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Abstract

Past work exploring adversarial vulnerability have fo-
cused on situations where an adversary can perturb all di-
mensions of model input. On the other hand, a range of
recent works consider the case where either (i) an adver-
sary can perturb a limited number of input parameters or
(ii) a subset of modalities in a multimodal problem. In both
of these cases, adversarial examples are effectively con-
strained to a subspace V' in the ambient input space X. Mo-
tivated by this, in this work we investigate how adversarial
vulnerability depends on dim (V). In particular, we show
that the adversarial success of standard PGD attacks with
IP norm constraints behaves like a monotonically increas-
ing function of €( d(gﬁl(‘/(,) )% where ¢ is the perturbation bud-
getand % —5—% = 1, provided p > 1 (the case p = 1 presents
additional subtleties which we analyze in some detail). This
functional form can be easily derived from a simple toy lin-
ear model, and as such our results land further credence to
arguments that adversarial examples are endemic to locally
linear models on high dimensional spaces.

1. Introduction

Since they were first identified in [33], there has been
strong sense that a model’s vulnerability to adversarial ex-
amples is strongly connected to the dimension of its input
space. This connection has been mined by a range of works
which use it as a perspective with which to explain the
prevalence of adversarial examples in certain model types
(e.g., computer vision) — in Sec. 2 we provide a brief syn-
opsis of this research. As deep learning models are applied
to more and more safety critical applications, there is also
an increasing practical relevance to understanding any gen-
eral connections between adversarial vulnerability and the
properties of a problem. In such settings, a simple statistic
that can be easily computed (such as model input dimen-
sion) is useful for gauging the general adversarial risk for a

proposed deep learning system.

This is especially true when the proposed system uses
less familiar modalities/tasks to which one cannot easily re-
fer to studies in the literature. For example, suppose one
needs to evaluate the safety of applying deep learning to the
output of a range of different sensors. Past work has consid-
ered the ambient dimension in which this data is collected.
Should we worry less if a sensor captures a signal as a 50-
dimensional vector rather than a 5, 000-dimensional vector?
In this paper we take this line of reasoning a step further
and ask how this situation changes when instead of chang-
ing the ambient dimension we change the dimension of the
subspace in which one is constrained to perturb input. Such
a thought experiment has practical relevance. Suppose that
of the 500 input dimensions to our model, we believe that
an adversary is only likely to get access to 50 dimensions
(this may happen in multimodal settings where an adversary
has much better access to a subset of the modalities). How
should we compare this to a situation in which are only able
to perturb a fixed 100-dimensional subspace of the input?
How about a 5-dimensional subspace?

Motivated by this, in this work we revisit the connec-
tion between dimension and adversarial vulnerability. Un-
like most other works in this space, which look at suscep-
tibility to adversarial examples as a function of the num-
ber of input dimensions dim(X’) alone, we explore model
susceptibility to adversarial examples constrained to a sub-
space V. C X as a function of dim(V)/dim(X). We
find that unsurprisingly, for fixed dim(X’), as dim(V') de-
creases average adversarial success rate (ASR) also de-
creases, though ASR only drops significantly when the quo-
tient dim(V')/ dim(X’) drops below around 10% (see Fig-
ure 1). In other words, a model remains vulnerable when
an adversary is only able to perturb a subset of input dimen-
sions, but as this subset covers an ever smaller fraction of
the available dimensions an adversary has to put increasing
effort into finding adversarial examples.

We further study how the adversarial budget ¢ with re-
spect to the ¢P-norm interacts with dim (V) and dim(X).
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Figure 1. Left: success of PGD adversarial attacks on an ImageNet trained ResNet50, with £°°-norm constraints on perturbation budget,
constrained to subspaces V' C X" spanned by dim V' randomly selected standard basis vectors. Adversarial examples are computed for
a random subsample of 10,000 datapoints from the ImageNet validations set. The z-axis is the e-bound used during example generation
and the different colored curves indicate the dimension dim V' of the subspace to which the examples were constrained to, relative to the
dimension dim X (= 3 - 224?) of the ambient space. When only a small number of dimensions can be perturbed, adversarial examples are
challenging to generate even with large e-bounds. Right: these curves become aligned when we reparameterize the x-axis by scaling by

dim V
dim X *

We find that the relationships of € to ASR for different
dim(V) are nearly identical up to scaling: more specifically,
suppose that C'y, : R — [0,1] and Cy, : R — [0,1] map
adversarial budget to ASR when adversarial examples are
constrained to subspaces V; and V5 respectively. We find
that

() 9= (@) ) o

where ¢ satisfies 1/p + 1/q = 1. Emprical results for Ima-
geNet trained ResNet50 models in the case p = oo are dis-
played in Fig. 1, and results for other datsets, models and
values of p can be found in Sec. 5 and Appendix C. Equa-
tion (1.1) points to a strong relationship between dim(V),
p, and € that to our knowledge is novel. It further tells us
that risk from adversarial examples can be mitigated by ei-
ther restricting the dimensions that data can be manipulated
(dim V') in or restricting the amount they can be manipu-
lated before they are noticed (e). This relationship is con-
sistent across values of dim(V')/dim(X): if one wanted
to understand the risk of an adversary purturbing data in a
50-dimensional subspace of a 500-dimensional-input space,
one could for example estimate the success rate of an ad-
versary with access to the entire input space and extrapolate
using Eq. (1.1). Finally, we provide a theoretical backing
for our results as well as analyze their implications on com-
mon theories behind the prevalence of adversarial examples
in Section 6.
In summary, our contributions in this paper include the
following.
* We run a range of experiments restricting adversarial
examples to a fixed subspace V' of input space and ex-

plore how the dimension of V' impacts adversarial suc-
cess rate (ASR).

e Our results show that there are predictable trade-offs
between € and dim(V'). That is, we can scale € and
dim(V') (dependent on the ¢”-norm used) so that ASR
remains fixed.

* We provide a theoretical basis for our observations and
analyze what this says about different theories explain-
ing the existence of adversarial examples.

2. Related work

Why do adversarial examples exist?  There have
been many proposed explanations for the phenomena of
adversarial examples; we provide an incomplete but repre-
sentative sample. A number of works such as [5,29] present
explanations in terms of dimensionality curses. In [14]
it is argued that adversarial examples are a side-effect of
locally linear behavior of deep learning models, an idea that
is further investigated both theoretically and empirically
in [6]. This theme also appears in [3, 4], which (among
many other things) prove ReLU networks with multiple
layers are linear on large regions of input space.

Adversarial examples and input dimension: A range
of works have looked at the connection between the input
dimension of data to a model and the prevalence of adver-
sarial examples. Such works include [3 1], which simplifies
the set-up by approximating neural networks with their
gradients, hence reducing the problem to linear classifiers.
They vary input dimension by up-sampling CIFAR10. [29]
derives formulae relating adversarial vulnerability to model
input dimension dim X, adversarial budget e (in arbitrary



¢P norms, including p = 0) and notably properties of the
data distribution, and carries out experiments varying input
dimension by up-sampling MNIST. [5] includes theoretical
results of a similar flavor, and also varies input dimension
of image datasets by up-sampling as well as dimension-
reducing preprocessing operations like the singular value
decomposition. Unlike our work, none of these considered
adversarial examples constrained to subspaces V C X’.!

Adversarial examples constrained to subspaces: There is
a continually expanding body of work on adversarial pertur-
bations constrained to submanifolds of the input space of a
model. [15,17,28,30,38] all study the vulnerability of neu-
ral networks to perturbations constrained to a subspace cor-
responding to some Fourier frequency range (for instance,
high, low or intermediate frequencies). [21, 39] study vul-
nerability to perturbations which modify color curves si-
multaneously at all locations of an image.

Among works most in line with the present one, [10]
studies the minimal norm perturbation § € V' C X required
to move an input x € X" across a decision boundary of a
classification model f. They provided theoretical results
for linear classifiers (and more general models in terms of
curvature properties of decision boundaries) as well as em-
pirical results for several image classifiers. The main the-
orems of [10] state that the norm of the minimal perturba-
dim X
dimV *
connect these findings with model error (a.k.a. adversarial
success) and their analysis is limited to the #2 norm (hence
their theorems do not contradict Fig. 1, which illustrates £>°
adversarial success). On the other hand, in this work we
consider arbitrary ¢P-norm bounds and actually connect p
to the rate of growth of adversarial success rate. The work
in [10] is also intimately connected with the DeepFool at-
tack [26],> as well as [9,11]. In contrast, we mostly focus on
PGD attacks due to their universality [23] and prevalence in
the adversarial machine learning literature.

A number of works such as [18,32,35] ask the opposite
of our question. Namely, what subspace V' C & adversarial
perturbations tend to lie in. A consistent finding of [18,32]
is that in situations where the data distribution lies on a man-
ifold M C X, adversarial examples for data points x € M
tend to lie in the normal space N M,, whose dimension is
the codimension of M — [18] observes increasing vulnera-
bility as this codimension increases.

Perhaps the work most similar to what we present here is
[8], which investigates the phenomena of low-dimensional
adversarial perturbations with theoretical results and empir-

tion ¢ scales like However, they do not directly

LAt first glance it might seem the SVD preprocessing lands in a proper
subspace V' C X, but it is more accurate to say it decreases the ambient
dimension dim X'.

2Which does implicitly indicate the correct scaling for more general
£P-metrics.

ical confirmations. Our findings are generally consistent
with theirs, and we build on [8] with an extensive empirical
analysis of simultaneous dependence of adversarial success
on dim V, € and the metric under consideration (i.e. 2 or
£°°). In addition, our experiments involve much larger mod-
els and datasets; we hope the description of our methods in
Appendix B illustrates that this scaling-up is not trivial.

Finally we note that our results can be tied to a range of
studies that look at statistics of adversarial examples with
respect to different situations. For example, [0] studies
scaling properties of adversarial success with respect to
the perturbation constraint €, obtaining results qualitatively
similar to ours along that axis of variation.

3. Adversarial examples and subspaces

Let f : X — Y be a classification model, where X is the
space of input data and ) the space of model outputs. We
focus on image classifiers so that X is a space of pixel val-
ues (a hypercube of the form [0, 1]™ for some n depending
on image resolution) and ) = {1, ..., K} with K the num-
ber of classes. The models f we consider are deep neural
networks. By definition an adversarial example for a data
point (z,y) € X x Y isamodel input 2’ = 246 € X such
that

e f(2') # y (2’ is misclassified) and

* d(z',z) < e where d is some chosen metric and € > 0

some chosen constraint (z’ is close to x).

We will measure adversarial success as the probability that
f(a") # y; this probability depends on the algorithm used
to generate ' = x + § € X, and empirically can be esti-
mated by generating perturbations for all = in a validation
dataset and computing the error of f on the resulting “ad-
versarial dataset.”

Standard methods of generating adversarial examples
[14,33] perturb model inputs by independently modifying
all pixel values, however as early as [14] it was observed
that sparse perturbations modifying only a subset of pixel
values were also effective. By now there exist a plethora of
adversarial example generation techniques which optimize
for perturbations & constrained to a subspace* V' C X, in
many cases with dim V" a small fraction of dim X — a com-
mon aim of these methods is to modify x in a way that is
perceptually natural (so that 2’ will appear innocuous even
to a human-in-the-loop) while using relatively few parame-
ters. We discuss a representative sample of such techniques
in Sec. 2. Such widespread interest in constrained adversar-

3In particular, we do not require the model to correctly classify the
unperturbed input, i.e. we do not restrict attention to data points where
fl@)=y.

4Sometimes, but not always, an affine linear subspace.



ial perturbations § € V' C X raises a foundational question:

dim V'
? N
dim X 3-1)

how does adversarial success depend on

In Sec. 4 we design experiments to measure this dependency
for a variety of families of subspaces V' C X (including
those spanned by random subsets of pixels or random sets
of orthogonal vectors) and metrics (including ¢2 and £>°).
We repeatedly find that success of adversarial attacks con-
strained in the £” metric is a function of € - ({2¥)) 7, where
% + % = 1: this is illustrated in Fig. 1 and described further
in Sec. 5.2.

This experiment serves as a lens through which to in-
vestigate two common, not-necessarily-mutually-exclusive
explanations for the prevalence of adversarial examples in
deep learning — these are:

(i) Adversarial examples are a result of the curse of
dimensionality: a deep learning model f : X — Y
subdivides the high dimensional input space &  into
decision regions f~1(y) € X. A variety of well-
studied toy models, such as binary linear classification
of points on a sphere S"~! C R™, have the property
that in high dimensions every z € f~1(y) lies very
close to the boundary of f~!(y) (for linear classifica-
tion of points on S™~! this is the statement that “as
n — 00, all the volume lies near the equator™).

(ii) Adversarial examples are a consequence of (locally)
linear behavior: At least locally, f is well approxi-
mated by an affine linear function Wz + b, and for ap-
propriately chosen § we can make |WW¢| large enough
to ensure f(x + §) # f(z).

These two explanations are more closely related than they
might initially appear. For example, in Item (ii) the num-
ber of coefficients of w equals dim X, and as pointed out
in [14] the fast gradient sign method exploits the fact that
when § = —sign(w), w’'6 = =3, Jw;| = —|w|; which
scales with dim X" (provided the scale of the coefficients
w1, ..., Wqim x 18 fixed). Here the idea is that the number
of terms in the sum ) _ |w;| is dim X, so if the coefficients
w; are I[ID EY ", Jw;|] = dim X - E[|w; |] — in some sense,
this is also a curse of dimensionality. In Sec. 6 we compare
the various theoretically predicted scaling properties of ad-
versarial success with respect to € and dim V, lifted from
papers arguing for Item (i) or Item (ii).

4. Perturbations in random subspaces

Designing an experiment to measure adversarial success
with varying dim V' and e requires making a number of
choices:

5By definition for any p > 1 the £P-distance between points z, y € R™

1
is 2, |z —wil?P)P.

(1) a distribution of subspaces V' C X to sample from, or

more technically speaking a probability distribution on
a Grassmannian Gr(dim V, dim X)),

(ii) a metric d used to define constraints on perturbations,
and

(iii) an adversarial example generation algorithm .A.

To establish a baseline, we consider the case where the dis-

tribution of subspaces is either uniform or the distribution

obtained by taking V' to be the span of dim V" standard ba-

sis vectors e; € X sampled uniformly. In our experiments

we restrict attention to the ¢F metrics for p € {1,2, 0},

and look at adversarial examples generated by projected

gradient descent as in [23]. We also must specify (i) a

dataset D C X x ) of images, and (ii) an image classifer

f: X =)

Having made these decisions, for a fixed dimension d
and constraint € and for each data point (x,y) € D, we sam-
ple a d-dimensional subspace V' C X according to the spec-
ified distribution on Gr(d, dim X'), generate an adversarial
perturbation ' = x + § € X such that § is constrained to
V and with d(z’, z) < € using the algorithm .4, and record
whether the attack was successful, that is: 1(f(z') # y).
To obtain a low-variance estimate of adversarial success we
average 1(f(z') # y) over the dataset D (or a reasonably
large subsample thereof) and sample a different subspace
V' C X for each datapoint (z, y) to approximate

success(d, €) = P(f(z') # v). 4.1)

It should be emphasized that we are computing statistics
for random subspaces; as other works discussed in Sec. 2
have shown, there are specific subspaces in which a higher
adversarial success rate can likely be achieved.

5. Experiments
5.1. Datasets and models

We experiment with several image classification data
sets and model architectures, of increasing image resolution
and network capacity:

¢ The small convolutional network used in [23] trained

on the MNIST dataset [22].

¢ A ResNet9 [16] trained on the CIFAR10 dataset [ 19].

¢ A ResNet50 [16] trained on the ImageNet dataset [7].
For further details on model architectures and training, we
refer to Appendix B.1.

5.2. Functional form of adversarial success

We may view the adversarial  successes
success(dimV,e) as a sequence of functions of e,
one for each dimV € {1,...,dim X'} as shown in the top
plot of Fig. 1, which displays results of /> PGD adversarial
attacks constrained to spans of subsets of standard basis
vectors for a ResNet50 trained on ImageNet. It appears
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Figure 2. Top: success of PGD adversarial attacks on an ImageNet trained ResNet50, with #2-norm constraints on perturbation budget (all
other experimental details are as in Fig. 1, which displays analogous results for £°°-norm constraints). Left: these curves become aligned

dim V'

when we reparameterize the z-axis by scaling by 4/ 5o

that for varying dim V, the curves success(dim V; €) differ
by x-axis scalings, that is, transformations of the form
success(dim V, €) <— success(dim V, Xe) for some A > 0.
This is indeed the case: the left plot in Fig. 1 shows that
the curves success(dim V, e - $2¥) are almost identical.
Figures 5 and 6 show the same phenomena for a 2-layer

CNN on MNIST and a ResNet9 on CIFAR10.

We can think of this analysis as expressing a decompo-
sition success(dimV,e) = g(e - $2¥) into a composi-
tion of two functions, the first being the map (dim V, ¢) —
€ g:;ﬂg , the secondA map g being some single-variable func-
tion applied to € - S;QK We do not attempt to identify this

g.

Figure 2 shows results analogous to those of Fig. 1 for
PGD adversarial examples constrained in the £2-norm (with
plots for other architecture types and models in Figure 7
and Figure 8). In this case, the reparametrization of the x-
axis that results in almost identical curves is obtained by re-
d.im %4 )
dim X
This shows that the functional form of adversarial success in
terms of € and dim V' depends on the norm constraining ad-
versarial perturbations. In the following section, we argue
that as long as p > 1 adversarial success with ¢P-constraints

placing success(dim V, €) with success(dim V e-

depends on edi where 2 + 1 = 1, a hypothesis consistent
with experimental results in Fig. 2 and Fig. 1.

The case p = 1 is more complicated, and we defer its
analysis to Appendix B.5.

6. Comparison with existing theoretical predic-
tions

There are many existing works investigating the math-
ematical source of adversarial examples for deep learning
models. Several of these include (either as a main result or
a byproduct of calculations) predictions for the functional

form of adversarial success in terms of perturbation budget
€ and the dimension dim V' to which perturbations are con-
strained. We reviewed a subsample of such papers. Note
that most of these papers (the exceptions being [8, 10]) fo-
cus on the dimension of the input space of a model alone
and do not consider the additional constraint that adversar-
ial examples are confined to a subspace.
(i) From the analysis in [14] one can predict that adver-
sarial success is a function of € dlm v ~ (for p = c0).
@ii) [6,8,10] predlct that adversarlal success is a function
of e(4mY)3 (for p = 2).
(iii) From the analysis in [26,

] one can predict that adver-
sarial success is a function of e(gﬁx )% (for % + é =
1). However, arriving at such a functional form from
the derivations in [26, 3 1] requires multiple non-trivial
steps not carried out in those works.
(iv) [29] predicts that adversarial success is a function of
edimV?™
The predictions of Items (i) to (iii) are all consistent with our
experimental results, suggesting that the situation where ad-
versarial examples are constrained to a subspace of dimen-
sion d is effectively equivalent to the unconstrained situa-
tion where data is found in an ambient space of dimension d.
Those of Item (iv) are not obviously consistent with our ex-
perimental data, although we refrain from saying that they
are inconsistent since the analysis of [29] involves a series
of inequalities, and it is unclear how the predictions would

change if one used slightly different approximations.®

The dependence of adversarial success on €( i’;ﬁ x )< can

be derived from the simplest possible toy model, namely
binary linear classification. Let X = R™ and suppose

min(2.p) |

f(z) = whz +b, for some w € R",b € R. (6.1)

®Moreover, the aim of [29] was to demonstrate prevalence of adversar-
ial examples, not to estimate functional forms for adversarial success.



Let V' C R"™ be a subspace with dim V' = d. We will as-
sume there exists an isometry U : R = V with respect to
the /7 metric.” The point - admits an /P adversarial exam-
ple in the subspace V' with budget €, i.e. thereisa d € V
such that sign f(z + ¢) # sign f(x) and |d|, < e, if and
only if the ¢ margin of x

%g{wbyﬂx+5)=o} (6.2)

is at most €.

Lemma 6.3. With the above definitions and notation and
with & + 1 =1,

|wTz + b

—_— 6.4
‘wTU|q 4

min {|d], | f(z +0) =0} =
Appendix A contains a proof. Our experimental results
only measure the probability that x admits an ¢P-adversarial

example in the subspace V' with budget e. By the above
|wT z+b|
[wTUlq

rewritten as P(|w”z +b| < e|wTU|,). We claim that when
p > 1 and V (equivalently U) is sampled with sufficient
randomness

lemma, this probability is P( < €), which can be

d 1

E[Jw’U],] = (=) Jul,: (6.5)
In the case where V is generated by a subset, say
{€i,,...,e;,} of basis vectors, this can be argued as fol-
lows:

wTUlg 35l |
jwlg X wile
. d é Z?:1|wij‘q
el
When the basis subset {e;,, . .
we claim that that the expectation of the term % Z;i:l lw;, |7

(6.6)

., €;, } is sampled uniformly®

is exactly 2 3" | |w;|7 (at least when d = 1 this is imme-
diate). Thus after averaging over many random subspaces
v,

1 d q T
=530 ws, w U|? d

E dlzjn_# =1, henceIE]{| q|q} =—. (67
ﬁzi:1|wi|q lwlg n

Taking g-th roots and rearranging gives Eq. (6.5).

Note that in our experiments we compute something
analogous to P(|wTz+b| < elw?U|,) where probability is
with respect to the underlying distribution of = and choice
of U. Using a “point estimate” and replacing |w” U], with

7This assumption holds in all of our experiments.
8For example, by taking i1,...,iq = o(1),...,o(d) where o is a
uniformly random permutation of {1,...,n}.

its mean (d)% |w|,, one would simplify to P(|wTx + b <

n

e(%)% |w|,), which since we treat w, b and the distribution
of  as given is a function of ¢(£) 7

When p = 1, so ¢ = oo, Lemma 6.3 remains valid but
the tricks applied in Egs. (6.6) and (6.7) do not make sense,
and indeed our experimental results in Appendix B.5 sug-
gest dependence of adversarial success on €( gﬁ;)% alone
breaks down somewhat in this case. For further analysis of
this case, we refer to Appendix B.5.

7. Limitations

Adversarial examples given by gradient-based perturba-
tions with /P constraints make up only one (and arguably,
a narrow) type of distribution-shifted test data causing ma-
chine learning model failure. For further discussion of this
point see [12, 13]. While we take inspiration from ad-
versarial example generators constraining perturbations to
subspaces (surveyed in Sec. 2), our experiments are lim-
ited to the baseline of random subspace selection (whereas
most subspace-constrained adversarial example generators
choose their subspace more carefully). We also only exper-
iment with image classifiers, though adversarial examples
have been found to exist for essentially all deep learning
systems [20,25,37].

8. Conclusion and open questions

We demonstrate that the adversarial success
success(dim V,e) of PGD attacks constrained to a
(random) dim V-dimensional subspace V' of the model
input space X’ with /P budget € (and p > 1) is essentially a
function of the single variable e(jﬁ}é)% where - + 2 =1
(rather than a function of two variables as considered in
prior work). The fact that this relationship can be derived
in the toy example of a linear binary classifier, and holds
quite sharply in all our experiments, seems to lend further
credence to the theory that adversarial examples are a
byproduct of the locally linear behavior of neural networks
with high dimensional input spaces.
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A. Derivations

Proof of Lemma 6.3. Recall that our goal is to solve the
constrained optimization problem

min{|d], | € R, wT' (x4 US) + b = 0} (A1)

Using the method of Lagrange multipliers, we know that a
minimizer 6 € R? must satisfy the critical point condition

AUTw € 0)6), (A.2)

where 94|, is the subdifferential of the ’-norm at § € R¢.
It is a classical fact (see e.g. [1, Prop. 1.2]) that

o1 {{UERd||v|q<1} if5=0
b {veR¥|v|, =1and vTé =[6],} otherwise.
(A3)
If the first case occurs, clearly the minimum of Eq. (A.1) is
0, and since = 0 we obtain

0=wl(z+Us)+b=w"z+0, (A.4)

T
hence in this case Irz}f[j‘ 51— 0 as well and the lemma holds.
q

In the case where § # 0, combining Egs. (A.2) and (A.3)
we see that for some \

INUTw|, = 1 and \wTUS = [5],; (A.5)

from the first equation we immediately identify |A\| =
|UTwl; !, and taking absolute values on both sides of the
second then gives

16, = I\|w" U]
US| (A6)
B |UTw|q.

Finally, recalling w” (z + Ud) + b = 0 gives [wTUd| =
|wT x + b|, completing the proof. 0O

B. Experimental details
B.1. Model architectures and training details

For our MNIST experiments we use the sim-
ple 2 layer convolutional network of [23] —
we ported the TensorFlow code available at
https://github.com/MadryLab/mnist_challenge to  Py-
Torch [27]. We train it using SGD with momentum 0.9,
batch size 1024 and weight decay 10~* for 100 epochs,
with initial learning rate 10~ and learning rate drops by a
factor of 0.1 whenever validation accuracy doesn’t improve
by 1% for 10 epochs. We save the weights with the best
validation accuracy (=~ 98.95%).

For our CIFAR10 experiments we use the ResNet9 from
MosaicML’s Composer library [34]. We train it with SGD

with momentum 0.9, batch size 512 and weight decay 104
for 160 epochs, with initial learning rate 10! and learning
rate drops by a factor of 0.1 whenever validation accuracy
doesn’t improve by 1% for 10 epochs. We save the weights
with the best validation accuracy (= 91.72%).

For our ImageNet experiments we use the ResNet50
from TorchVision [24]. We train it with SGD with mo-
mentum 0.9 and weight decay 10~ for 100 epochs, with
initial learning rate 1.0 and learning rate drops by a factor
of 0.1 whenever validation accuracy doesn’t improve by 1%
for 10 epochs. Due to distributed data parallel training with
batches of size 512 on each of 8 GPUs, our effective batch
size is 8 - 512 = 4096. We save the weights with the best
validation accuracy (=~ 72.84%).

B.2. Tuning PGD step sizes

In our experiments we generate a large number of PGD
adversarial examples for a wide range of perturbation con-
straints € and in subspaces of varying dimension. In or-
der for our numerical experiments to address our questions
about the behavior of success(d, €), it is crucial that our
PGD algorithm for optimizing ¢ has the capacity to achieve
the boundary case |6], = ¢. We found that with some stan-
dard choices of step size, this did not occur, resulting in an
unpleasant situation where the effective budget was signifi-
cantly lower than e simply due to a too-small PGD step size.
Here we briefly discuss a principled choice of PGD step size
that accounts for the dimension d of the subspace to which
0 is constrained. First we must specify the PGD algorithm
being used.

Our basic PGD implementation (adapted from [23]) iter-
ates the following: we constrain J to a d-dimensional sub-
space V' C X using an isometry U : R* — V as in Sec. 6,
and initialize 6o = 0. Then, fort = 1,...,T where T is the
maximum number of steps, we let g; = Vsl(f(z +Ud),y)
where £ is cross entropy, and replace it with the “normal-
ized” gradient

gt

_ , pefl,2}

G = {?tlv (B.1)
signgy, p = oQ.

We then project §;_1 + 1g;, where 7 is a learning rate, onto
the (P e-ball centered at 0 to obtain in the case p € {1,2}

8¢ 140G -
50 = 6%7 |0c—1 + nGelp > € B.2)
t - ~ . .
J;—1+ngs, otherwise
and in the case p = oo
_ biadmge S ~

5 = € max{0:_1+15e] max{d;—1 +nge} > € (B.3)

Ot—1 + nde, otherwise.

Finally, we must ensure that x 4+ U lies in the image hyper-
cube [0, 1]9*HXW (in our implementation pixel values lie
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in [0, 1]). To do this, we let clip : R — [0, 1] be the clipping
function, i.e. clip(z) = max{0, min{z, 1}}, and replace §
with

U™ (clip(z + U$) — ) (B.4)
(here we use the fact that U is orthogonal and so U7 is a
left inverse for U).

To set the step size 7, we can adopt the heuristic that
the ; behave like a random walk, i.e. that the normalized
gradients g; are sampled IID from some distribution (this
almost certainly quite false, but we found it to be useful in
a back-of-the-envelope sort of way). We will even further
assume that for each ¢ the coordinates of g; are IID. Ignoring
projection and clipping, we have i = 7 Zthl Gi. In the
case p = 2, using the supposed I[ID-ness we see that

T
Ell613) = n*>_|a:l3 = n°T. (B.5)

t=1

Since we want to ensure the left hand side is at least €, we
obtain the step size

= . (B.6)

T

In practice we multiply the above by 2 for good measure.
In the case p = oo, by our IID-ness assumptions and the fact
that by definition g; = sign gy, the individual coordinates
gi; forj=1,...,d are IID samples from {£1} and so

9

T
1 -
6rlo0 =nVT max (| == ;gt,j b} ®)

The distribution of each term —- S°7 | Gij tends towards
a Gaussian distribution with mean 0 and variance 1 as
T — oo by the central limit theorem. Letting ®(z) be the
standard normal CDF, the CDF of each | S Gegl s
approximated by

(B.8)

By [2], the distribution of the max occuring in Eq. (B.7)
is concentrated around the dgl—th quantile of the CDF
Eq. (B.8), ie. F~!'(1 — 1), Assuming d is relatively
large, so that 1 — é is near 1, we ignore the ®(—x) term

in Eq. (B.8) for the purposes of inversion and get

F7l(1 - 1) ~d1(1 - 1)

pi 7 (B.9)

9Note that this is larger than what is suggested in [23, p. 12, section
“Resistance for different values ...”], which divides by T". By “for good
measure” we mean that our primary concern is using foo small of a step
size.

10

Recall that our objective is to ensure that |d7|- > €. By
the above arguments, this translates to

1
e<nVTOd 11— Q)’ ie.
. (B.10)

N —=——
VT (1 1)

Again, in practice we multiply by 2 for good measure.
Observe that while our ¢? step size is independent of d,
Eq. (B.10) does depend on d. In fact, as d — oo the step
size goes to 0, but very slowly (for d = 3 - 2242, the dimen-
sion of ImageNet images, ®~!(1 — 1) ~ 4.36).

For the p = 1 case, we use a heuristic similar to that of
p = 2 above; explicitly, we set

Uzmﬁ

B.3. Adversarial example generation

For each dataset and model, we select a range of pertur-
bation budgets e and subspace dimensions d, in both cases
logarithmically spaced between minimum and maximal val-
ues of € and d, with as many grid points as we can afford
(for MNIST and CIFAR, 32 different values of each, for
ImageNet only 8 of each).

For each pair (¢,d) we loop over the entire validation
set of the relevant dataset, with the exception of ImageNet
where we randomly sample 10,000 of the 50,000 images.
We randomly sample a distinct subspace V; C X for each
validation datapoint (x;, y;) (as above, by randomly gener-
ating a matrix U whose columns span V). We then loop
through validation datapoints (z;,y;) and corresponding
matrices U; and compute PGD adversarial examples as de-
scribed above, with T" = 16 steps. We compute the er-
ror over the validation set (subsampled in the case of Ima-
geNet), i.e.

LN
1- Nzl(f(xi +Ud;) = yi).
1=1

B.4. Subspaces sampled uniformly from the Grass-
mannian

In the case of MNIST and for p = 2, we can also sample
subspaces uniformly from the Grassmannian Gr(d, dim X)
by sampling matrices U of shape n x d with orthonor-
mal columns using the QR decomposition as in used in the
method scipy.stats.ortho_group of [36]. The re-
sults, shown in Fig. 3, are similar to those in Figs. 5a and 5b.

B.5. Analysis of the 1-norm case

When p = 1, ¢ = oo and so the arguments used in
Eqgs. (6.6) and (6.7) do not make sense as written; more-
over, while we have not explicitly verified this, it seems that
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Figure 3. (a) Projected gradient descent (PGD) adversarial examples for the 2-layer convolutional neural network of [23] on the MNIST
validation set. In these experiments we generated the subspaces V' by sampling uniformly from the Grassmannian, and constrain perturba-

tions using the £2 norm. (b) The same data, reparametrized by plotting € - gﬁx along the z-axis. Note: x-axes are log-scale.
attempting to take a limit of those equations as ¢ — oo one leading to the overall estimate
will encounter an “oo/00” case, and it’s not clear that e.g.

’ ital’ Tu F71(1 - +io)

L’Hospital’s rule helps at all. [w" Uloo - dimV (B.15)
Instead, we propose a different estimate of the quotient |w|oo F-1(1- 1) '
lwT U] . .

>, (B.11) Figure 4 shows the result of using Eq. (B.15) as a stand-
. 1

[wloo in for (jﬁ;)ﬁ in the case where p = 1, on the MNIST
proceeding as follows. We will again assume, as is the case dataset. One immediate observation is that at least for
in our experiments, that U is obtained by subsampling basis dim V a significant fraction of dim X’ (e.g. gﬁ;/c >0.1)it
vectors, say {€;,,...,€;, }. Then does appear that the curves success(dim V, €) converge to a
WUl  max;{|w,|} common hr.nlt,.as one would expect from a na‘f\:ﬁ r;all?/phiatlon
= (B.12) of a factorization success(dim V,e) = g(e(G2%)=) =

|w|00 max,{|w,|} . . im
) ' g(e). The reparameterization of Eq. (B.15) seems to do
The question, then, is how much smaller the max over a okay at accounting for behavior in the lowest dimensions,
Fandom dim V'-element sgbset of the absolute values [w;| at the expense of over-compensating and pushing the curves
is than the max over all dim &” of them. The need to make corresponding to low-to-medium values of dim V to the left
some assumption on the distribution the |w;| are drawn from of the curve corresponding to dim V' = dim X. There are
seems unavoidable at this point: we Suppose the coefﬁcient.s various potential causes of this undesirable effect (roughly
w; come from a standard normal distribution, so that their one per crude oversimplification in the above analysis). Re-
absolute values come from a “half-normal” (equivalently sults for CIFAR10 and ImageNet can be found in Fig. 9 and
X1) distribution: if ® is the standard normal cumulative Fig. 10 respectively. One concerning aspect of those two
distribution function, with this assumption the cumulative results is we see downturns in the curves success(dim V ¢)
distribution function of the [w;] is for the highest values of ¢, suggesting there may have been

F(z) := ®(z) — O(—=x). (B.13) issues with our PGD optimizer in the p = 1 case.

One question we had was whether these results were im-
pacted by sub-optimal PGD optimization. A reason for ask-
ing this is that the p = 1 case of Eq. (B.1) is arguably incor-
- rect: the “correct” way of deriving these generalized Fast
large samples [7] suggests the estimates Gradient Sign Method (FGSM) steps is through the anal-

max{|w;, |} ~ ol (1- 1 ) and ysis of Appendix A. Assuming U = I for simplicity, one
J

We make a further crude estimate that the numerator and de-
nominator are maxs of independent samples of size dim V'
and dim X respectively;'” then the theory of quantiles in

dim V (B.14) sees that wT'§ = |w|s|d|1, and one can show this occurs if
. 1 ’ and only if:
Hl?X{|’LUZ|} ~F(1- dimX) e letting A = argmax;{|w;|]} C {1,...,n} (the

. - . argmax of |w;|, which is a set in general although a
10This is of course quite false, as the numerator differs from the denom- g | v g g

inator by taking the max over a subsample. How can one deal with this Single index with probability 1),0; =0if 4 ¢ A
step more realistically? e signd; = signw; forall i € A.
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Figure 4. (a) Success of PGD adversarial attacks on an MNIST trained small convolutional network, with #!-norm constraints on per-
turbation budget, constrained to subspaces V' C X spanned by dim V' randomly selected standard basis vectors. Adversarial examples
are computed for all datapoints in the MNIST validation set. The x-axis is the e-bound used during example generation and the different
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F(l— 32+)

1
F(lidimX

(= 28?) of the ambient space. (b) These curves become more aligned when we reparameterize the z-axis by scaling by , where

F' is the cummulative distribution function of the absolute value of a standard normal random variable.

In the case where A = {a} (i.e. |w;| has a unique maxi-
mum) we obtain the simplified solution § = (csignw;)e,
(where e, is the a-th standard basis vector. Hence forp = 1,
one can argue that we should use

gt = Carg max; {|w;|} (B.16)

We found that while this method performed similarly to that
of Eq. (B.1) for small values of ¢, it struggled for large €
and failed at the scale of ImageNet input space (see). A
reasonable suspicion is that the number of basis directions
selected by Eq. (B.16) is bounded by the number of PGD
iterations, and that when this number of iterations is far is
smaller than the input dimension Eq. (B.16) underexplores.
However we leave further analysis to future work.

C. Additional experimental results

12
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Figure 5. Plot for experiments analogous to those found in Figure 1 but run with a 2-layer CNN trained and evaluated on MNIST.
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Figure 6. Plot for experiments analogous to those found in Figure 1 but run with a ResNet9 trained and evaluated on CIFAR10.
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Figure 7. Plot for experiments analogous to those found in Figure 2 but run with a 2-layer CNN trained and evaluated on MNIST.
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Figure 9. Plot for experiments analogous to those found in Figure 4 but run with a ResNet9 trained and evaluated on CIFAR10.
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Figure 11. Plot for experiments analogous to those found in Figure 4, the only difference being that we use the FGSM step of Eq. (B.16).
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Figure 12. Plot for experiments analogous to those found in Figure 4 but run with a ResNet9 trained and evaluated on CIFAR10, using the
FGSM step of Eq. (B.16).
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Figure 13. Plot for experiments analogous to those found in Fig. 4 but run with a ResNet50 trained and evaluated on ImageNet, using the
FGSM step of Eq. (B.16).
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