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Abstract

In recent years, videos and images in 720p (HD),
1080p (FHD) and 4K (UHD) resolution have become more
popular for display devices such as TVs, mobile phones and
VR. However, these high resolution images cannot achieve
the expected visual effect due to the limitation of the internet
bandwidth, and bring a great challenge for super-resolution
networks to achieve real-time performance. Following this
challenge, we explore multiple efficient network designs,
such as pixel-unshuffle, repeat upscaling, and local skip
connection removal, and propose a fast and lightweight
super-resolution network. Furthermore, by analyzing the
applications of the idea of divide-and-conquer in super-
resolution, we propose assembled convolutions which can
adapt convolution kernels according to the input features.
Experiments suggest that our method outperforms all
the state-of-the-art efficient super-resolution models, and
achieves optimal results in terms of runtime and quality.
In addition, our method also wins the first place in NTIRE
2023 Real-Time Super-Resolution - Track 1 (×2). The code
will be available at https://gitee.com/mindspore/models
/tree/master/research/cv/AsConvSR

1. Introduction

Super-resolution is widely used to improve the visual
quality of images and videos [23, 24, 29] displayed on
various devices like mobile phones, TVs and so on.
In recent years, most media contents are produced and
distributed in high resolutions like 720p (HD), 1080p
(FHD) and 4k (UHD), and display devices with higher
resolutions have become more affordable and popular for
the public. Therefore, super-resolution needs to process
high-resolution images and videos , which significantly
increase the processing time and memory bandwidth [48].

Previous works like RFDN [33] and RTSRN [18] have
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Figure 1. Illustration of efficiency score (defined in Section
4.1) and runtime of different efficient super-resolution models
on DF2K dataset. Our proposed AsConvSR achieves the best
performance.

proposed efficient networks for super-resolution, but they
mainly aim at lower input resolutions like 540p and 640p.
Their real-time (30fps, below 33ms per image) performance
cannot be guaranteed on higher input resolutions. To
design real-time super-resolution networks for inputs with
higher resolutions above 720p, the effectiveness of skip-
connection, concatenation and other operations which are
commonly used in existing methods needs to be re-
evaluated.

Facing the aforementioned challenge, we redesign the
basic structure of the network to achieve the goal of real-
time super-resolution on high input resolutions like 720p
and 1080p. We re-evaluate the performances of the network
structures with complex topologies such as Enhanced
Spatial Attention (ESA) and Residual Feature Distillation
Block (RFDB) [33]. These structures can improve the
performance of the SR network, but they also increase the
model runtime. Therefore, a network with simple topology
should be the best candidate to construct an efficient
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super-resolution model. We adopt a simple backbone that
extracts features via sequential convolutions in a straight-
forward topology, additionally with pixel-unshuffle and
pixel-shuffle operations respectively at the beginning and
the end of the network. We discard all intermediate skip-
connections which bring additional computation overhead
in practice, and only retain a global skip-connection to
achieve high efficiency.

Considering the images as inputs for the super-resolution
network we discuss above, we usually see patches or areas
with different textures and contents from a great variety of
objects like trees, buildings, human beings, etc. Intuitively,
these patches with different patterns and texture complexity
require different processing methods. Therefore, we
propose the assembled convolution which enables the
networks to adaptively apply different convolution kernels
for different inputs. Compared with previous dynamic
convolution [7, 46, 50], our assembled convolution is more
flexible and effective as it calculates the optimal convolution
kernel coefficients for each channel, and the design only
brings a slight increase in computation cost and inference
time for the entire network.

As demonstrated in Fig.1, our model outperforms all
the state-of-the-art efficient super-resolution model in the
efficiency score and runtime. With our compact design, our
model is capable of real-time super-resolution on 720p and
1080p inputs with a single GPU (NVidia Tesla V100).

Our main contributions can be summarized as follows:

• We propose a fast and lightweight super-resolution
network in a simple and straight-forward network
topology, which can keep the restoration accuracy and
significantly reduce the model runtime.

• We propose assembled convolution for our efficient
super-resolution network. It expands the capacity of
feature extraction and meanwhile retains efficiency by
adapting convolution kernels based on the input.

• By applying the assembled convolution in the fast
and lightweight super-resolution network, we propose
AsConvSR which wins the first place in NTIRE 2023
Real-Time Super-Resolution - Track 1 (X2) [9].

2. Related Work
2.1. Efficient Image Super-Resolution

In recent years, many approaches have been
proposed to devise efficient super-resolution networks
[3, 16, 19, 22, 26, 33, 41] that can run robustly on devices
with limited computational resources with low latency.
Rethinking the pioneering work SRCNN [14] that applies
deep learning to SISR for the first time, FSRCNN [15]
significantly accelerates the SISR network by adopting

the original low-resolution as input without bicubic
interpolation, smaller sizes of convolution kernels, and
a deconvolution layer at the final stage of the network
to perform upsampling. LapSRN [28] progressively
reconstructs the sub-band residuals of high-resolution
images using the Laplacian pyramid. CARN [3] further
improves efficiency by its design of cascading residual
networks with group convolution. IMDN [22] proposes
information multi-distillation blocks with contrast-aware
attention (CCA) layer based on the information distillation
mechanism, while RFDN [33] refines the architecture of
RFDN with feature distillation mechanism by proposing
the residual feature distillation block. Following IMDN and
RFDN, both RLFN and FMEN rethink the effectiveness of
applying distillation and attention mechanism in this field,
and consequently adopt fully sequential CNN network
architecture. Specifically, RLFN [26] redesigns RFDB by
adding more channels to compensate for discarded feature
distillation branches to achieve higher inference speed and
better performance with fewer parameters. FMEN [16]
expands optimization space during training with re-
parameterizable building blocks [13] without increasing
extra inference time. SwinIR [30] proposes an efficient
transformer-based SR model which fully explores the swin
transformer structure, and it outperforms pure convolution
networks with fewer parameters and FLOPs. Swin2SR [8]
further improves the network structure by introducing
the SwinV2 attention, and proposes auxiliary loss and
high-frequency loss for the compressed images. However,
all these methods cannot satisfy real-time performance.

2.2. Dynamic Convolution

Dynamic Convolution [5, 6, 10, 11, 25, 35, 39, 40, 42–
44, 47, 51] has gained growing interests for its potential
to learn more powerful features by generating convolution
kernels adaptively based on the inputs. Consequently,
this method successfully increases capacity and flexibility
of convolutional neural networks (CNN) without adding
redundant computation cost, and can be readily applied in
various CNN architectures. This method usually aggregates
several fixed convolution kernels as introduced in [7, 46,
50], which also carry out experiments to demonstrate its
effectiveness on typical computer vision tasks including
image classification, object detection and segmentation.
Dynamic convolution is also powerful on low-level vision
tasks, such as denoising [36], and single image super-
resolution (SISR) [45]. Inspired by the above research of
dynamic convolution, we design the assembled convolution
block for our efficient super-resolution network. It differs
from the previous dynamic convolution, and gains higher
performance as well as efficiency in super-resolution task.
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Figure 2. Architecture of fast and lightweight super-resolution network with assembled convolutions (AsConvSR).

3. Method
In this section, we first describe the network architecture

of AsConvSR in Section 3.1. In Section 3.2, we analyze
the dynamic convolutions and propose our assembled
convolutions.

3.1. Network Architecture

Processing time and memory bandwidth of a neural
network are highly related to the resolution of input images.
RTSRN [18] can achieve real-time performance for a 360p
input on a Tesla V100 GPU. However, runtime of this model
would increase to 37.91 ms (see Section 4.2) when the
input resolution is 1080p. The definition of floating point
operations per second (FLOPs) is described as follows:

FLOPs = (

multiplications︷ ︸︸ ︷
Ci ×K2 +

additions︷ ︸︸ ︷
Ci ×K2 − 1)

×H ×W × Co,

(1)

where Ci indicates the number of input channels, Co is the
number of output channels, H and W represent the height
and width of the input feature map, and K is the size of
the convolution kernel. Note that this formula represents
the FLOPs for a convolution layer without bias. According
to this equation, given a fixed FLOPs, larger H and W
mean smaller Ci and Co. However, in practice, the runtime
cannot be reduced by cutting down the channel size when
the number of channels is smaller than a certain level (16
or 32) for most computing devices. Small channel size also
limits the flexibility of design and the performance of the
SR network.

Pixel unshuffle. We use pixel-unshuffle operation
to downscale the input image and increase the number
of channels. It can reduce the computational cost of
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Figure 3. Illustrations of pixel-unshuffle and pixel-shuffle.

the network without loss of information volume. As
demonstrated in Fig.3, pixel-unshuffle is the reverse of
pixel shuffle. It rearranges the elements from input and
outputs the data with smaller resolution and larger channel
size. Take N times pixel-unshuffle as an example, the
resolution of input image downscales to

(
H
N , W

N

)
while

the channel size becomes C × N2. According to Eq.1,
adopting pixel-unshuffle does not change the FLOPs of the
first convolution layer if the output channel size remains
unchanged. From the second convolution, FLOPs decreases
by a factor of N2 since the resolution is downscaled. The
performance usually degrades if we simply downscale the
input by only applying pixel-unshuffle, but this can be
compensated by increasing the complexity of our network
design by several options like increasing the channel size
and so on.

Skip connection. Besides the convolution layers, skip
connections also occupy a large amount of computational
resources. They not only require additions of two feature
maps, but also have to cache the previous feature map
which increases the runtime of accessing the memory. Skip
connections used in super-resolution are mainly divided
into two types: one is the skip connection inside the network
structure, such as the skip connection of the residual block,
and the other is the global skip connection which adds



up the network output and the LR upscaled by classical
interpolation like bicubic or bilinear. Skip connections
in the network structure can be removed according to the
experiments (Section 4.4). We cannot simply remove the
global skip connection because it can stabilize the training
of the network and accelerate the convergence (Section
4.4). So we replace the classical interpolation algorithm
in the global skip connection by repeating the LR 4 times
according to ABPN [17] which is much faster than the
classical interpolation.

Based on the preceding analysis, we design a fast and
lightweight super-resolution network. Given an input LR
image, the resolution is converted to channel dimension
by pixel-unshuffle layer. By using a 3x3 convolution, the
channel of feature map is converted to the target size and
then fed into the assembled block. The assembled block can
adaptively apply different convolution kernels for different
inputs. The details about the assembled block are described
in the next section. After the assembled block, a 3×3
convolution layer is used to convert the channel size to 48 so
that the feature map can be restored to target resolution after
the pixel-shuffle layer. Noting that a low resolution image
repeated in the channel dimension can also be restored to
the high resolution with a pixel-shuffle layer, we divide the
final pixel shuffle into two steps in order to introduce the
global skip connection to the network.

3.2. Assembled Block

The idea of divide-and-conquer is widely used in
image processing domain from classical methods to deep
learning algorithms. For example, remove the noise and
compression effect on flat areas, sharpen the edges in
edge-dominant areas, and generate more fine details in
rich-textured areas. These intuitions underlie the idea of
patched-based super-resolution. Kong et al. [27] propose
ClassSR with a classification network to determine whether
the patches go to the simple sub-network to save FLOPs
or the complex ones to get a better performance. However,
according to our experiments, the process of splitting the
images and recombining them to patches also significantly
increases the total runtime of the network. Take a 1080p
image as input, the process to assemble the patches costs
7ms in total, while the entire runtime budget is only 30ms.
On the other hand, dynamic convolution causes only a
small increase in runtime because the dynamic overhead is
at the weight level. The major computational cost of the
dynamic convolution is still the 3x3 convolution, making it
perfect for super-resolution task.

The assembled block contains a control module and
three assembled convolutions. As shown in Fig.4, the
control module can generate the assembled coefficients
from the input feature map:

coeff = Fcontrol(fin), (2)
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Figure 4. Details of the assembled block. Conv-1 indicates a
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where fin is the input feature, fin ∈ RB×Ci×H×W , coeff
is the output coefficient, coeff ∈ RB×Co×E , B represent
the batch size, Ci denotes the number of input channels, Co

is the number of output channels, and E is the number of
candidate convolution kernels. The control module converts
features into coefficients through pooling and convolution.
Let

K = coeff ⊗ kbasis, (3)

fout = conv(fin;K), (4)

where kbasis ∈ RE×Ci×ks×ks is the candidate convolution
kernels, K is the assembled kernels for the convolution
and ks is the kernel size. The coefficient coeff and
candidate kernels kbasis are first reshaped to R(B·Co)×E

and RE×(Ci·ks·ks) respectively. Then, matrix multiplication
is performed over the coefficient coeff and candidate
convolution kernels kbasis, to generate a final convolution
kernel K ∈ RB×Co×Ci×ks×ks. Different batches of data
require different convolution kernels, the batch dimension
of the feature map is reshaped to the channel dimension and
the group convolution is used to calculate the output feature
maps.

Comparison between dynamic convolution and
assembled convolution is shown in Fig.5. Dynamic
convolution generates the whole convolution kernel (all
channels) in a linear combination of the bases, which can
be expressed as:

Kdynamic =

E∑
i=0

coeff i×kdyi , kdyi ∈ RCo×Ci×ks×ks, (5)
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Figure 5. Comparison between dynamic convolution and
assembled convolution.

where Kdynamic is the kernel for convolution, Kdynamic ∈
RCo×Cc×ks×ks, and kdyi is the candidate kernel which has
the same dimension as Kdynamic. Assembled convolution
generates an optimal convolution kernel coefficient for each
channel, which can be expressed as:

Krs
j =

E∑
i=0

coeff i,j × krsi , krsi ∈ RCi×ks×ks, (6)

Kassembled = cat
(
Krs

0 ,Krs
1 , ...,Krs

Co

)
, (7)

where Krs
j is the kernel for the output channel j,

Krs
j ∈ RCc,ks,ks, kdyi is the basis of the assembled

kernel. Kassembled for the convolution is assembled
by concatenating all the Krs

j . Compared with dynamic
convolution, the assembled convolution we propose
has finer granularity and higher flexibility in parameter
generation, leading to a better performance in super-
resolution.

4. Experiments
4.1. Setup

We use 3450 images in DIV2K [2] and Flick2K [31]
(DF2K) datasets for training, and test the performance of
our model on five benchmark datasets: DF2K (100 testing
images), Set5 [4], Set14 [49], BSD100 [34] and Urban100
[21]. We evaluate PSNR and SSIM on RGB color space.
Following the ranking criterion of NTIRE 2023 Real-Time
Super-Resolution challenge, we measure the efficiency of a
model by the following score function:

Score =
2PSNR−bicubic · 2
C ·

√
runtime

, (8)

where ’bicubic’ means the PSNR of the bicubic
interpolation, C is a constant set to 0.1 in our experiments.
We adopt Adam optimizer with β1 = 0.9 and β2 = 0.9999
to train our model. The learning rate is 5 × 10−4 in the
initial stage and is halved for every 2 × 105 iterations. The
entire training process takes 1× 106 iterations to minimize
the charbonnier loss. We randomly crop HR and LR patchs
of sizes 256×256 and 128×128 from the training set. The
mini-batch size is 32. We augment the dataset by rotating
and flipping the patches of the training pairs. We use
MindSpore [1] and PyTorch [37] for the implementation

4.2. Quantitative Results

Method FLOPs(G) Params(M) FP16
IMDN [22] 1808.98 0.87 211.52
RFDN [33] 824.04 0.42 178.15
RLFN [26] 592.36 0.30 97.98
FMEN [16] 671.36 0.32 128.29
RTSRN [18] 400.65 0.19 37.91
AsConvSR-L 36.67 5.21 24.61
AsConvSR 9.06 2.35 3.91

Table 1. FP16 indicates the runtime of a model running on half-
precision floating-point in milliseconds (ms). And these runtimes
are measured on a V100 GPU with 1920×1080 images as inputs.
We also record the FLOPs and the number of parameters of each
model

In this section, we compare AsConvSR with the state-
of-the-art efficient super-resolution models. Specifically,
IMDN [22], RFDN [33], RLFN [26], FMAN [16], and
RTSRN [18] are chosen for experiments. We train
two versions of our model, AsConvSR-L denoting the
model with a larger scale and AsConvSR a smaller one.
Specifically, AsConvSR-L has two assembled blocks, each
of which has 128 channels and 128 candidate kernels. And
AsConvSR has only one assembled block with 32 channels.

As shown in Tab.1, none of the methods can achieve
the real-time performance with 1080p input except
ours. AsConvSR has only 2.26% of RTSRN’s FLOPs
and 10.33% of RTSRN’s runtime. Because assembled
convolution has a large number of bases of weights, the
number of parameters of our model is multiple times of
the other model. However, our model is still much faster
than other models, which indicates that the assembled
convolution does not occupy many computing resources,
and most of the computing budget is still consumed by the
conventional convolution on the feature maps.

Quantitative comparisons of our model and other
efficient SR models are demonstrated in Tab.2. Our method
achieves the best scores on every benchmark dataset.
AsConvSR takes only 3.91 ms, which is close to the
bicubic interpolation, and achieves an improvement on



Method
DF2K

PSNR/SSIM/score
Set5

PSNR/SSIM/score
Set14

PSNR/SSIM/score
BSD100

PSNR/SSIM/score
Urban100

PSNR/SSIM/score
bicubic 29.81/0.8573 29.96/0.8576 27.38/0.7987 27.67/0.8022 24.98/0.7965

IMDN [22] 31.96/0.8933/6.10 32.21/0.8934/6.52 29.37/0.8409/5.43 29.27/0.8404/4.16 28.30/0.8730/13.71
RFDN [33] 31.96/0.8932/6.66 32.27/0.8941/7.39 29.32/0.8404/5.73 29.27/0.8397/4.54 28.36/0.8735/15.57
RLFN [26] 31.88/0.8915/8.47 32.14/0.8923/9.10 29.19/0.8376/7.05 29.20/0.8374/5.84 28.16/0.8696/18.21
FMEN [16] 31.84/0.8915/7.24 32.20/0.8935/8.34 29.22/0.8387/6.32 29.20/0.8389/5.11 28.07/0.8694/15.05
RTSRN [18] 31.52/0.8871/10.67 31.93/0.8886/12.67 28.96/0.8335/9.68 29.01/0.8345/8.20 27.49/0.8581/18.50
AsConvSR-L 31.62/0.8872/14.12 31.95/0.8888/15.98 29.01/0.8337/12.43 29.05/0.8351/10.46 27.65/0.8616/25.68
AsConvSR 30.87/0.8766/21.05 31.33/0.8797/26.00 28.37/0.8202/19.96 28.60/0.8249/19.23 26.50/0.8365/28.98

Table 2. Quantitative results on DF2K [2,31], Set5 [4], Set14 [49], BSD100 [34] and Urban100 [21] (×2). Red indicates the best and blue
indicates the second best. The scores in this table are calculated by using the Eq.8. And the runtime of each model is obtained from Tab.1

HR Bicubic IMDN [22] RFDN [33]

RLFN [26] FMEN [16] RTSRN [18] AsConvSR-L

HR Bicubic IMDN [22] RFDN [33]

RLFN [26] FMEN [16] RTSRN [18] AsConvSR-L

Figure 6. Visual comparison of efficient SR models. Best viewed by zooming.

PSNR for more than 1dB. Our AsConvSR is the only
method that achieves real-time performance with 1080p
inputs. As demonstrated in Tab.1, AsConvSR-L exceeds
RTSRN in PSNR with only 64.90% of runtime.

4.3. Visual Comparison

Fig.6 demonstrates the visual results of other efficient SR
models and our AsConvSR-L. AsConvSR-L outperforms

RTSRN in restoring compressed textures, and shows
competitive performance in sharpness compared with
RLFN [26] and FMEN [16]. Fig.7 shows the visual results
of AsConvSR. The visual performance of AsConvSR
significantly surpasses bicubic interpolation by using only
3.91 ms, and achieves similar quality to RTSRN. In general,
both AsConvSR-L and AsConvSR keep the restoration
accuracy and significantly reduce the model runtime.



(a) Bicubic (b) RTSRN (c) AsConvSR

Figure 7. Visual results of AsConvSR and RTSRN on Set14 [49]
and Urban100 [21].

4.4. Ablation Study

In this section, we evaluate the relationship between
fidelity improvement and runtime consumption of various
network structures. The ablation study is performed on the
DF2K dataset, and Eq.8 is used as the efficiency criterion.

Method Runtime PSNR Score
RLFN 97.98 31.88 8.47

w/o ESA 77.91 31.83 9.17
repeat upscaling 75.78 31.82 9.21

Table 3. Ablation study on the Enhanced Spatial Attention (ESA)
module and repeat upscaling.

We verify the efficiency of ESA and repeat upscaling
using RLFN as the baseline. As demonstrated in Tab.3,
adding ESA does improve network performance on PSNR,
but it also increases the running time by 20.07 ms, which
is 25.72% of the runtime for the whole model. This
phenomenon shows that ESA is not efficient enough with
large resolutions inputs. Then we replace the bicubic
interpolation in the model with repeat upscaling, which
reduces the runtime by 2.13 ms. Given the standard of
real-time 30 ms, using repeat upscaling can save 7.1% of
runtime, indicating that repeat upscaling is practical and
efficient.

Method Runtime PSNR Score
Pixel-Unshuffle(1) 22.58 31.39 12.53
Pixel-Unshuffle(2) 15.72 31.33 14.46
Pixel-Unshuffle(3) 15.49 31.23 13.30
Pixel-Unshuffle(4) 12.56 31.05 13.31

Table 4. Comparison of the pixel-unshuffle factor. Values in the
brackets indicate different factors.

The comparisons of the pixel-unshuffle factor are given

in Tab.4. ’Pixel-Unshuffle(1)’ means taking images of the
original resolution as the input for the network, without
using pixel-unshuffle to sample extra channel data from
height and width. ’Pixel-Unshuffle(x)’ means to sample
pixels with interval of x from the height and width
dimensions to the channel dimension. A larger x results in
a larger number of channels. Therefore, for the experiments
in Tab.4, the number of channels for the corresponding
networks are 64, 128, 192, and 256 respectively, which can
ensure the consistence of FLOPs in each experiment.

As demonstrated in the Tab.4, although the number
of FLOPs is consistent in each experiment, the runtime
and PSNR both decrease when the pixel-unshuffle factor
increases. First, the performance in pixel-unshuffle
experiment indicates that convolutions with a larger
channel size and a smaller resolution run faster in NVIDIA
GPU even the FLOPs remains unchanged. Second, pixel-
unshuffle disrupts the spatial distribution of features and
deteriorate the performance of the model. Finally, we
choose 2 as the pixel-unshuffle factor in the following
experiments.

Method Runtime PSNR Score
residual 15.72 31.33 14.46

w/o residual 15.21 31.34 14.79
w/o global skip 15.16 31.24 13.83

w/o residual&bias 14.14 31.35 15.43

Table 5. Ablation study on the residual structure, bias and global
skip connection.

As demonstrated in Tab.5, we re-evaluate the efficiency
of residual structure and bias of convolution. For the
experiments without residual structure, we increase
the values of certain kernel in convolution by 1 in the
initialization phase. According to the theory proposed
by RepOpt [12], such modification on initialization is
equivalent to adding a skip connection to the corresponding
convolution layer without explicitly adding this structure.

By removing the residual structure in the network, the
performance is maintained and the runtime is decreased.
On the contrary, global skip connection demonstrates its
necessity as the PSNR drops greatly after the removal of
global skip connection. In addition, training also becomes
unstable after the removal of global skip connection. In
conclusion, it is not preferable to remove the global skip
connection from the super-resolution model. We also
find that removing bias can improve the efficiency of the
network. So we set up a new baseline without residual
structure and bias for the following experiments.

We compare the efficiency of the model with different
channel sizes in Tab.6. The FLOPs and runtime do not
proportionally decrease or increase when the number of
channels changes. The FLOPs of a 128-channel network



Method Runtime PSNR Score
channels(128) 14.14 31.35 15.43
channels(64) 7.01 31.08 18.16
channels(32) 3.73 30.69 19.04
channels(16) 3.33 30.38 16.26

Table 6. Comparison of models with different channel sizes.

is almost four times that of a 64-channel network, but
the runtime is only two times. However, considering the
deterioration speed on PSNR, the 64-channel network still
wins the competition in the efficiency score. In addition, the
speed increase caused by reducing the number of channels
has a limit. On the Tesla V100 platform, the reduction in
runtime is no longer obvious, when the network is reduced
to 16 channels. Given consideration on both the runtime and
PSNR, we consider 32 as the optimal number of channels
for our models.

Method Runtime PSNR Score
w/o dynamic 3.73 30.69 19.04

dynamic 3.84 30.83 20.62
assembled 3.91 30.87 21.05

Table 7. Comparison between dynamic convolution and
assembled convolution.

Comparisons on dynamic and assembled convolutions
are shown in Tab.6. Replacing classical convolution
with dynamic convolution only slightly increases the
runtime (0.11 ms), but improves the PSNR by 0.14dB,
which verifies the efficiency of the idea of divide-and-
conquer. Compared with dynamic convolution, assembled
convolution can keep the runtime basically unchanged
while improving the final score by 0.43, achieving highest
efficiency.

To compare the efficiency gains of each design, we
collect all above experiments results into Fig. 8. Adopting
pixel-unshuffle, removal of residual and bias does not
deteriorate the performance of the model in PSNR,
and reduces runtime at the same time. Reducing the
number of channels in the network increases the score by
greatly reducing the runtime, but also reduces the PSNR.
Assembled convolution can improve the PSNR without
increasing the runtime, resulting in a significant score
improvement and achieving highest efficiency among all
the models.

4.5. AsConvSR for NTIRE 2023 Real-Time Super-
Resolution Challenge

Our model wins the first place in NTIRE 2023 Real-Time
Super-Resolution - Track 1 (×2). The major difference in
training the competition model is the training datasets. In

Huawei Proprietary - Restricted Distribution8

base pixel unshuffle(2) w/o residual&bias channels(32) assembled

runtime PSNR score

22.58

31.39

12.53

15.72

14.48

31.33

14.14

31.35

15.43

3.73

30.69

19.04

3.91

30.87

21.05

Figure 8. Comparison of models with different efficient designs.
’base’ is a vgg-style model with 64 channels and repeat upscaling.

Method Runtime
PSNR/SSIM

/PSNR-Y Score

Bicubic – 33.92/0.8829/36.66 –
Baseline [9] 7.09 34.22/0.8854/– 9.27

DFCDN Team 4.67 34.63/0.8916/37.46 15.17
Team OV 2.91 34.62/0.8899/37.45 19.06
RTVSR 2.24 34.71/0.8910/37.50 23.13
ALONG 1.91 34.63/0.8906/37.38 23.81

AsConvSR 3.19 35.02/0.8957/37.74 24.13

Table 8. Ranking of the NTIRE 2023 Real-Time Super-Resolution
track 1 [9]. Top 5 methods are included.

the competition we use DIV2K [2], Flick2K [31], DIV8K
[20], GTAV [38], and LIU4K-V2 [32] for training. Other
hyperparameters are consistent with the above experiments.
As demonstrated in Tab.8, our AsConvSR exceeds the
second best model in the PSNR score by 0.39 dB and is
ranked first with the highest score.

5. Conclusion

In this paper, we propose a fast and lightweight
super-resolution network with assembled convolution for
real-time super-resolution. We revisit the efficiency of
several designs such as pixel-unshuffle, repeat upscaling,
residual and bias removal. Furthermore, we design a
lightweight block named assembled block which can
adaptively assembles the convolution kernels according
to the input features. By introducing these designs, our
model runtime is significantly reduced while an excellent
super-resolution performance is obtained. Quantitative
experiments demonstrate the competitive performance of
our model.
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