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Pareto-aware Neural Architecture Generation for
Diverse Computational Budgets

Yong Guo, Yaofo Chen, Yin Zheng, Qi Chen, Peilin Zhao, Jian Chen, Junzhou Huang, Mingkui Tan*

Abstract—Designing feasible and effective architectures under diverse computational budgets, incurred by different applica-
tions/devices, is essential for deploying deep models in real-world applications. To achieve this goal, existing methods often perform
an independent architecture search process for each target budget, which is very inefficient yet unnecessary. More critically, these
independent search processes cannot share their learned knowledge (i.e., the distribution of good architectures) with each other and
thus often result in limited search results. To address these issues, we propose a Pareto-aware Neural Architecture Generator (PNAG)
which only needs to be trained once and dynamically produces the Pareto optimal architecture for any given budget via inference. To
train our PNAG, we learn the whole Pareto frontier by jointly finding multiple Pareto optimal architectures under diverse budgets. Such
a joint search algorithm not only greatly reduces the overall search cost but also improves the search results. Extensive experiments on
three hardware platforms (i.e., mobile device, CPU, and GPU) show the superiority of our method over existing methods.

Index Terms—Neural Architecture Generation, Pareto Frontier Learning, Architecture Design under Budgets.
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1 INTRODUCTION

D EEP neural networks (DNNs) [1] have been the workhorse of
many challenging tasks, including image classification [2],

[3], [4], [5], [6], semantic segmentation [7], [8], [9], [10] and ob-
ject detection [11], [12], [13], [14]. However, designing effective
architectures often relies heavily on human expertise. To alleviate
this issue, neural architecture search (NAS) methods have been
proposed to automatically design effective architectures [15]. Ex-
isting studies show that these automatically searched architectures
often outperform the manually designed ones in many computer
vision tasks [16], [17], [18], [19], [20], [21], [22], [23].

However, the state-of-the-art deep networks often contain a
large number of parameters and come with extremely high compu-
tational cost. As a result, it is hard to deploy these models to real-
world scenarios with limited computation resources. Regarding
this issue, we have to carefully design architectures to fulfill a
specific computational budget (e.g., a feasible model should have a
latency lower than 100ms on a specified mobile device). More crit-
ically, we may have to consider different computational budgets
in the real world. For example, a company may simultaneously
develop/maintain multiple applications and each of them has a
specific budget of latency.
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In order to design feasible architectures, most methods [24],
[25] only considers a single computational budget and incorpo-
rates architecture’s computational cost into the objective function
of NAS. When we consider diverse budgets, they have to conduct
an independent search process for each budget [24], which is
very inefficient yet unnecessary. Unlike these methods, one can
also exploit the population-based methods to simultaneously find
multiple architectures and then select an appropriate one from
them to fulfill a specific budget [26], [27]. However, due to
the limited population size, these searched architectures do not
necessarily satisfy the required budget. More critically, all these
searched architectures are fixed after search and cannot be easily
adapted for a slightly changed budget. Thus, how to design
effective architectures under diverse computational budgets in an
efficient and flexible way still remains an open question.

In this paper, we propose a Pareto-aware Neural Architecture
Generator (PNAG) which only needs to be trained once and then
dynamically produces Pareto optimal architectures for diverse
budgets via inference (as shown in Fig. 1(a)). Note that the
Pareto optimal architectures under different budgets should lie on
a distribution, i.e., the Pareto frontier over model performance
and computational cost [28]. We propose to jointly learn the
whole Pareto frontier (i.e., improving the blue curve to the red
curve in Fig. 1(b)) instead of finding a single Pareto optimal
architecture. During training, we randomly sample budgets from
a predefined distribution and maximize the expected reward of
the searched architectures to approximate the ground-truth Pareto
frontier. It is worth noting that learning the Pareto frontier is able to
share the learned knowledge across different budgets and greatly
improve the search results in practice (see results in Table 5).
Furthermore, when evaluating architectures under diverse budgets,
we design an architecture evaluator that learns a Pareto dominance
rule to determine which architecture is a relatively better one
in pairwise comparisons. Unlike existing methods, we highlight
that our PNAG designs architectures through a generation process
instead of search, which is very efficient (see results in Table 6)
and practically useful in real-world model deployment.
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(a) An illustration of generating feasible architectures for diverse budgets using PNAG.

60 80 100 120 140 160 180 200
Mobile Latency (ms)

74

76

78

80

82

84

Va
lid

at
io

n 
Ac

cu
ra

cy
 (%

)

Initial Architecture
Searched Architecture
Initial Frontier
Searched Frontier

Initial Architecture of NAS
Searched Architecture by NAS

Initial Frontier of PNAG
Searched Frontier by PNAG

Search Direction of NAS

Search Direction of PNAG

(b) Comparisons between PNAG and conventional NAS methods.

Fig. 1. We show an illustration of how to apply PNAG to generate feasible architectures for diverse computational budgets and the comparisons
between PNAG and conventional NAS methods. (a) PNAG takes an arbitrary budget as input and flexibly generates architectures. (b) PNAG learns
the whole Pareto frontier rather than finding discrete architectures. Here, the accuracy is measured on the constructed validation set.

We summarize the contributions of our paper as follows.
• Instead of designing architectures for a single budget, we pro-

pose a Pareto-aware Neural Architecture Generator (PNAG)
which is only trained once and flexibly generates effective
architectures for arbitrary budget via inference (see Fig. 1(a)).
In this way, our architecture generation process becomes very
efficient and practically useful in real-world applications.

• To train our PNAG, we propose to explicitly learn the Pareto
frontier by maximizing the expected reward of the searched
architectures over diverse budgets. Interestingly, learning the
Pareto frontier shares the learned knowledge across the search
processes under diverse budgets and greatly improves the
search results (see results in Table 5).

• Since an architecture should have different rewards/scores
under different budgets, we propose an architecture evaluator
to adaptively evaluate architectures for any given budget. To
train the evaluator, we propose to learn a Pareto dominance
rule which determines whether an architecture is better than
the other in pairwise comparisons.

• We measure the latencies on three hardware platforms and
take them as the computational budgets to generate feasi-
ble architectures. Extensive experiments show that the ar-
chitectures produced by PNAG consistently outperform the
architectures searched by existing methods across different
budgets and platforms.

2 RELATED WORK

In this section, we provide a brief overview of existing work
on neural architecture search, architecture design under resource
constraints, as well as Pareto frontier learning.

2.1 Neural Architecture Search (NAS)
Unlike manually designing architectures with expert knowledge,
NAS seeks to automatically design more effective architec-
tures [29], [30], [31], [32], [33]. Existing NAS methods can
be roughly divided into three categories, namely, reinforcement-
learning-based methods, evolutionary approaches, and gradient-
based methods. Specifically, reinforcement-learning-based meth-
ods [15], [34], [35], [36], [37] learn a controller to produce
architectures. Evolutionary approaches [38], [39], [40], [41], [42],
[43] search for promising architectures by gradually evolving a

population. Gradient-based methods [44], [45], [46], [47], [48],
[49] relax the search space to be continuous and optimize archi-
tectures by gradient descent. Besides designing effective search
algorithms, many efforts have also been made to improve the
accuracy of architecture evaluation [50], [51], [52]. Unlike these
methods that find a single architecture, one can design different
architectures by training an architecture generator. Specifically,
RandWire [53] designs stochastic network generators to generate
randomly wired architectures. NAGO [54] is the first work to learn
an architecture generator and proposes a hierarchical and graph-
based search space to reduce the optimization difficulty. However,
these generated architectures tend to perform very similarly (i.e.,
low diversity) in terms of both model performance and computa-
tional cost [53], [54]. Thus, these architectures may not satisfy an
arbitrary required budget. In other words, they still have to learn a
generator for a required budget to produce feasible architectures.

2.2 Architecture Design under Resource Constraints
Many efforts have been made in designing architectures under a
resource constraint [55], [56], [57], [58], [59], [60]. Specifically,
PONAS [56] builds an accuracy table to find architectures satis-
fying a single budget constraint. TuNAS [58] proposes a reward
function to restrict the latency of the searched architecture, which
omits additional hyper-parameter tuning. Related to our work,
SGNAS [61] proposes an architecture generator which generates
architectures for specific budget constraints. Nevertheless, SGNAS
optimizes a regression loss w.r.t. budget constraint and the resul-
tant architecture does not necessarily have lower cost than the
target budget, i.e., violating the budget. More critically, SGNAS
considers a fixed hyper-parameter λ to balance the regression
loss and a classification loss. Due to the large diversity among
architectures, their accuracy and computational cost may vary
significantly across different budgets, also leading to suboptimal
search results (See Table 1).

2.3 Pareto Frontier Learning
Given multiple objectives, Pareto frontier learning aims to find a
set of Pareto optimal solutions over them. Most methods exploit
evolutionary algorithms [62], [63] to solve this problem. Inspired
by them, many efforts have been made to simultaneously find
a set of Pareto optimal architectures over accuracy and com-
putational cost [64], [65]. Recently, NSGANetV1 [66] presents
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Fig. 2. Overview of the proposed PNAG. Our PNAG mainly consists of two modules: an architecture generator f(·; θ) and an architecture evaluator
R(·|·;w). Specifically, we build the generator model based on an LSTM network, which takes a budget constraint B as input and produces a
promising architecture αB that satisfies the budget constraint, i.e., c(α). To optimize the generator model, we design the evaluator using three fully
connected (FC) layers to estimate the performance of the generated architectures αB . The orange and green boxes in (c) denote the embeddings
of architecture αB and the budget w.r.t. B, respectively.

an evolutionary approach to find a set of trade-off architectures
over multiple objectives in a single run. NSGANetV2 [27] further
presents two surrogates (at the architecture and weights level) to
produce task-specific models under multiple competing objectives.
Given a target budget, these methods may manually select an
appropriate architecture from a set of searched architectures.
However, given limited population size, the selected architectures
do not necessarily satisfy a required budget. More critically, all
the searched architectures are fixed after search and cannot be
easily adapted for a slightly changed budget. Thus, how to learn
the Pareto frontier and use it to generate architectures for arbitrary
budget in a flexible way still remains unexplored.

3 PARETO-AWARE ARCHITECTURE GENERATION

In this paper, we focus on the architecture generation problem and
intend to generate effective architectures for diverse computational
budgets via inference instead of search/training. Note that the
optimal architectures under different budgets lie on the Pareto
frontier over model performance and computational cost [28].
Thus, we develop a Pareto-aware Neural Architecture Generator
(PNAG) to explicitly learn the whole Pareto frontier. To locate
the best architecture from the frontier for a given budget, we
build our PNAG as a conditional model which takes the budget as
input and directly produces a feasible architecture. In Section 3.1,
we depict our architecture generator model and present a novel
learning algorithm to learn the Pareto frontier. In Section 3.2, we
propose an architecture evaluator, as well as its training algorithm,
to adaptively evaluate architectures under different budgets. Algo-
rithm 1 shows the whole training process of PNAG.

3.1 Learning the Architecture Generator f(B; θ)

We seek to build an architecture generator model to dynamically
and flexibly produce effective architectures for any given com-
putational budget. Let B be a budget (e.g., latency or MAdds)
which can be considered as a random variable drawn from some

distribution B, namely B∼B. Let Ω be an architecture search
space. For any architecture α ∈ Ω, we use c(α) and Acc(α) to
measure the cost and validation accuracy of α, respectively.

Since an architecture can be represented as a sequence of
tokens (each token denotes a setting of a layer, e.g., width
or kernel size) [15], [34], we cast the architecture generation
problem as a sequential decision problem and build the archi-
tecture generator f(B; θ) using an LSTM network. As shown in
Fig. 2, the generator takes a budget B as input and generates
architectures αB=f(B; θ) (satisfying the constraint c(αB) ≤ B)
by sequentially predicting the token sequences, i.e., the depth,
width, and kernel size of each layer. Here, θ denotes the learnable
parameters. Note that the optimal architecture under a specific
budget should lie on the Pareto frontier over model performance
and computational cost. To make the generator generalize to
arbitrary budget, we seek to learn the Pareto frontier rather than
finding discrete architectures. In the following, we first illustrate
our training method in Section 3.1.1 and then discuss how to
represent a budget with arbitrary value in Section 3.1.2.

3.1.1 Training Method of f(B; θ)

To illustrate the training objective of our method, we first revisit
the NAS problem with a single budget and then generalize it to
the problem with diverse budgets.

NAS under a single budget. Since it is non-trivial to directly
find the optimal architecture [15], by contrast, one can first learn a
policy π(·; θ) and then conduct sampling from it to find promising
architectures, i.e., α ∼ π(·; θ). Given a budgetB, the optimization
problem becomes

max
θ

Eα∼π(·;θ) [R (α|B;w)] , s.t. c(α) ≤ B. (1)

Here, π(·; θ) is the learned policy parameterized by θ, and
R(α|B;w) is the reward function parameterized by w that mea-
sures the joint performance of both the accuracy and latency of α.
Eα∼π(·;θ) [·] is the expectation over the searched architectures.
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Algorithm 1 Training method of PNAG.
Require: Search space Ω, latency distribution B, learning rate η,

training data set D, parameters M , N , and K.
1: Initialize model parameters θ for the generator and w for the

architecture evaluator.
// Collect the architectures with accuracy and latency

2: Train a supernet S on D.
3: Randomly sample architectures {βi}Mi=1 from Ω.
4: Construct tuples {(βi, c(βi),Acc(βi))}Mi=1 using S.

// Learn the architecture evaluator
5: while not convergent do
6: Sample a set of latencies {Bk}Kk=1 from B.
7: Update the architecture evaluator by:
8: w ← w − η∇wL(w).
9: end while

// Learn the architecture generator
10: while not convergent do
11: Sample a set of latencies {Bk}Kk=1 from B.
12: Obtain {α(i)

Bk
}Ni=1 from π(·|Bk; θ) for each Bk.

13: Update the generator via policy gradient by:
14: θ ← θ + η∇θJ(θ).
15: end while

NAS under diverse budgets. Problem (1) only focuses on
one specific budget constraint. In fact, we seek to learn the Pareto
frontier over the whole range of budgets (e.g., latency). However,
this problem is hard to solve since there may exist infinite Pareto
optimal architectures with different computational cost. To address
this, one can learn an approximated Pareto frontier by finding a
set of uniformly distributed Pareto optimal points [67]. Here, we
evenly sample K budgets from the range of latency and maximize
the expected reward over them. Thus, the problem becomes

max
θ

EB∼B
[
Eα

B
∼π(·|B;θ) [R (αB|B;w)]

]
,

s.t. c(αB) ≤ B, B ∼ B,
(2)

where EB∼B [·] denotes the expectation over the distribution of
budget. Unlike Eqn. (1), π(·|B; θ) is the learned policy condi-
tioned on the budget of B. In practice, we use policy gradient
to learn the architecture generator. To encourage exploration, we
follow [34], [68], [69] to introduce an entropy regularization.
Please refer to the supplementary materials for more details.

Advantages over existing NAS methods. Our PNAG exhibits
two advantages over existing NAS methods. First, our PNAG is
able to share the learned knowledge across the search processes
under different budgets, which greatly improves the search results
(see Table 5). The main reason is that, once we find a good
architecture for one budget, we may easily obtain a competitive
architecture for a larger/smaller budget by slightly modifying
some components (model width or kernel size). Second, given
a well-trained PNAG, we can directly use it to generate feasible
architectures for any required budget via inference, which is very
efficient and practically useful (see Table 6).

3.1.2 Vector Representation of Budget Bounds
To learn the architecture generator, we still have to consider
how to represent the budget bound B as the inputs of PNAG.
As mentioned before, our PNAG considers K discrete budgets
during training. To represent different budgets, we use an em-
bedding vector [34] to represent different budgets (See details in
Section 3.1.2). Following [34], we build a learnable embedding
vector b = g(B) for each sampled budget B. We incorporate
these learnable embedding vectors into the parameters of the

architecture generator and train them jointly. In this way, we
are able to automatically learn the vectors of these budgets and
encourage PNAG to produce feasible architectures.

As mentioned before, we only sample a set of discrete budgets
to train PNAG. To accommodate all the budgets belonging to a
continuous space, we propose an embedding interpolation method
to represent a budget with any possible value. Specifically, we
perform a linear interpolation between the embedding of two
adjacent discrete budgets to represent the considered budgets. For
a target budget B between two sampled budgets B1<B<B2, the
linear interpolation of the budget vector b can be computed by

b = g(B) = ξg(B1)+(1−ξ)g(B2), where ξ =
B2−B
B2−B1

,

Here, ξ ∈ [0, 1] denotes the weight of B1 in interpolation.

3.2 Learning the Architecture Evaluator R(·|B;w)

Given diverse budgets, an architecture should have different
rewards/scores regarding whether it satisfies the corresponding
budget constraint. However, it is non-trivial to manually design
a reward function for each budget. Instead, we propose to learn
an architecture evaluator to automatically predict the score. To
this end, we build an evaluator with three fully connected layers.
Given any architecture β and a budget B, we seek to predict the
performance R(β|B;w) of β under the budget B. Since we have
no ground-truth labels for training, following [70], [71], [72], we
learn the evaluator via pairwise architecture comparisons.

3.2.1 Training Method of R(·|B;w)

To obtain a promising evaluator, we train the architecture evaluator
using a pairwise ranking loss, which has been widely used in
ranking problems [70], [71], [72]. Specifically, we collect M
architectures with accuracy and latency, and record them as a set of
triplets {(βi, c(βi),Acc(βi))}Mi=1. Thus, given M architectures,
we have M(M−1) architecture pairs {(βi, βj)} in total after
omitting the pairs with themselves. Assuming that we have K
budgets, the pairwise ranking loss becomes

L(w) =
1

KM(M−1)

K∑
k=1

M∑
i=1

M∑
j=1,j 6=i

φ
(
d(βi, βj , Bk)

·
[
R(βi|Bk;w)−R(βj |Bk;w)

])
,

(3)

where d
(
β1, β2, Bk

)
denotes a function to indicate whether βi

is better than βj under the budget Bk, as will be discussed in
Section 3.2.2. φ(z) = max(0, 1− z) is a hinge loss function and
we use it to enforce the predicted ranking results R(βi|Bk;w)−
R(βj |Bk;w) to be consistent with the results of d(βi, βj , Bk)
obtained by a comparison rule based on Pareto dominance.

3.2.2 Pareto Dominance Rule
To compare the performance between two architectures, we need
to define a reasonable function d

(
β1, β2, B

)
in Eqn. (3). To this

end, we define a Pareto dominance to guide the design of this
function. Specifically, Pareto dominance requires that the quality
of an architecture should depend on both the satisfaction of budget
and accuracy. That means, given a specific budget B, a good
architecture should be the one with the cost lower than or equal to
B and with high accuracy. In this sense, we use Pareto dominance
to compare two architectures and judge which one is dominative.
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Fig. 3. Comparisons of the architectures obtained by different meth-
ods on a mobile device (Qualcomm Snapdragon 821).

Fig. 4. Comparisons of the Pareto frontiers of the generated archi-
tectures between NAS-MO and PNAG. Here, we report the accuracy
evaluated on the constructed validation set.

(a) Ground-truth latency histogram. (b) Generation results with B=110ms. (c) Generation results with B=140ms.

Fig. 5. Latency histograms of sampled architectures on mobile devices. (a) Ground-truth latency histogram of 16, 000 architectures that are uniformly
sampled from the search space. (b) The latency histogram of 1, 000 architectures sampled by different methods given B=110ms. (c) The latency
histogram of 1, 000 architectures sampled by different methods given B=140ms.

Given any two architectures β1, β2, if both of them satisfy the
budget constraints (namely c(β1) ≤ B and c(β2) ≤ B), then β1
dominates β2 if Acc(β1) ≥ Acc(β2). Moreover, when at least
one of β1, β2 violates the budget constraint, clearly we have that
β1 dominates β2 if c(β1) ≤ c(β2). Formally, we define the Pareto
dominance function d

(
β1, β2, B

)
to reflect the above rules:

d
(
β1, β2, B

)
=



1, if (c(β1) ≤ B ∧ c(β2) ≤ B)

∧ (Acc(β1) ≥ Acc(β2));

−1, else if (c(β1) ≤ B ∧ c(β2) ≤ B)

∧ (Acc(β1) < Acc(β2));

1, else if c(β1) ≤ c(β2);

−1, otherwise.
(4)

Based on Eqn. (4), we have d(β1, β2, B) = −d(β2, β1, B) if
β1 6= β2, making it a symmetric metric w.r.t. β1 and β2.

Remark 1 The accuracy constraint Acc(β1) ≥ Acc(β2) plays
an important role in the proposed Pareto dominance function
d
(
β1, β2, B

)
. Without the accuracy constraint, we may easily

find the architectures with very low computation cost and poor
performance (See results in Table 4).

4 EXPERIMENTS

We apply the proposed PNAG to produce architectures under
diverse latency budgets evaluated on three hardware platforms, in-
cluding a mobile device (equipped with a Qualcomm Snapdragon
821 processor), a CPU processor (Intel Core i5-7400), and a GPU
card (NVIDIA TITAN X). For convenience, we use “Architecture-
B” to represent the generated architecture that satisfies the latency
budget w.r.t. B, e.g., PNAG-80. Our code and all the pretrained
models are available at https://github.com/guoyongcs/PNAG.

4.1 Implementation Details

Search space. Following [55], we use MobileNetV3 [73] as
the backbone to build the search space [55], [56]. We divide a
network into several units. To find promising architectures, we
allow each unit to have 1) any numbers of layers (i.e., depth)
chosen from {2, 3, 4}, 2) any width expansion ratios in each layer
(i.e., width) chosen from {3, 4, 6}, and 3) any kernel sizes chosen
from {3, 5, 7}. We build the model with 5 units. Thus, there are
3×3 combinations of widths and kernel sizes for each layer.

Training the supernet. To accelerate the training of supernet,
we follow [76] to randomly choose 100 classes from original
1000 classes in ImageNet for training and train the supernet with
progressive shrinking strategy [55] for 90 epochs. We treat 80%
of these data as the training set to train the supernet and the rest

https://github.com/guoyongcs/PNAG
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TABLE 1
Comparisons with state-of-the-art architectures on mobile devices. ∗ denotes the best architecture reported in the original paper. “-” denotes the

results that are not reported. All the models are evaluated on 224× 224 images of ImageNet.

Architecture Latency (ms) Test Accuracy (%) #Params (M) #MAdds (M) Search Cost
Top-1 Top-5 (GPU Days)

MobileNetV3-Small (1.0×) [73] 39.8 67.4 - 2.4 56
MobileNetV3-Large (0.75×) [73] 93.0 73.3 - 4.0 155 -

MobileNetV2 (1.0×) [74] 90.3 72.0 - 3.4 300 -
FBNetV2 [75] - 76.3 92.9 - 321 30.0

MnasNet-A1 (0.5×) [24] 37.5 68.9 88.4 2.1 105
SGNAS-B [61] - 76.8 - - 326 0.3

EVO-80 76.8 77.1 93.3 6.1 350 0.7
NAS-MO-80 77.6 76.6 93.2 7.9 340 0.7

PNAG-80 79.9 78.3 94.0 7.3 349 0.7

FBNet-A [76] 91.7 73.0 - 4.3 249 9.0
SGNAS-A [61] - 77.1 - - 373 0.3

ProxylessNAS-Mobile [77] 97.3 74.6 - 4.1 319 8.3
ProxylessNAS-CPU [77] 98.5 75.3 - 4.4 438 8.3

MobileNetV3-Large (1.0×) [73] 107.7 75.2 - 5.4 219 -
EVO-110 109.3 78.4 94.0 10.2 482 0.7

NAS-MO-110 106.3 78.0 93.8 8.4 478 0.7
PNAG-110 106.8 79.4 94.5 9.9 451 0.7

RandWire [53] - 74.7 92.2 5.6 583 -
ProxylessNAS-GPU [77] 123.3 75.1 - 7.1 463 8.3
MnasNet-A1 (1.0×) [24] 120.7 75.2 92.5 3.4 300 ∼3792

FBNet-C [76] 135.2 74.9 - 5.5 375 9.0
EVO-140 133.7 78.7 94.1 9.1 488 0.7

NAS-MO-140 139.0 78.6 94.0 9.5 486 0.7
PNAG-140 127.8 79.8 94.7 9.2 492 0.7

NSGANetV1 [66] - 76.2 93.0 5.0 585 27
PONAS-C [56] 145.1 75.2 - 5.6 376 8.8
P-DARTS [45] 168.7 75.6 92.6 4.9 577 3.8
BigNAS-L [78] - 79.5 - 6.4 586 1.5

EVO-170 168.3 79.2 94.4 10.7 661 0.7
NAS-MO-170 165.0 78.7 94.4 8.5 584 0.7

PNAG-170 167.1 80.3 95.0 10.0 606 0.7

NSGANetV2 [27] - 79.1 94.5 8.0 400 1
NAGO [54] - 76.8 93.4 5.7 - 20.0

PC-DARTS [46] 194.1 75.8 92.7 5.3 597 0.1
EfficientNet B0 [79] 237.7 77.3 93.5 5.3 390 -

Cream-L [80] - 80.0 94.7 9.7 604 12
OFA∗ [55] 201.9 80.2 95.1 9.1 743 51.7
EVO-200 195.9 79.8 94.5 11.0 783 0.7

NAS-MO-200 187.4 79.2 94.4 9.1 630 0.7
PNAG-200 193.9 80.5 95.2 10.4 724 0.7

20% as the validation set to measure the validation accuracy of
candidate architectures (we report such validation accuracy in
Figs. 1(b) and 4). We consider the original ImageNet validation
set as the test data and report the test accuracy of candidate
architectures on them in all the other tables and figures. Based
on a NVIDIA V100 GPU, the training process of the supernet
takes around 15 GPU hours (i.e., 0.6 GPU days).

Training the architecture evaluator. We collect M=16, 000
architectures by uniformly sampling architectures from the search
space Ω (See Fig. 5(a)) following [55] and obtain the latency
ranges on three hardware devices. We deploy these architectures to
different devices and measure the latency over a batch of images.
Specifically, we measure the latency on mobile and CPU devices
with a batch size of 1. Since the inference on GPU is too fast to
obtain the accurate latency, we measure the latency with a batch
size of 64 on NVIDIA TITAN X. We compute the accuracy Acc(·)
on our validation set (i.e., 20% samples of 100 selected classes in

ImageNet). We train the architecture evaluator for 250 epochs.
The learning rate is initialized to 0.1 and decreased to 1×10−3

with a cosine annealing. Following [55], we train two predictors
to predict the latency and validation accuracy, respectively. We
set the dimension of the embedding vector of budgets to 64. We
emphasize that training the architecture evaluator is very efficient
and only takes less than 0.2 GPU hours.

Training the architecture generator. We train the model for
120k iterations using an Adam optimizer with a learning rate of
3× 10−4. Following ENAS [34], we sample N=1 architecture at
each iteration and find it works well in practice. We select K=10
latency budgets by evenly dividing the range. We add an entropy
regularization term to the reward weighted by 1×10−3. Note that
training the architecture generator approximately takes 2 GPU
hours. When evaluating the searched architectures, following [40],
[55], we first obtain the parameters from the OFA full network and
then finetune them for 75 epochs to obtain the final performance.
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Fig. 6. Comparisons of the architectures obtained by different meth-
ods on a Core i5-7400 CPU.

50 75 100 125 150 175 200
GPU Latency (ms)

72

74

76

78

80

Im
ag

eN
et

 T
op

-1
 A

cc
. (

%
)

MnasNet
MobileNetV2
MobileNetV3
EfficientNet
OFA*
EVO
NAS-MO
PNAG (Ours)

Fig. 7. Comparisons of the architectures obtained by different meth-
ods on a NVIDIA TITAN X GPU.

4.2 Compared Methods

To investigate the effectiveness of the proposed method, we com-
pare our PNAG with two variants: 1) EVO uses the evolutionary
search method [39] to perform architecture search. 2) NAS-
MO conducts architecture search based by exploiting the multi-
objective reward [24]. We also compare our method with several
state-of-the-art methods, including ENAS [34], DARTS [44], P-
DARTS [45], PC-DARTS [46], MNasNet [24], MobileNetV2 [74],
MobileNetV3 [73], FBNet [76], FBNetV2 [75], Proxyless-
NAS [77], EfficientNet [79], OFA [39], Cream [80], PONAS [56],
BigNAS [78], and NSGANetV2 [27].

4.3 Architecture Search for Mobile Devices

In this experiment, we train our PNAG to produce feasible
architectures for the latency budgets based on a mobile device
(Qualcomm Snapdragon 821 processor). Based on the proposed
budget interpolation method in Section 3.1.2, our PNAG is flexible
to generate feasible architectures for any arbitrary budget. To
evaluate our method, for simplicity, we manually choose 5 latency
budgets {80ms, 110ms, 140ms, 170ms, 200ms} and reports the
results under each of them. The other budgets are also possible.

We compare our PNAG with state-of-the-art methods given
different latency budgets evaluated on he considered mobile de-
vice. In Fig. 3, we compare the architectures searched by different
methods in terms of both accuracy and latency. We draw the
following conclusions. First, our PNAG (red line) consistently
generates better architectures than the considered variants EVO
and NAS-MO under diverse budgets. Second, our best architec-
ture (the rightmost point of the red line) yields a better trade-
off between accuracy and latency than a strong baseline OFA∗,
i.e., the best architecture reported in [55]. For convenience, we
put more detailed comparison results in Table 1. Given diverse
latency budgets, our PNAG greatly outperforms the compared
NAS methods in terms of the accuracy of the generated/searched
architectures. Specifically, our PNAG-200 yields the best accuracy
of 80.5, which is better than the best reported results in OFA [55],
namely OFA∗. We also highlight that, besides the superior perfor-
mance, the total training cost of our PNAG is about 0.7 GPU
days1, which is much more efficient than most state-of-the-art
NAS methods, such as [55], [78], [80].

1. We report the training cost of each component of PNAG in Section 4.1

Moreover, we compare the learned/searched frontiers of dif-
ferent methods and show the comparisons of Pareto frontiers in
Fig. 4. We plot all the architectures produced by different methods
to form the Pareto frontier. Specifically, we use the architectures
searched by multiple independent runs under different budgets
for NAS-MO. For PNAG, we use linear interpolation to generate
architectures that satisfy different budgets. From Fig. 4, our PNAG
finds a better frontier than NAS-MO due to the shared knowl-
edge across the search process under different budgets. We also
visualize the latency histograms of the architectures evaluated on
mobile devices in Fig. 5(b) and Fig. 5(c). Given latency budgets of
110ms and 140ms, NAS-MO is prone to produce a large number
of architectures that cannot satisfy the target budgets. These
results show that it is hard to design the multi-objective reward
to obtain the preferred architectures. Instead, PNAG uses the
Pareto dominance reward to encourage the architectures to satisfy
the desired budget constraints. In this sense, most architectures
generated by our PNAG are able to fulfill the target budgets. We
put more visual results of latency histograms w.r.t. other latency
budgets in the supplementary.

4.4 Architecture Search for CPU Devices

We further exploit our PNAG to generate architectures under the
latency budgets evaluated on a CPU device (Core i5-7400). Similar
to the experiments for mobile devices, we evaluate our PNAG
under 5 latency budgets, i.e., {30ms, 35ms, 40ms, 45ms, 50ms}.

As shown in Fig. 6, our PNAG yields a large performance
improvement over the considered two variants, i.e., EVO and
NAS-MO, under diverse budgets. Moreover, our PNAG also
outperforms popular NAS based (MnasNet, OFA∗) and manually
designed architectures (MobileNetV2, MobileNetV3, and Effi-
cientNet). As for the quantitative comparisons, in Table 2, our
PNAG consistently yields the best results across all the considered
latency budgets. To be specific, given a small latency budget
B=35ms, our PNAG-35 yields better accuracy than the compared
NAS methods with much lower search cost. Given a relatively
large budget B=50ms, our PNAG-50 yields the same accuracy
(80.5%) as the best result on mobile devices (i.e., PNAG-200).
This indicates that our PNAG generalizes well across the la-
tency budgets based on different hardwares. Overall, these results
demonstrate that our PNAG is able to generate very competitive
architectures while satisfying diverse latency budgets.
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TABLE 2
Comparisons with state-of-the-art architectures on Intel Core i5-7400 CPU. ∗ denotes the best architecture reported in the original paper. “-”

denotes the results that are not reported. All the models are evaluated on 224× 224 images of ImageNet.

Architecture Latency (ms) Test Accuracy (%) #Params (M) #MAdds (M) Search Cost
Top-1 Top-5 (GPU Days)

MobileNetV2 (1.0×) [74] 28.6 72.0 - 3.4 300 -
MobileNetV3-Large (1.0×) [73] 22.6 75.2 - 5.4 219 -

FBNet-C [76] 25.7 74.9 - 5.5 375 9.0
SGNAS-B [61] - 76.8 - - 326 0.3

EVO-30 29.1 77.9 93.8 7.9 385 0.7
NAS-MO-30 29.7 77.5 93.7 6.6 353 0.7

PNAG-30 (Ours) 29.7 78.3 94.1 7.6 335 0.7

ProxylessNAS-CPU [77] 34.6 75.3 - 4.4 438 8.3
MnasNet-A1 (1.4×) [24] 34.6 77.2 93.5 6.1 592 ∼3792

EVO-35 34.5 78.5 94.3 8.2 354 0.7
NAS-MO-35 34.7 78.3 94.0 7.9 478 0.7

PNAG-35 (Ours) 34.5 79.4 94.5 8.4 431 0.7

ResNet-18 [4] 38.6 69.8 90.1 11.7 1814 -
EfficientNet B0 [79] 39.1 77.3 93.5 5.3 390 -

EVO-40 36.3 78.8 94.6 8.4 388 0.7
NAS-MO-40 39.3 78.6 94.3 8.3 491 0.7

PNAG-40 (Ours) 39.6 79.8 94.9 9.4 502 0.7

MobileNetV2 (1.4×) [74] 42.6 74.7 - 6.9 585 -
EVO-45 43.2 79.1 94.6 9.1 481 51.7

NAS-MO-45 43.7 78.8 94.4 9.3 626 0.7
PNAG-45 (Ours) 44.7 80.2 95.0 10.4 620 0.7

PONAS-C [56] 52.2 75.2 - 5.6 376 8.8
OFA∗ [55] 53.7 80.2 95.1 9.1 743 51.7

EVO-50 47.4 79.3 94.7 9.1 511 0.7
NAS-MO-50 46.7 78.9 94.4 9.1 632 0.7

PNAG-50 (Ours) 48.9 80.5 95.1 10.5 682 0.7

TABLE 3
Comparisons with state-of-the-art architectures on NVIDIA TITAN X GPU. ∗ denotes the best architecture reported in the original paper. “-”

denotes the results that are not reported. All the models are evaluated on 224× 224 images of ImageNet.

Architecture Latency (ms) Test Accuracy (%) #Params (M) #MAdds (M) Search Cost
Top-1 Top-5 (GPU Days)

ProxylessNAS-GPU [77] 84.7 75.1 - 7.1 463 8.3
MobileNetV2 (1.0×) [74] 71.6 72.0 - 3.4 300 -

NAGO [54] - 76.8 93.4 5.7 - 20.0
EVO-90 88.9 77.3 93.1 5.9 332 0.7

NAS-MO-90 89.8 75.4 92.4 4.9 266 0.7
PNAG-90 (Ours) 86.9 78.3 94.0 5.7 310 0.7

MnasNet-A1 (1.4×) [24] 112.9 77.2 93.5 6.1 592 ∼3792
EfficientNet B0 [79] 115.5 77.3 93.5 5.3 390 -

ENAS [34] 110.8 73.8 91.7 5.6 607 0.5
EVO-115 105.4 78.4 94.1 8.4 388 51.7

NAS-MO-115 111.2 78.1 94.0 8.8 431 0.7
PNAG-115 (Ours) 111.2 79.3 94.6 8.9 411 0.7

EVO-140 135.7 78.9 94.4 9.1 481 0.7
NAS-MO-140 137.2 78.4 94.1 8.8 470 0.7

PNAG-140 (Ours) 138.9 79.7 94.9 9.7 510 0.7

ResNet-50 [4] 159.8 76.2 92.9 25.6 4087 -
EVO-165 164.1 79.1 94.5 10.7 597 51.7

NAS-MO-165 162.6 78.8 94.4 10.5 583 0.7
PNAG-165 (Ours) 162.7 80.3 95.0 10.5 582 0.7

NASNet-A [16] 162.3 74.0 91.6 5.3 564 ∼3
PONAS [56] 182.4 75.2 - 5.6 376 8.8

EfficientNet B1 [79] 192.7 79.2 94.5 7.8 700 -
OFA∗ [55] 204.3 80.2 95.1 9.1 743 51.7
EVO-190 188.1 79.5 94.8 11.3 687 0.7

NAS-MO-190 183.2 78.8 94.5 10.7 652 0.7
PNAG-190 (Ours) 185.5 80.4 95.0 10.4 640 0.7
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TABLE 4
Comparisons of different reward functions based on PNAG. We report the latency on mobile devices.

Reward B1=80ms B2=110ms B3=140ms B4=170ms B5=200ms
Acc. (%) Lat. (ms) Acc. Lat. (ms) Acc. Lat. (ms) Acc. Lat. (ms) Acc. Lat. (ms)

Multi-objective Reward [24] 77.0 77.6 78.5 106.3 78.9 139.0 79.3 165.1 79.5 187.3
Multi-objective Absolute Reward [58] 78.1 76.8 78.9 109.2 79.2 130.1 79.5 163.6 79.9 197.5

Pareto Dominance Reward (w/o acc. constraint) 73.8 74.4 73.6 64.9 74.3 66.5 73.9 70.0 74.0 70.8
Pareto Dominance Reward (Ours) 78.4 79.9 79.5 106.8 79.8 127.8 80.3 167.1 80.5 193.9

TABLE 5
Effect of different search strategies on the performance of PNAG. We report the accuracy on ImageNet.

Search Strategy B1=80ms B2=110ms B3=140ms B4=170ms B5=200ms
Repeated Independent Search 76.7 78.6 79.1 79.4 79.7

Pareto Frontier Search 78.4 79.5 79.8 80.3 80.5

TABLE 6
Comparisons of the time cost for architecture generation/design among

different methods.

Method PNAG PC-DARTS ENAS DARTS

Time Cost ≤5 s 2 hours 12 hours 4 days

4.5 Architecture Search for GPU Devices
Besides the mobile and CPU devices, we also consider GPUs and
adopt the latency on them as the computational budget. Since the
inference speed on GPU is much faster than mobile processor
and CPU, we measure the latency of deep models on a NVIDIA
TITAN X GPU with a batch size of 64. In this experiments, we
compare different architecture design/search methods under the
budgets of {90ms, 115ms, 140ms, 165ms, 190ms}.

As shown in Fig. 7, similar to the results on mobile and
CPU devices, our PNAG outperforms existing methods and the
constructed variants by a large margin. We also reported the
detailed comparisons in terms of accuracy and computational cost
in Table 3. Again, compared with both the hand-crafted methods
(e.g., MobileNetV2 [74] and EfficientNet [79]) and NAS methods
(e.g., ENAS [34] and MnasNet [24]), our PNAG consistently
produces better architectures under diverse budgets. These results
further emphasize the generalization ability of our PNAG to the
latency budgets evaluated on different hardware devices.

5 FURTHER EXPERIMENTS

In this section, we conduct ablation studies on our method. Then
we compare the architecture generation cost of our proposed
method among different methods and discuss the impact of the
number of considered budgets K .

5.1 Effect of the Pareto Dominance Reward
We investigate the effectiveness of the Pareto frontier learning
strategy and the Pareto dominance reward. From Table 4 and
Table 5, the Pareto frontier learning strategy tends to find better
architectures than the independent search process due to the shared
knowledge across the search processes under different budgets.
Compared with two existing multi-objective rewards [24], [58],
the Pareto dominance reward encourages the generator to pro-
duce architectures that satisfy the considered budget constraints.
Moreover, if we do not consider accuracy constraint in the Pareto

TABLE 7
Effect of K on the generation performance of PNAG. We compare the

generated architectures using different values of K with the target
latency B=140ms on ImageNet.

K 1 2 5 10 30

Top-1 Acc. (%) 78.5 79.1 79.4 79.8 79.8

dominance reward, the generated architectures have low latency
and poor accuracy. With both the Pareto frontier learning strategy
and the Pareto dominance reward, our method yields the best
results under all budgets.

5.2 Comparisons of Architecture Generation Cost

In this part, we compare the architecture generation cost of
different methods for 5 different budgets and show the comparison
results in Table 6. Given an arbitrary target budget, existing NAS
methods need to perform an independent search to find feasible
architectures. By contrast, since PNAG directly learns the whole
Pareto frontier, we are able to generate promising architectures
based on a learned generator model via inference. Thus, the
architecture generation cost of PNAG is much less than other
existing methods (See results in Table 6). In this sense, we are
able to greatly accelerate the architecture design process in real-
world scenarios. These results demonstrate the efficiency of our
PNAG in generating architectures.

5.3 Effect of K on the Generation Performance

We investigate the effect of K on the generation performance of
PNAG based on mobile device. Note that we evenly select K
budgets from the range of latency. To investigate the effect of
K , we consider several candidate values of K ∈ {2, 5, 10, 30}.
We show the Top-1 accuracies of the architectures generated by
PNAG with different K on ImageNet in Table 7. Since a small
number of selected budgets K cannot accurately approximate the
ground-truth Pareto frontier or provide enough shared knowledge
between different search processes, our method yields poor results
with K = 2. When we increase K larger than 5, we are able to
greatly improve the performance of the generated architectures.
From Table 7, our method yields the best result when K ≥ 10
and we use this setting in the experiments.
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6 CONCLUSION

In this paper, we focus on designing effective and feasible architec-
tures via an architecture generation process. To this end, we have
proposed a novel Pareto-aware Neural Architecture Generator
(PNAG) which only needs to be trained once and dynamically
generates promising architectures satisfying any given budget via
inference. Unlike existing methods, we seek to learn the whole
Pareto frontier instead of finding a single or several discrete
Pareto optimal architectures. Based on the learned Pareto fron-
tier, our PNAG consistently outperforms existing NAS methods
across diverse budgets. Extensive experiments on three hardware
platforms (i.e., mobile devices, CPU, and GPU) demonstrate the
effectiveness of the proposed method.
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