backbone and
a quality score regression module. The network structure
is kept simple. To leverage the powerful learning ability
of the Transformer structure, this method tends to utilize a
pretrained Swin Transformer base as the backbone. After

extracting quality perception features through the effective
Swin Transformer backbone, a regression model is incor-
porated to map these features to the quality score. Firstly,
the global average feature pooling (GAP) is applied to gen-
erate a feature vector with a dimension of P × 2, where
P represents the number of final feature maps. Then, two
fully connected (FC) layers, consisting of 512 neurons and
2 neurons, respectively, are utilized to map the feature vec-
tor to the predicted quality score and enhancement method
category. Finally, CF-VQA can be trained on VDPVE [15]
using an end-to-end training method with L1 loss function,

L1 =
1

N

N∑
i=1

||qscore − qlabel||1,

where qscore and qlabel denote the predicted score and MOS
of the i-th training patch, and N represents the total number
of training patches.

There are 87.41 million parameters in the model. Swin
Transformer Base Network pre-trained using ImageNet [12]
is utilized as the feature extraction sub-model. Batch size is
set to 4, the learning rate is set to 10−5, and AdamW op-
timizer is adopted with a weight decay of 5 × 10−4. In
addition, they use the cosine decay learning rate with the
minimum learning rate of 10−7, and use linear preheating
in first 2 epochs with start learning rate 5 × 10−7. When
training on VDPVE, they randomly sample and horizontally
flipping with size 384 × 384 pixels from each training im-
age for augmentation. In the test phase, one hundred video
clips with 384×384 pixels are randomly cropped from each
video, and the final quality score of a video is the average
score of all clips.

5.6. IVL

Team IVL proposes a VQA method [1] inspired by
DOVER [82] and the NR-VQA model introduced in [2].
As depicted in Figure 4, it consists of three components: the
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Figure 3. The framework design of VCCIP team’s method.

feature extractor module includes the technical quality and
aesthetic encoders and the quality-related attribute encoder;
the feature combination module provides a temporal aggre-
gation part for the frame-level features of the quality-related
attribute encoder and reduces the feature vectors obtained
by all the encoders to a fixed size; the quality prediction
module exploits a support vector regression (SVR) machine
for mapping the feature vector into the video quality score.

The feature extraction module contains DOVER to
model features capturing information about distortion per-
ception (technical quality) and preferences (aesthetics), and
a quality-related attribute encoder to model quality features
capturing various quality attributes, such as brightness, con-
trast and sharpness. The DOVER architecture is modified
so that its outputs are feature vectors rather than quality
scores. The aesthetic encoder consists of a tiny inflated-
ConvNext [48] as backbone while the technical quality en-
coder exploits a tiny Video Swin Transformer [49]. The
aesthetic encoder has an overall view of the video as it uses
a total of 32 equally-spaced frames covering the entire video
sequence. The frames processed by this encoder are down-
scaled to a 480p resolution to increase efficiency. The tech-
nical quality encoder divides the video into two parts, and
selects 32 frames in the first part and 32 frames in the last
one with a stride of 4 to increase video coverage. Here five-
crop video fragments are used, i.e., each frame is cropped at
the four corners and at the central, and fragments are gen-
erated from these crops. Note that each crop has a 480p
resolution, thus the fragments can cover about 80% of the
entire frame spatial dimension. Moreover, downscaling is
performed using soft pooling [64] to better preserve video
distortions and avoid masking effects. The fragments are
processed independently from the others, and the final fea-
tures are obtained by averaging the features extracted from
each crop. The quality-related attribute encoder is similar

to the one proposed in [2], but the MobileNet-v2 [57] back-
bone is replaced with EfficientNet-v2 [67] because of its
higher capability in capturing relevant quality information.
As in [2], the model is trained using the images from the
CID [72] and the SPAQ [13] datasets with the aim of pre-
dicting the scores related to quality attributes, i.e., sharp-
ness, groundness, lightness, saturation, brightness, color-
fulness, noisiness, contrast, and MOS. In order to obtain
the quality features for a video, 32 frames (the same used
by the aesthetic encoder) are selected and processed by
the network, and the features obtained before the FC lay-
ers of each branch are used. The resulting feature vector
is obtained by concatenating the feature vectors produced
by each branch. The feature combination module reduces
the dimensions of the extracted features and prepares them
to be used for quality score prediction. The quality-related
attribute encoder extracts quality features frame-by-frame.
Therefore, a GRU module is used to map frame-level qual-
ity features into a single vector capturing temporal depen-
dency among them, and its dimension is later reduced by
a FC layer. Then, these features are concatenated with the
aesthetic features and the technical quality features related
to the first half of the video, and processed by an additional
FC layer. The same happens for the features obtained con-
sidering the technical features related to the second half of
the video. The two outputs are later concatenated. Finally,
in the quality prediction module the obtained feature vec-
tor is mapped into the final video quality score through an
SVR.

There are about 78 million parameters in the DOVER ar-
chitecture and 20 million parameters in the quality-related
attribute encoder. Pretrained-models are utilized. Specifi-
cally, Video Swin Transformer is pretrained on LSVQ [87],
inflated-ConvNext is pretrained on the AVA dataset [53],
and EfficientNet-v2 is pretrained on the combination of



Figure 4. The framework design of IVL team’s method.

CID [72] and SPAQ [13]. They not only utilize the pro-
vided VDPVE [15] dataset to train the whole model, but
also take the CID and the SPAQ datasets as supplements.
In the training phase, andom video fragments are used at
training time, while five-crop video fragments are used at
inference time. Video fragments are generated as described
in [82]. The batch size is set to 5, the learning rate is set to
10−4 for the technical quality encoder and 10−3 for the rest
of the network with a cosine decay. The model is trained
for a total of 50 epochs. The quality-related attribute en-
coder is trained using the CID and SPAQ datasets. Images
are first randomly cropped to the closest resolution that is
multiple of 720p, and then soft pooling is applied to obtain
a 720p resolution. The batch size is set to 8. The model is
trained for a total of 10K iterations. The learning rate is ini-
tially set to 10−4 and later decreased by a factor of 10 after
5K iterations. Random horizontal flip is used as data aug-
mentation. Both the encoders are trained using PLCC loss
and rank loss, using the ground-truth scores as target. The
rank loss has a weight of 0.3 in the total loss for training
stability. The SVR for the final score prediction is trained
on the VDPVE training set. The required hyperparameters,
i.e., γ = 12.20 and C = 364.83, are selected via Bayesian
optimization using Leave-One-Out cross-validation. In the
testing phase, they average the quality scores obtained for
the original video, and its horizontally flipped version.

5.7. HXHHXH

Team HXHHXH proposes a new pre-training method.
To extract better spatial distortion features, they use the Live
in the wild [20] dataset to pre train the feature extraction
network. Additionally, considering combination of tempo-
ral and spatial features can better achieve accurate quality
assessment, they design a new temporal pre-training strat-
egy. Concretely, for a video with length L, they sample new

video segments of L/2, L/4 and L/8, and use these differ-
ent video segments for pre-training to achieve better results.

The whole model architecture is based on FastVQA [80],
along with a VGG network pre-trained using ImageNet as
the feature extraction sub-model. The number of parame-
ters is around 3 million. For training details, they use Adam
optimizer setting β1 = 0.9, β2 = 0.999. They set minibatch
size as 12, and learning rate as 0.0002. The training process
takes around 0.5 hour on Nvidia GeForce RTX 3090.

5.8. fmgtv

The method proposed by team fmgtv can be divided into
three parts: image quality assessment (IQA) module, VQA
module, and fusion module. For IQA module, they extract
each frame of the video and use a picture classification net-
work for regression training, while the VQA module ex-
tracts N frames at each interval and uses a video classi-
fication network for regression training. Specifically, they
use ResNet-101, Convnext pre-trained using ImageNet as
the feature extraction sub-model, Swin3D and Xclip pre-
trained using LSVQ [87] dataset as backbone. Finally, they
directly fuse the IQA and VQA results as their final resutls.
The fusion strategy brings 3% improvement (0.74 to 0.77).

During training, they use LSVQ [87] training dataset as
extra data in addition to provided NTIRE 2023 training data.
They use cosine learning rate initialized as 0.01, and set
batch size as 32. The training process takes around twelve
hours for 30 epochs on Nvidia GeForce RTX 3090.

5.9. KK-ARC

Team KK-ARC proposes a method [26] by stacking en-
semble on three VQA models: FastVQA-B [80], FastVQA-
M [80], and FasterVQA [81]. All three models use Swin-
Transformer [49] as backbone, and are pre-trained on
LSVQ [87] dataset. The provided NTIRE 2023 training



dataset is used for finetuning on those models separately.
XGBoost is then applied for stacking ensemble.

5.10. DTVQA

Team MTVQA proposes a self-attention based percep-
tion VQA method. The overview of their framework is
shown in 5. At the beginning, they divide VQA problem
into authentic/aesthetic video quality and synthetic distor-
tion VQA. After extracting frames from both parts, they
use ResNet which is pre-trained using ImageNet as feature
extraction sub-model. Different stages of feature map are
extracted and concatenated together. They then implement
dimensionality reduction by averaging the feature map. At
the last step, a self-attention module is used to model the
time dimension video quality.

Furthermore, they find that by adding more public avail-
able VQA datasets during training can overcome over-
fitting. Specially, they combine two multi-dataset training
strategy: 1) method proposed by MDTVSFA [34], which
described a dataset-specific alignment method for training
different datasets; 2) a multi-stage training strategy. Af-
ter training the model on dataset A, they load the trained
checkpoint and finetune the model on dataset B, and so on.
The additional public available VQA datasets that are used
are KoNVid-1k [24], YouTube-UGC [76], and MSU CVQA
dataset [4].

The number of parameters for their model achieves ap-
proximately 1.71 million. During training, the model is
trained for 50 epochs using Adam optimizer with an ini-
tial learning rate 10−4. The batch size is set by 256 for each
dataset. Whole training and testing processes are conducted
on 4 Nvidia Tesla v100. It takes six hours for training, and
16ms per image during testing.

It is worth mentioning that, to further overcome over-
fitting, they conduct ensemble by averaging the outputs of
the proposed method and DOVER [82] to get the final re-
sult.

5.11. sqiyx

Team members from sqiyx indicate that the provided
data may not be enough to train a VQA model. As a re-
sult, they turn to an IQA model, MANIQA [84]. They in-
troduce the fragment technology in FastVQA [80] to their
method, which can keep the resolution information of the
image from being lost, and can be regarded as a kind of data
augmentation. To further augment data, they utilize cutMix
to fuse two random images from the same video. Last but
no least, they use a more large model than MANIQA [84]
to increase the model capability. The feature extraction sub-
model is a Vit Large Patch16 Network pre-trained using Im-
ageNet.

During training, they use Adam optimizer by setting
β1 = 0.9 and β2 = 0.999. Minibatch size is set as 8,

and learning rate is initialized as 10−5. They use cosine
scheduler to update learning rate with parameters Tmax and
etamin set to 50 and 0. It takes approximately one day for
training. During testing, they use pyav to extract key frames
and calculate the results of each frame, and finally take the
average to get the final score of the video. All experiments
are conducted on one Nvidia Tesla v100.

5.12. 402Lab

The method proposed by team 402Lab includes four
parts, the spatial feature extraction module, the motion fea-
ture extraction module, the spatial-motion features fusion
module, and the quality regression module. This method
takes the first frame per second as input, and does not re-
quire any cropping operations, which results in low com-
plexity and integral image information. ResNetv2-50 [23]
pre-trained on ImageNet is utilized as the feature extraction
backbone network. Contestants propose a two-branch fea-
ture fusion network strategy, which effectively combines the
advantages of CNN network and Transformer network,and
fully integrates local and global information. In addition,
they propose a patch attention module to make quality as-
sessment more focused on effective information. After mo-
tion features and spatial features are extracted, we fuse the
two features using the spatial-motion feature fusion mod-
ule, which is used to compensate for temporal-related dis-
tortions that cannot be modeled by spatial features.

The whole training is divided into two procedures. The
model is first pre-trained on KonIQ-10K [25] and later fine-
tuned on NTIRE 2023 training dataset. During pre-training,
the initial learning rate of the backbone network is 10−5 and
the rest is 10−4. They also randomly horizontally flipped
images with a given probability of 0.5 during pre-training.
During finetuning process, they use the SlowFast R50 [14]
as the motion feature extraction model for the whole exper-
iments. The weights of the SlowFast R50 [14] are fixed by
training on the Kinetics 400 [30] dataset. The initial learn-
ing rate of the network is 10−5, and is reduced by 10 after
80 epochs. AdamW optimizer is used in both pre-training
and finetuning processes by setting β1 = 0.9, β2 = 0.999.
And minibatch size is set as 8. Furthermore, to maintain
the image ratio, they first resize the image to 640× 360, af-
ter which we use the same preprocessing method as in [88]
to fill the image to a resolution of 640 × 384. The same
operation is conducted in testing process.

5.13. one for all

This team proposes a VQA method based on the multi-
clips ensemble, which contains two steps: data filtering and
partitioning based on video embedding clustering; and qual-
ity content decoupled regression headers.

Their network contains about 55 million parameters.
They only use the training set of the VDPVE to train their



Figure 5. The framework design of DTVQA team’s method.

network. No additional data has been used. They use
the DOVER backbone pre-trained using LSVQ as the fea-
ture extraction sub-model. For optimization,they use the
AdamW optimizer by setting β1=0.9, β2=0.999. They set
the minibatch size as 8. The learning rate is initialized as
10−3.

5.14. NTU-SLab

Team NTU-SLab proposes a network based on the
DOVER, which consists of an aesthetic branch and a tech-
nical branch. Moreover, they ensemble the DOVER result
with raw feature tuning from CLIP-RN50 visual backbone.

Their network contains around 75 million parameters.
They only use the training set of the VDPVE to train their
network. No additional data has been used. For optimiza-
tion, they use Adam optimizer by setting β1=0.9, β2=0.999.
They set minibatch size as 8 and train for 30 epochs. The
learning rate is initialized as 10−3 and kept unchanged dur-
ing training. They ensemble the DOVER and CLIP-RN50
results with 2:1 ratio.

5.15. HNU-LIMMC

In order to improve the sensitivity of the model to
enhanced video perception, they propose a novel con-
trastive learning method for VQA based on the idea of self-
supervision to improve the performance of the model. At

the same time, they introduce a video degradation space.
Specifically, they believe that different frames of the same
video should be similar and can effectively represent the
video. The quality of different degradation methods of the
same frame is not similar.

Through this framework, an end-to-end learning method
can be effectively established. The degraded video infor-
mation in the VQA dataset is used to simulate the learning
method in the enhanced scene, which is conducive to the
generalization ability of the model and improves the effect
of the model on the non-natural VQA dataset.

Their network contains about 2.472 million parameters.
They only use the training set of the VDPVE to train their
network. No additional data has been used. They choose
SimpleVQA as the backbone of their model, which is pre-
trained on LSVQ and fine-tuned on VDVPE. For optimiza-
tion, they use Adam optimizer. They set the minibatch size
as 6. The learning rate is initialized as 10−5 and the weight-
decay is 10−8.

5.16. Drealitym

They propose a NR VQA method for enhanced videos
based on the framework of Adaptive Token-Selection ViT
(ATSViT) that the process of energy competition between
visual information from the psychological perspective to
predict video quality scores. They propose a block-level



sampling strategy, called timing block sampling (TBS), that
takes into account the uneven distribution of local quality
distortions focused on by the human eye in the original se-
quence, increasing the information density of the sampled
frame set and reducing the loss possibility of important spa-
tial features through HVS based [44, 68] fine-grained sam-
pling. They construct transformer-based Stage-wise adap-
tive Screening Network (SSNet) based on based on the filter
theory of attention [79], dividing the process of visual infor-
mation processing into four stages where efficient energy
distribution strategies are used, exploiting the attention-
based bottlenecks of different sizes, to select the features
of tokens that advance to the next stage.

They only use the training set of the VDPVE to train
their network. No additional data has been used. They use
swin-B Network pretrained on the Kinetics-400 dataset to
initialize the backbone in SSNet. For optimization, they
use the AdamW optimizer by setting β1 = 0.9, β2 = 0.999.
They set minibatch size as 5. The learning rate is initialized
as 5 × 10−6 and use the custom warmup cosine step decay
to updates the learning rate. The Weight decay is set as
1.5× 10−3.

5.17. LION Vaader

They adopt the well-known ResNet-50 model and ex-
ploit it to perform transfer learning via a fine-tuning tech-
nique using the weights of the ImageNet dataset. First, they
perform a temporal sub-sampling of the video by select-
ing one frame per second. Then, from each of the selected
frames, a set of patches is extracted in a sliding window
fashion so that their dimensions match the standard archi-
tecture’s input shape.Second, each patch is fed to the CNN
backbone for feature extraction and fits into the spatio-
temporal pooling module in a time-distributed fashion. The
extracted features are then fed to the spatio-temporal pool-
ing module. The use of this pooling type is motivated by
the fact that the visibility of an artifact depends highly on
its location and its neighboring regions in the current frame
and the adjacent frames, resulting in the so-called masking
phenomenon. Thus, the overall quality of a given video is
affected by both, spatial artifacts that occur in some regions
of the frame, as well as temporal artifacts that affect a range
of sequential frames.

Most of the pooling techniques are effective at capturing
short-range patterns within local spatio-temporal regions,
whereas they can only model space-time dependencies of
at most a handful of seconds, not video whole. To address
that, they use a spatio-temporal transformer namely TimeS-
former as pooling architecture, which exploits space-time
attention. Thus, the feature pooling module captures short-
term dependencies between neighboring patches as well as
long-range correlations between distant patches. In addi-
tion, this pooling can analyze the video over much longer

time spans.
Their network contains 25.6 million parameters in the

CNN resnet50 model and 122.13 million parameters in the
TimeSformer architecture (vary according to the input’s
number of frames and patches). They use the All Com-
bined dataset that the authors in [69] proposed by merging
the KoNViD-1k, LIVE-VQC and YouTube-UGC datasets.
They use the ResNet50 pre-trained on ImageNet as the fea-
ture extraction sub-model. For optimization, they use the
Adam optimizer with default parameters. They set mini-
batch size as 1 due to the diversity of the number of frames
and patches that can be extracted per video. The learning
rate is initialized as 10−3, and a reduce learning rate on
plateau call back is used with patience parameter set to 5.
Features are only extracted once, and used directly to train
the transformer architecture.

5.18. Caption Timor

This team utilized SimpleVQA to directly extract spatial
and mobile features, while applying random rotation, flip-
ping, and cutting as data augmentation techniques. They
optimized the model by adjusting parameters and taking the
average value of five models obtained from five-fold cross-
validation training. The loss function used was MSE loss.

Their network consists of 2.6 million parameters and was
trained solely on the VDPVE training set without additional
data. They employed a ResNet50 pre-trained on ImageNet
as the feature extraction sub-model. The Adam optimizer
was used for optimization, with β1 set to 0.9 and β2 set
to 0.999. The minibatch size was set at 8, with a learning
rate initialized at 10−5 and halved every 5× 104 minibatch
updates. During the testing phase, the batch size was set to
1.

5.19. IVP-LAB

They introduce a novel method to acquire frame level
deep features for assessing the quality of videos. To accom-
plish this, they focus on the deep feature maps correlations
of a pre-trained network, or more specifically, their similar-
ity as a helpful tool for assessing video quality. The covari-
ance matrix i.e. the Gram matrix, which depicts the corre-
lation between all feature maps of a specific mid-layer, can
be stated as deep feature relationships. The structural de-
tails of frames’ appearance are reflected in these relations
and significantly correlate with the perceived quality of a
given video. The extracted feature maps relations in dif-
ferent granularities can effectively illustrate the influence of
various distortions. Every feature map reflects a different
structural detail of the source image. It is shown in [18]
that almost flawless reconstruction is possible from the net-
work’s lower layers whereas the detailed pixel information
is insufficiently maintained in the network’s upper layers.
In this case, each layer’s output of a convolutional neural
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Figure 6. The framework design of LION Vaader team’s method.

network can be represented by a collection of feature maps
that show the input pixels’ structural data. In the proposed
method, the extracted Gram Matrix of mid-level convolu-
tional layer is employed as the frame level feature. The
proposed method exploits the correlation between the deep
feature maps derived from each network’s layers to assess
the video’s quality.

Their network contains 21.7855 million parameters.
They only use the training set of the VDPVE to train their
network. No additional data has been used. They use the
inception-v3 pre-trained on ImageNet as the feature extrac-
tion sub-model. The only trainable model is a linear SVR
model that is trained using features extracted by a pretrained
inception-v3 model. They set epsilon value as 0.3. The
first test phase involves extracting spatial information from
video frames and merging it into a feature vector. Then this
feature vector was given to an SVR model to predict the
quality score.
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