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Abstract

Stereo Image Super-Resolution (stereoSR) has attracted
significant attention in recent years due to the extensive de-
ployment of dual cameras in mobile phones, autonomous
vehicles and robots. In this work, we propose a new
StereoSR method, named SwinFSR, based on an extension
of SwinIR, originally designed for single image restora-
tion, and the frequency domain knowledge obtained by the
Fast Fourier Convolution (FFC). Specifically, to effectively
gather global information, we modify the Residual Swin
Transformer blocks (RSTBs) in SwinIR by explicitly incor-
porating the frequency domain knowledge using the FFC
and employing the resulting residual Swin Fourier Trans-
former blocks (RSFTBs) for feature extraction. Besides, for
the efficient and accurate fusion of stereo views, we pro-
pose a new cross-attention module referred to as RCAM,
which achieves highly competitive performance while re-
quiring less computational cost than the state-of-the-art
cross-attention modules. Extensive experimental results
and ablation studies demonstrate the effectiveness and ef-
ficiency of our proposed SwinFSR.

1. Introduction

Stereo image pairs can encode 3D scene cues into stereo
correspondences between the left and right images. With
the extensive deployment of dual cameras in mobile phones,
autonomous vehicles and robots, the stereo vision has at-
tracted increasing attention in both academia and industry.
In many applications such as AR/VR [19,35] and robot nav-
igation [30], increasing the resolution of stereo images is
highly demanded to attain superior perceptual quality and
optimize performance for downstream tasks [40]. Recently,
many deep-learning-based methods [4,21,41,43] have been
proposed to address the stereo super-resolution (stereoSR)
problem.

In favour of the remarkable capability of the Transformer
[37], most recent stereoSR methods [37, 40] are developed

Figure 1. Parameters vs. PSNR of models for 4× stereo SR on
Flickr1024 [42] test set. Our SwinFSR families achieve the highest
performance.

based on Transformer structure, especially on a variant for
image restoration task, i.e., SwinIR [21]. However, there
are some common issues with the existing SwinIR based
models such as SwiniPASSR [14] and SwinFIR [48]. First,
SwiniPASSR does not have a specifically designed mech-
anism for exploiting features extracted from two views as
biPAM [43] is used by default. Second, it focuses on spatial
features but not spectral features, thus failing to make full
use of large receptive fields to gather global information in
a more direct manner. As of SwinFIR [48], it also does not
explicitly exploit the interdependence of features extracted
from two views due to a lack of cross attention modules.
Moreover, SwinFIR cannot estimate epipolar stereo dispar-
ity as it requires squared images as inputs.

Inspired by the observation of [36] regarding the effec-
tiveness of the Fast Fourier Convolution (FFC) block in cap-
turing global information, we modify Residual Swin Trans-
former blocks (RSTBs) in SwinIR by explicitly incorpo-
rating the frequency domain knowledge and employ the
resulting Residual Swin Fourier Transformer blocks (RS-
FTBs) for feature extraction. Besides the proposed feature
extractor, we also aim to enhance the cross-attention mod-
ule for effective and efficient informant exchange between
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two views. Instead of directly using the off-the-shelf cross-
attention modules such as SAM [46], SCAM [4], and bi-
PAM [43], we propose a new cross-attention module named
RCAM. Specifically, to balance between efficient inference
and accurate learning, we modify the biPAM by remov-
ing the need to handle occlusion and redesigning the atten-
tion mechanism. Moreover, to address the inflexibility of
squared training patches with respect to the epipolar dispar-
ity, we modify the local window in the Swin Transformer
so that the network can process rectangular input patches.
Based on the above innovations, we develop a new stere-
oSR network, namely SwinFSR. In summary, our Swin-
FSR has two branches built with RSFTBs to process left and
right views, respectively. The two branches share the same
weights. RCAMs are inserted between the two branches to
exchange and consolidate cross-view information.

Furthermore, various training/testing strategies are
adopted to unleash the potential of SwinFSR. In training,
we use several effective data augmentation methods to boost
SR performance, such as random cropping, flipping, and
channel shuffling. We also conduct experiments to find the
best possible hyper-parameters, such as dropout rate [18],
window size, and stochastic depth [12] of the Swin Trans-
former based models. As shown in Figure 1, our Swin-
FSR families have better performance-complexity trade-
offs than the existing methods.

Our contributions can be summarized as follows:

• Based on a systematic analysis of the issues with the
existing methods, we propose a new stereoSR method,
SwinFSR. It inherits the advantages of SwinIR and
Fast Fourier Convolution and exploits both spatial and
spectral features.

• We propose a new cross-attention module, named
RCAM, that strikes a good balance between efficient
inference and accurate learning. This is realized by
modifying biPAM to circumvent occlusion handling
as well as redesigning its attention mechanism. It is
shown that this modification can help expedite the in-
ference speed without significantly jeopardizing the
performance.

• Extensive experimental results demonstrate the effec-
tiveness and efficiency of our proposed approach.

2. Related Works
2.1. Single Image Super-resolution

Single image super-resolution (SISR) aims to gener-
ate high-resolution images based on their low-resolution
counterparts. SISR has been extensively researched in the
fields of image processing and computer vision, and vari-
ous approaches have been proposed to address this prob-
lem. Super-Resolution Convolutional Neural Networks

(SRCNN) [8] make the first attempt to bring deep learn-
ing to bear upon SISR, and subsequent methods VDSR
and EDSR [22, 49] further take advantage of residual and
dense connections to achieve improved performances. At-
tention mechanisms, including channel attention [6, 27, 50]
and channel-spatial attention [7,21,29], have also been pro-
posed as an effective tool for tackling SISR. Recently, in
view of its remarkable ability in natural language process-
ing (NLP), SwinIR [21], a Transformer-based structure has
been employed for SISR, achieving state-of-the-art (SOTA)
performance.

2.2. Stereo Image Super-Resolution

Stereo image super-resolution (stereoSR) is a challeng-
ing task in computer vision that requires generating high-
resolution images from stereo image pairs. Convolu-
tional neural networks (CNNs) are commonly used in deep
learning-based stereoSR approaches, such as the Single Im-
age Stereo Matching network (SSRN) [26]. It introduces a
stereo matching module to establish dense correspondence
between low-resolution stereo images and then applies a
CNN to enhance the resolution of each image. Attention
mechanisms have also been explored in recent works to im-
prove stereoSR. For instance, [41] proposes a parallax at-
tention module (PAM) and builds a PASSRnet for stereoSR
to handle varying parallax. [51] designs an attention-based
method that can adaptively weigh the stereo features to en-
hance the resolution of the stereo images. [46] introduces
stereo attention modules (SAMs) into pre-trained single im-
age SR (SISR) networks to handle information assimilation.
[34] addresses the occlusion issue by using disparity maps
regressed by parallax attention maps to assess stereo consis-
tency. [43] develops an iPASSRnet that uses symmetry cues
and a Siamese network equipped with a biPAM structure to
super-resolve both left and right images. And NAFSSR [4],
the winner of the NTIRE 2022 StereoSR Challenge [40],
achieves the SOTA by inserting cross-view attention mod-
ules (SCAMs) between consecutive NAFblocks [2]. These
works have made significant contributions to the stereoSR
and have opened up new possibilities for future research in
this area.

In this work, we move one step further by introducing a
residual stereo cross-attention module (RCAM). In contrast
to SAM [46], which requires calculating an occlusion map,
our RCAM presents a better solution with high efficiency.

2.3. Vision Transformer

As a recent advance in the field of computer vision, vi-
sual Transformers [37] have garnered significant attention
for their ability to capture long-range dependencies in im-
ages, especially for high-level vision tasks such as image
classification [9, 24] and object detection [1, 24, 44]. More-
over, Transformers have also been applied to low-level vi-



sion tasks (see, e.g., [45]). To reduce the computational
complexity of self-attention operations in Transformers, a
hierarchical visual Transformer called Swin Transformer
[1] is proposed using shifted window techniques, which
achieved SOTA performance on various tasks such as image
recognition, object detection, and segmentation. SwinIR
[21] and Swin V2 [23] have implemented some further re-
finements to make Transformers more efficient. Overall,
these works have demonstrated the effectiveness of visual
Transformers in a wide range of computer vision tasks.

2.4. Training and Testing Strategies

Regularization methods such as dropout [18] and
stochastic depth [12] are widely employed to enhance the
model performance in high-level computer vision tasks. Re-
cently, the above regularization methods have been intro-
duced in image restoration tasks. For example, stochas-
tic depth is employed in [4] to address the issue of over-
fitting to the stereo-training data and improve generaliza-
tion. Similarly, [18] adjusts the dropout method in their SR
tasks. In this work, we will systematically study how the
factors such as dropout rate, window size, and stochastic
depth can impact PSNR performance in Swin Transformer-
based models. Additionally, since test-time augmentation
(TTA) [15,38] is a technique that is frequently used in com-
puter vision competitions to boost performance, we also in-
vestigate its capability in the context of stereoSR through
an ablation study.

3. Method
In this section, we introduce our method in detail. In Sec
3.1, we first give an overview of the network’s architecture.
In Sec 3.2, we then present the training and testing strate-
gies.

3.1. Network Architecture

3.1.1 Overall Framework

Figure 2 depicts an outline of our proposed transformer-
based Stereo SR network (SwinFSR). SwinFSR takes a
low-resolution stereo image pair as input and enhances the
resolution of both left and right view images. To be specific,
Our SwinFSR has two branches built with RSFTB to pro-
cess left and right views, respectively. RCAMs described in
Figure 4, are inserted between the left and right branches to
interact with cross-view information. In essence, SwinFSR
is composed of three parts: intra-view feature extraction,
cross-view feature fusion, and reconstruction
Intra-view feature extraction and reconstruction. To
start, a 3× 3 convolutional layer is employed to extract the
shallow features from input images. Then, RSFTBlocks are
stacked to achieve deep intra-view feature extraction. We
will detail the RSFTBlock in Section 3.1.2. Once feature

extraction is completed, a Fast Fourier Block (FFB) is ap-
plied, followed by a pixel shuffle layer [32] that upsamples
the feature by a scale factor of 4. Additionally, to alleviate
the burden of feature extraction, we follow [4, 20] to pre-
dict the difference between the bilinearly upsampled low-
resolution image and the high-resolution ground truth.
Cross-view feature fusion. To engage with information
from different views, we incorporate RCAM following ev-
ery RSFTBlocks. RCAM utilizes stereo features produced
by the preceding RSFTBlocks as inputs for conducting bidi-
rectional cross-view interactions and produces interacted
features fused with input features from the same view. The
details of the RCAM are elaborated in Section 3.1.5.

3.1.2 RSFTBlock.

As shown in Figure 2 (a), the residual Swin Transformer
block (RSTB) is a residual block built using Swin Trans-
former Layers (STL) in Figure 2 (b) and a Fast Fourier Con-
volution Block in Figure 3. Given the input feature Fi,0 of
the i-th RSFTB, we first extract intermediate features Fi,j
by L STLs as:

Fi,j = STLi,j(Fi,j−1), j = 1, 2, 3, ..., L, (1)

where STLi,j is j-th STL in the i-th RSFTB.
We then feed the feature from L-th STL to FFB to ex-

tract frequency domain knowledge. After that, we output
the summation of FFB outputs and input features by:

Fi,out = FFBi(Fi,L) + Fi,0, (2)

where FFBi represents the last FFB block in the i-th RS-
FTB block. And Fi,out is the output feature of i-th RSFTB
block.

3.1.3 STL Blocks.

As shown in Figure 2 (b), a two-layer multi-layer perceptron
(MLP) with fully connected layers and GELU non-linearity
between them is used. Prior to using the MSA and MLP, a
LayerNorm (LN) layer is attached and a residual connection
is employed for both modules. The complete process for the
STL block is explained in detail in [21].

3.1.4 Fast Fourier Convolution Blocks (FFB).

Our backbone model SwinIR is mainly composed of resid-
ual Swin Transformer blocks (RSTBs) that utilize several
Swin Transformer layers to achieve local attention and
cross-window interaction. However, in the context of stereo
SR, it is advantageous to incorporate both local and global
information [11]. To achieve this, we take inspiration from
the Fast Fourier Convolution (FFC) [3], which can use the
global context in early layers [36]. To this end, we propose



Figure 2. Top: illustration of the proposed SwinFSR Architecture. Bottom: (a) Residual Swin Fourier Transformer Block (RSFTB), (b)
Swin Transformer Layer (STL).

a hybrid module including an FFC and a residual module
called the Fast Fourier Block (FFB) to enhance the model’s
ability. As shown in Figure 3, the FFB has two main compo-
nents: a local spatial conventional convolution operation on
the left and a global FFC spectrum transform on the right.
The outputs from both operations are concatenated and then
subjected to a convolution operation to generate the final
result. Here we formalize the operation. Given an input
feature of FFB block Fi,L, we send Fi,L into two distinct
branches, local and global. In the local branch, Hlocal is
utilized and extracts the local features in the spatial domain,
and Hglobal is intended to capture the long-range context in
the frequency domain. To increase readability, we use F to
represent Fi,L in the following paragraphs.

Flocal = Hlocal(F ), (3)

Fglobal = Hglobal(F ). (4)

We then detail the local and global branches. The local
branch is CNN based, as shown in Figure 3. Instead of using
a single-layer convolution, we insert a residual connection
and two convolution layers to increase the expressiveness of
the model. The extraction of Flocal can be also written as,

Flocal = Hconv(F ) + F (5)

whereHconv(·) denotes a simple block containing three lay-
ers. Specifically, it consists of two 3× 3 convolution layers
and a LeakyReLU layer.

In the global branch, we use the spectrum transform
structure in accordance with [3]. It can transform the con-
ventional spatial features into the frequency domain to ex-
tract the global features by 2-D FFT and perform the inverse
2-D FFT operation to produce final spatial domain features
for future feature fusion. The Hglobal in Eq. 4 can also be
re-written as,

F ′ = C(F ) (6)

Ffrequency = C′′(HIFFT (C′(HFFT (F ′))) + F ′) (7)

where HFFT (·) is the channel-wise 2-D FFT operation.
HIFFT (·) is the inverse 2-D FFT operation. C, C′ and
C′′ denote the used three convolution layers in the global
branch.

After obtaining the features from both branches, we fi-
nally use a single 1× 1 convolution layer Cf to fuse the two
features and reduce the number of channels by half.

FFFB = Cf ([Flocal, Fglobal]) (9)

where [·] is the concatenation operation.



3.1.5 Cross-View Interaction.

In this section, we show the details of the proposed Residual
Cross Attention Module (RCAM). The structure of RCAM
is demonstrated in Figure 4. It is based on Scaled Dot Prod-
uct Attention [37] and inspired by all the previous cross at-
tention modules [34, 41, 43, 46], which computes the dot
products of the query with all keys and applies a softmax
function to obtain the weights on the values:

Attention(Q,K, V ) = softmax(QKT /
√
C)V (10)

where Q ∈ RH×W×C is a query matrix projected by
the source intra-view feature (e.g., left-view), and K,V ∈
RH×W×C are key, value matrices projected by target intra-
view feature (e.g., right-view). Here, H, W, and C repre-
sent the height, width and number of channels of the fea-
ture map. Since stereo images are highly symmetric under
epipolar constraint [43], we follow NAFSSR [4] to calculate
the correlation of cross-view features along the W dimen-
sion. In detail, given the input stereo intra-view features
FL, FR ∈ RH×W×C , we can get layer normalized stereo
features F̄L= LN(FL) and F̄R= LN(FR). Next, a residual
block (Resb) is applied to the process, and the processed
feature is separately fed into two 1 × 1 convolutions and
obtain F̂L and F̂R. We then follow [43] to feed F̂L and F̂R
to a whiten layer to acquire normalized features to estab-
lish disentangled pairwise parallax attention according to
the following two equations:

F̄L
′
(h,w, c) = F̂L(h,w, c)− 1

W

W∑
i=1

F̂L(h, i, c) (11)

F̄R
′
(h,w, c) = F̂R(h,w, c)− 1

W

W∑
i=1

F̂R(h, i, c) (12)

Then a geometry-aware multiplication will be adopted be-
tween barFL′ and F̄R

′:

Attention = F̄L
′ ⊗ F̄R

′ (14)

The bidirectional cross-attention between left-right views is
calculated by:

FR−>L = Attention(WL
1 F̄L,W

R
1 F̄R,W

R
2 FR), (15)

FL−>R = Attention(WR
1 F̄R,W

L
1 F̄L,W

L
2 FL), (16)

where WL
1 ,W

R
1 ,W

L
2 and WR

2 are projection matrices.
Note that we can calculate the left-right attention matrix
only once to generate both FR−>L and FL−>R (as shown
in Figure 4). Finally, the interacted cross-view informa-
tion FR−>L, FL−>R and intra-view information FL, FR
are fused by element-wise addition same as NAFSSR [4]:

FL,out = γLFR−>L + FL (15)

FR,out = γRFL−>R + FR (15)

where γL and γR are trainable channel-wise scales and ini-
tialized with zeros for stabilizing training.

Figure 3. Fast Fourier Convolution Block (FFB).

Figure 4. Residual Cross Attention Module (RCAM).

3.2. Training Strategies

Rectangular Training Patches. In stereo image SR tasks,
it is common to train models with small squared patches
cropped from full-resolution images [43,45]. Due to the fact
that disparity of the stereo images existing along the epipo-
lar line, some models use 30 × 90 rectangular patches to
train the stereoSR models [14,48]. We empirically find that
the patch size does affect the model performance and we
show the experimental results in Table 5. These patches are
randomly flipped horizontally and vertically for data aug-
mentation.
Dropout Rate and Stochastic Depth. To further uti-
lize the training data, we adopt stochastic depth [12] and
dropout [18] as regularization. The results of using differ-
ent stochastic depth and dropout rates during model training
can be found in Table 6.
Loss Functions. We use the pixel-wise L1 distance be-
tween the SR and ground-truth stereo images in the NTIRE



2023 Stereo Image Super Resolution Challenge Track 1
[39]:

LSR = ||ISRL − IHRL ||1 + ||ISRR − IHRR ||1, (8)

where ISRL and ISRR are respectively the super-resolved left
and right images. IHRL and IHRR are the ground truths.

For the Challenge Track2, inspired by [47,52], we adopt
a combination of perceptual loss and L1 loss to enhance su-
pervision in the high-level feature space, as outlined below:

LFinal = LSR + 0.01 ∗ LPer (9)

LPer =
1

N

∑
j

1

CjHjWj
||φj(fθ(ILR))− φj(IHR)||22.

(10)
The VGG-16 [33], pre-trained on ImageNet, serves as

the loss network φ. The loss function, expressed in equa-
tion 10, uses the left and right low resolution input im-
age ILRL , ILRR and their correspondence high resolution
ground truth images IHRL , IHRR . And the super-resolved
images ISR, generated by the SwinFSR model are denoted
by fθ(·), where φj(·) represents the feature map with a size
ofCj×Hj×Wj . j denote the j-th layer of VGG-16. More-
over, the L2 loss is utilized as the feature reconstruction loss
and the perceptual loss function employs N features.

4. Experiments
4.1. Implementation Details

Evaluation Metrics. The evaluation metrics used are
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM). These metrics are calculated in the RGB colour
space using a collection of stereo images obtained by av-
eraging the left and right views. Table 1 displays the influ-
ence of varying architecture, including three different sizes
of SwinFSR by modifying the number of blocks. These
networks are identified as SwinFSR-S (Small), SwinFSR-B
(Big), and SwinFSR-L (Large).
Training Detail. All models are optimized by the Adam
[17] with β1 = 0.9 and β2 = 0.9. The learning rate is set to
1e−4 and decreased to 1e−5 with a cosine annealing strat-
egy [25]. If not specified, models are trained on 30 × 90
patches with a batch size of 1 for 7e6 iterations. The win-
dow size of the model is 6×15. Data augmentation includes
horizontal/vertical flips and RGB channel shuffle are used.
Datasets. To conduct our experiments, we utilize the train-
ing and validation datasets provided by the NTIRE Stereo
Image SR Challenge [40]. Specifically, we use 800 stereo
images from the training set of the Flickr1024 [42] dataset
as our training data and 112 stereo images from the vali-
dation set of the same dataset as our validation set. The
low-resolution images are created by downsampling using
the bicubic method. In addition, we follow the dataset splits

Table 1. The performance of different SwinFSRs in size.

Model #RSFTBs #Params PSNR
SwinFSR-S 4 9.76M 23.8319
SwinFSR-B 6 14.01M 23.9630
SwinFSR-L 12 26.75M 24.1940

Table 2. The influence of different cross-attention modules. We
here report the results in both PSNR and SSIM for 4×SR. TTA
represents the test-time augmentation. SwinFSR-L is used to con-
duct this analysis.

Modules PSNR SSIM
w/o TTA w. TTA w/o TTA w. TTA

- 23.6921 23.7714 0.7380 0.7397
biPAM [43] 23.8883 24.0510 0.7432 0.7520
SAM [46] 22.3834 22.4366 0.6690 0.6715
SCAM [4] 24.0882 24.1926 0.7564 0.7616

RCAM 24.1233 24.1940 0.7583 0.7598

Table 3. The efficiency comparison between several cross-
attention modules. We replace the cross-attention module in
SwinFSR-L to conduct the analysis. Training time is the cost for
4×SR on Flickr1024 [42] training set.

Modules Params Time/Epoch Speedup
SAM [46] 32.72M 1259ms -
SCAM [4] 25.00M 988ms %21.5

RCAM 26.75M 1065ms %15.4

in [4] to conduct a comparison on KITTI 2012 [10], KITTI
2015 [28], Middlebury [31] and Flickr1024 [42].

4.2. Ablation Study

Residual Cross-Attention Modules. Here, all the experi-
ments are conducted using SwinFSR-L. To show the effec-
tiveness of RCAM, we substitute the cross-attention mod-
ule in SwinFSR-L with several SOTA approaches, such as
biPAM [43], SAM [46], SCAM [4] and baseline (without
cross-attention module.). Table 2 shows the 4 × SR results
on Flickr1024 [42]. First, when compared with the baseline
that only explored intra-view information, our method is 0.4
dB higher than the baseline in PSNR. Furthermore, com-
pared with biPAM, SCAM, and SAM, our RCAM achieves
improvements of 0.235 dB, 0.035 dB, and 1.740 dB, respec-
tively.

In addition, to further show the efficiency of our RCAM,
we provide in Table 3 by the number of parameters and
training time. It can be observed that our proposed RCAM
has fewer parameters and training time than that of SAM.
It is worth mentioning that both SCAM and our RCAM do
not handle occlusion problems when performing cross-view



Table 4. The influence of different dropout rates. We here report the results in both PSNR and SSIM for 4×SR. TTA represents the
test-time augmentation. SwinFSR-S is used to conduct this analysis.

Model Dropout Rate PSNR SSIM
w/o TTA w. TTA w/o TTA w. TTA

SwinFSR-S

N/A 23.7304 23.8191 0.7430 0.7451
0.1 23.8319 23.9240 0.7471 0.7492
0.3 23.8319 23.9230 0.7470 0.7491
0.5 21.6377 22.4352 0.6365 0.6767

Table 5. The influence of different window sizes and training patch
sizes. We here report the results in both PSNR and SSIM for
4×SR. TTA represents the test-time augmentation. SwinFSR-S
is used to conduct this analysis.

Patch Window PSNR PSNR w. TTA SSIM SSIM w. TTA
32× 32 4×4 23.52 23.63 0.734 0.738
32× 32 8×8 23.57 23.65 0.734 0.737
30× 90 3×9 23.65 23.74 0.739 0.741
30× 90 6×15 23.83 23.92 0.747 0.749

integration. Interestingly, we find using SCAM and RCAM
does not jeopardize the performance but can help achieve
better PSNR and faster training. These outcomes emphasize
the importance of a well-designed cross-attention model
and the critical impact of integrating both cross-view infor-
mation and intra-view information.
Test Time Augmentations. Although test-time augmenta-
tion (TTA) has been commonly utilized in competitions to
enhance performance, its usefulness in stereo SR tasks has
not been proven. Here, we use horizontal and vertical flips
as our TTA strategy. To evaluate the effectiveness of TTA
in this task, we assess each model’s inference results using
the NTIRE 2023 Stereo Image SR validation dataset [39].
The results, presented in Table 2, 4, 5 and 6, demonstrate
that employing TTA is always beneficial. This phenomenon
suggests that TTA is indeed effective for stereo SR tasks.
Dropout. According to [18], adding only one line of
dropout layer can significantly improve the model perfor-
mance. We thus follow [18] to put the dropout layer be-
fore the last convolution layer. Then, we use SwinFSR-S
to investigate the impact of the dropout rate during training.
In Table 4, we report results on Flickr1024 [42] validation
set. Compare to the SwinFSR-S model without the specific
dropout layer, with a 10% dropout rate, the PSNR result
can be improved by 0.102 dB. However, when we increase
the dropout rate to 30%, the performance does not change.
When it comes to 50%, half of the nodes are dropped dur-
ing the training, which makes the performance decrease by
2.194 dB.
Window Size and Training Patch Size. According to [48],
a larger window size can enhance the performance of stere-

oSR. Here, we use SwinFSR-S to further investigate the im-
pact of window size. Table 5 reports results on Flickr1024
[42] test set. First, while using the same squared training
patch size, a larger window size will improve the perfor-
mance of SwinFSR-S by 0.049 dB. If further changing the
training patch sizes to be rectangular according to the epipo-
lar stereo disparity [43], the performance will be increased
by 0.087 dB. Moreover, increasing window size while us-
ing rectangular training patches boost the performance by
0.178 dB. Due to the limitation of the GPU resources, we do
not further enlarge the window size and training patch size.
This shows that the rectangular training patch and larger lo-
cal window size indeed can help improve the feature extrac-
tion ability across stereo images.
Stochastic Depth. As per the research conducted by [4],
a deeper stochastic depth can improve the performance of
stereoSR. Therefore, we employ SwinFSR-L to examine
how stochastic depth affects our Swin Transformer based
model. Our results based on the validation set of Flickr1024
[42] are presented in Table 6. During training, incorporat-
ing 10% stochastic depth [12] lead to a 0.102 dB improve-
ment in PSNR. When using 20% stochastic depth, the per-
formance of SwinFSR-L improves slightly by 0.1014 dB.
However, setting the stochastic depth to 30% results in a
performance decrease of 0.121 dB, but it still outperforms
the baseline. This suggests that larger models have a ten-
dency to overfit the Flickr1024 training data. However, in-
corporating stochastic depth can help enhance the overall
performance and generalization ability of the networks.

4.3. Comparison with the state-of-the-art methods

To make a fair comparison with previous works, we fol-
low the dataset splits in NAFSSR [4] to train and test our
method on four representative datasets, i.e., KITTI 2012
[10], KITTI 2015 [28], Middlebury [31] and Flickr1024
[42]. Specifically, we generate low-resolution images by
applying bicubic downsampling to high-resolution (HR)
images with a scaling factor of 4. Then we randomly crop
30× 90 patches from stereo images as inputs. During train-
ing, we set all the hyperparameters to the best possible ones
given by our ablation studies, such as dropout rate, window
size, and stochastic depth. Additionally, we employ hori-



Table 6. The influence of stochastic depth. We here report the results in both PSNR and SSIM for 4×SR. TTA represents the test-time
augmentation. SwinFSR-L is used to conduct this analysis.

Model Stochastic Depth PSNR SSIM
w/o TTA w. TTA w/o TTA w. TTA

SwinFSR-L

N/A 23.9516 24.0442 0.7518 0.7537
0.1 24.0786 24.1679 0.7573 0.7591
0.2 24.0928 24.1773 0.7470 0.7491
0.3 23.9719 24.1035 0.7518 0.7548

Table 7. Comparison with several state-of-the art methods for 4×SR on the KITTI 2012 [10], KITTI 2015 [28], Middlebury [31] and
Flickr1024 [42] datasets. The number of parameters is denoted by ”Params”. Numbers reported for each dataset are in PSNR/SSIM.

Model #Params KITTI2012 KITTI2015 Middlebury Flickr1024
VDSR 0.66M 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718
EDSR 38.9M 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN 22.0M 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295

RCAN 15.4M 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
StereoSR 1.42M 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460

SRRes+SAM 1.73M 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
PASSRnet 1.42M 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
iPASSR 1.42M 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287

SSRDE-FNet 2.24M 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352
SwiniPASSR-M2 22.81M -/- -/- -/- 24.13/0.7579

NAFSSR-L 23.83M 27.12/0.8194 26.96/0.8257 30.20/0.8605 24.17/0.7589

SwinFSR-S (ours) 9.76M 27.03/0.8143 26.83/0.8213 32.45/0.8891 23.83/0.7471
SwinFSR-B (ours) 14.01M 27.07/0.8151 26.87/0.8222 32.69/0.8910 23.96/0.7510
SwinFSR-L (ours) 26.75M 27.24/0.8195 27.00/0.8257 32.73/0.8915 24.19/0.7598

zontal and vertical flips as our test-time augmentation. For
the results on Flickr1024, we perform results ensemble by
collecting the top three performed models on the validation
set and averaging their inference results on the test set as the
final results (the same strategy we used in the NTIRE2023
challenge [39]). For the other three datasets, we report the
best performance without an ensemble.

Table 7 presents the quantitative comparison of Swin-
FSR and several SOTA super-resolution methods. Our com-
parison includes single SR methods such as VDSR [16],
EDSR [22], RDN [50], RCAN [49], and SwinIR [21], as
well as stereo SR methods including StereoSR [13], PASS-
Rnet [41], SRRes+SAM [46], iPASSR [43], SRRDE-FNet
[5], SwiniPASSR [14], and NAFSSR [4]. The evaluation
metrics used are PSNR and SSIM, and the dataset used
for testing are KITTI 2012 [10], KITTI 2015 [28], Mid-
dlebury [31] and Flickr1024 [42]. By checking throughout
the table, it can be observed that our method outperforms all
the compared approaches on the four datasets. These results
further validate the effectiveness of our proposed method.

4.4. NTIRE Stereo Image SR Challenge

We submit a result obtained by the presented approach to
the NTIRE 2023 Stereo Image Super-Resolution Challenge

Track 1 and 2 [39]. In order to maximize the potential per-
formance of our method, we adopt the stochastic depth [12]
with 0.2 probability to improve the model’s generality abil-
ity. During test time, we adopt horizontal and vertical flips
as our TTA strategy. Finally, we average the SR images
from the top 3 performance models on the validation set
for our final submission. As a result, our final submission
achieves 24.1940 dB in PSNR on the validation set and won
a ninth place with 23.7121 dB in PSNR on the test set.

5. Conclusion

The goal of this paper is to introduce a novel network called
SwinFSR for enhancing the resolution of stereo images. To
achieve this, we utilize a series of RSFTBlocks to extract
intra-view features with enlarged reception fields and pro-
pose residual stereo cross-attention modules (RCAMs) to
interact between both intra-view and cross-view features.
Additionally, we explore the best possible hyperparameters,
such as dropout rate, training patch size, window size, and
stochastic depth and found the best values are 10%, 30×90,
6 × 15 and 20% respectively. Extensive ablation studies
demonstrate the effectiveness of the proposed method.
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