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Abstract

As a natural extension of the image synthesis task, video
synthesis has attracted a lot of interest recently. Many
image synthesis works utilize class labels or text as guid-
ance. However, neither labels nor text can provide ex-
plicit temporal guidance, such as when an action starts or
ends. To overcome this limitation, we introduce semantic
video scene graphs as input for video synthesis, as they
represent the spatial and temporal relationships between
objects in the scene. Since video scene graphs are usu-
ally temporally discrete annotations, we propose a video
scene graph (VSG) encoder that not only encodes the ex-
isting video scene graphs but also predicts the graph repre-
sentations for unlabeled frames. The VSG encoder is pre-
trained with different contrastive multi-modal losses. A se-
mantic scene graph-to-video synthesis framework (SSGVS),
based on the pre-trained VSG encoder, VQ-VAE, and auto-
regressive Transformer, is proposed to synthesize a video
given an initial scene image and a non-fixed number of se-
mantic scene graphs. We evaluate SSGVS and other state-
of-the-art video synthesis models on the Action Genome
dataset and demonstrate the positive significance of video
scene graphs in video synthesis. The source code will be
released.

1. Introduction

With the tremendous breakthroughs in image synthesis
[24,43,63] in recent years, more and more researchers are
focusing on the natural extension yet more challenging task
of video synthesis. In contrast to image synthesis, video
synthesis requires that each generated frame has spatial fi-
delity and also that these frames conform to temporal con-
tinuity. To generate a semantically meaningful video, the
guidance is essential. Text-guided image generation mod-
els have achieved convincing performance, and there has
been recent works [18, 19,31] of video synthesis using text
as condition. However, text has the drawback of not pro-
viding explicit guidance for time dependencies. For exam-
ple, when we want to generate a 16-frame video from the
text condition “a girl standing up after sitting on a chair”,

the synthesis model needs not only to generate frames with
visual quality and temporal consistency, but also to infer
which of the 16 frames correspond to the “sitting” state and
which to the “standing up” action. This highly increases the
complexity of video synthesis task. AG2Vid [3] introduced
continuous action graphs for video synthesis, which specify
semantic actions and spatial layouts of objects. Although
action graphs contain explicit spatial-temporal information,
it is demanding to artificially define the layout variations of
all objects as input when generating real scene videos.

Is there a balanced guiding condition that contains se-
mantic information and clearly represents temporal depen-
dencies? Based on this observation, we make use of seman-
tic video scene graphs for the task of video synthesis. An
image scene graph is a structural representation that gener-
alizes the objects of interest in an image as nodes and their
relationships as edges. It has been utilized as conditional in-
formation for image generation [21]. Semantic video scene
graphs can be viewed as several static scene graphs on an
temporal axis, which only describe the semantic content of
the frames in the video. The ideal video scene graphs are
continuous. In other words, each frame in the video is anno-
tated with a corresponding scene graph. This data structure
containing spatial and temporal information is very promis-
ing for video synthesis. However, giving continuous video
scene graphs during inference is challenging compared to
giving other temporal conditions such as trajectories [28],
action labels [38], or overall scene conditions such as text,
because scene graphs are relatively difficult to create.

In this paper, we propose a novel semantic scene graph-
to-video synthesis framework (SSGVS) that can synthesize
a fixed-length video with an initial scene image and discrete
semantic video scene graphs, as shown in Fig. 1. To ad-
dress the discontinuity of the input video scene graphs and
to learn graph representations to better guide video synthe-
sis, we propose a video scene graph (VSG) encoder pre-
trained in a contrastive multi-modal framework. The VSG
encoder can not only provide the graph representations for
the existing video scene graphs but also predicts the rep-
resentations of the frames that are missing a video scene
graph. Therefore, our approach does not impose strict re-
strictions on the number and temporal location of the given
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Figure 1. Given a starting frame and a non-fixed number of semantic scene graphs (with red bounding boxes), SSGVS can synthesize a fix
length complex video with 128 x 128 resolution, not just simple repetitive motions. The number and temporal position of the input video
scene graphs are freely controllable. For clarity, only 8 of 16 frames are shown.

video scene graphs, nor does it require additional spatial in-
formation, which makes SSGVS more feasible in practice.
For the generative model, we utilize a popular combination
of VQ-VAE and auto-regressive Transformer [15, 28, 60]
since this likelihood-based model fits our purpose and is
easy to optimize. The graph representations can be inserted
into the sequence of the discrete latents provided by the
encoder of VQ-VAE. These latents and graph representa-
tions are then modeled by a GPT-like Transformer using
an auto-regressive prior. The latents generated from the
auto-regressive prior are converted to video frames by the
decoder of VQ-VAE. Our main contributions are listed as
follows:

* We propose a novel semantic scene graph-to-video
synthesis framework (SSGVS), which can synthesize
a fixed-length video with an initial scene image and
discrete semantic video scene graphs.

* A contrastive multi-modal learning framework is pro-
posed to pre-train a Transformer-based video scene
graph (VSG) encoder which can provide high-quality
video scene graph representations to condition seman-
tic video synthesis.

* We split a sub-dataset from the Action Genome dataset
[20] and conduct experiments to demonstrate the ben-
efits of using semantic video scene graphs as condition
for video synthesis. Compared to other state-of-the-
art works, SSGVS can generate better quality semantic
videos.

2. Related Work

Scene graph. Scene graphs have first been proposed by
22] for image retrieval and have received a lot of at-
tention in the field of scene understanding. The graphi-
cal representation whose nodes indicates objects and edges

indicates the semantic relationships between objects can
clearly describe the scene. There are many impressive
works [7, 10, 13, 29, 30, 33=35, 37, 48, 49, 65] that have
achieved incredible results of image scene graph genera-
tion on the datasets [26,27,36]. Recently, the dataset Ac-
tion Genome [20] is proposed, which extends image scene
graphs to video scene graphs by adding the temporal dimen-
sion. Some works [9, 32, 58] captures spatial and tempo-
ral dependencies and generates video scene graphs. Since
scene graphs not only contain the objects present in the
scene but also demonstrates the interactions between the ob-
jects, they are exploited in image retrieval [22], visual ques-
tion answering [ | 1] and image synthesis [16,21,61]. Video
scene graphs have also been used for video question answer-
ing [6] and video captioning [4]. In this paper, we use video
scene graphs for video synthesis, which are purely semantic
and do not include spatial information of entities.

Video synthesis. A video can be regarded as a high-
dimensional image with an additional temporal dimension.
Therefore, the methods for image synthesis can be extended
to video synthesis as well, although longer training time
and higher memory consumption are required. Some GAN-
based methods adapt the adversarial framework to generate
videos with 3D convolutions [, 38, 54] or recurrent neu-
ral networks [8, 44, 50]. However, as the length of the
generated videos becomes longer, the quality of the videos
synthesized by these models decreases significantly. Auto-
regressive models [23,56] have become popular in this field,
even though their inference speed is slow. Many of these
methods [15, 19, 28, 57, 60] introduce VQ-VAE [52] and
Transformers [53] to improve performance. Furthermore,
some works [18,62] propose video diffusion models which
is a natural extension of the image architecture. There are
many sub-tasks in the field of video synthesis. In uncondi-
tional synthesis, a video is produced without any prior in-
formation. For conditional synthesis, a popular task is to
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Figure 2. Our video scene graph representation learning framework, which connects semantic video scene graphs to video frames. The
VSG encoder converts the given video scene graphs into single-vector representations and reasons about the representations of the ungiven

scene graph, which are further used for video synthesis.

leak a few video frames to the model, which predicts future
videos. Some aforementioned works support the genera-
tion of videos conditional on class labels or semantic la-
bels [64], while text-to-video models [2, 18, 19] are rapidly
developing. To further control the video content, trajec-
tory of a robotic arm [28] and camera motions [42] are ex-
ploited. AG2Vid [3] introduced continuous action graphs
for video synthesis. However, the scene layout and spatial
variations are necessary input, which limits the application.
In this paper, we introduce semantic video scene graphs as
the guidance. We use a scene image and purely semantic
video scene graphs as the input of an auto-regressive model
to synthesize a video. Although video scene graphs are usu-
ally temporally discrete, the proposed video scene graph en-
coder pre-trained with different contrastive losses can pre-
dict continuous video scene graph embeddings for guiding
video synthesis. Different from previous works, SSGVS
allows precise control of the moment when the episodes oc-
cur, while the input is relatively easy to achieve.

3. Video scene graph representation learning

Many text-to-image generation works [41, 43] using
CLIP text encoder [39] have achieved outstanding results.
It demonstrates that pre-trained condition encoders provide
high-quality representations that facilitate the generation
task. With the same motivation, we propose a video scene
graph-video contrastive pre-training framework including
a video scene graph (VSG) encoder and a frame encoder
(see Fig. 2). The pre-trained VSG encoder converts the
given video scene graphs into single-vector representations

and reasons about the representations of the ungiven scene
graph. The auxiliary frame encoder, that is discarded during
synthesis, provides the frame representations and feature
maps. We establish a mapping of the semantic graph repre-
sentation space to the visual latent space by using the graph-
frame representation similarity while the feature maps pro-
vide fine-grained information at the node and edge level.

3.1. Video scene graph encoder

Our video scene graph encoder consists of a spatial
Transformer and a temporal Transformer. The spatial trans-
former captures the context of the input scene graphs and
the fine-grained representations of their nodes and edges,
while the temporal Transformer infers the graph represen-
tations at all times based on the graph context provided by
the spatial Transformer.

Spatial Transformer. Given a scene graph G = (N, E),
the nodes IN and edges F in the graph are viewed as to-
kens with semantic information. We decompose the struc-
ture of the graph into a sequence S consisting of node to-
kens and edge tokens. In order to obtain the graph con-
text through self attention mechanism, we introduce a spe-
cial [context] token and place it always first in the se-
quence S. Each token corresponds to a learned embedding
e € R? that is randomly initialized before being trained
from scratch. In order for the structural properties of the
graph to be preserved in Transformer which is permutation
invariant, we construct the context encoding E(c) € R? and
node encodings E(IN) with learned embeddings. For the
edge e;; from the node n; to the node n;, the edge encoding



is calculated as E(e;;) = E(n;) — E(n;). These encod-
ings are element-wise added to the corresponding embed-
dings. For a graph with V,, nodes and N, edges, the length
of the input sequence is (1 + N,, + N.). We adopt a GPT-
like multi-layer Transformer in this paper. Each transformer
layer consists of a classical multi-head attention module, a
feed-forward network, and normalization layers. We use the
original full attention mechanism but not sparse attention in
Transformers, which is defined as:

T

. QK
Attention(Q, K, V) = Softmax < N
where Q, K, and V are the linear transformations of the
queries, keys and values, respectively. The feed-forward
network is a two-layer perceptron, while layer normaliza-
tion is used in the Transformers for normalization. The
graph context from the last layer of the spatial Transformer
is forwarded to the temporal Transformer. The node and
edge representations are used to learn fine-grained visual
information from the feature maps provided by the frame
encoder with the fine-grained graphical contrastive loss in-
troduced in Sec. 3.3.

) v, @

Temporal Transformer. Although the temporal Trans-
former has the identical architecture as the spatial Trans-
former, it plays a completely different role, inferring graph
representations for unavailable scene graphs. A special
[mask] token is introduced whose learned embedding has
the same dimension as the graph context. We construct a
sequence of the mask tokens with the same length T as the
video and and replace the mask embeddings in the position
of the given graphs with their graph context provided by the
spatial Transformer. Temporal encodings E; € RT*? are
customized to inject temporal location information into the
sequence. These encodings are also learned embeddings.
This sequence is used as the input to the temporal Trans-
former that reasons about the representations of all graphs
based on temporal dependencies. Our motivation is similar
to the masked language model [ 2] that masks some words
in the sentence and reconstructs them using the context. The
difference is that these graph representations g € RY are
learned with the contrastive learning using the frame vec-
tors provided by the frame encoder.

3.2. Frame encoder

To relate the graph representations to the visual appear-
ance, we utilize a frame encoder to encode the video frames
and extract the feature maps. It is built upon a pre-trained
convolutional neural network [47]. A 1 x 1 convolution
layer is exploited to reduce the dimension of the feature
maps extracted by the pre-trained CNN. The frame vec-
tors v € RY are derived from the feature maps € RM*%>4
through a 2D global average pooling layer and a linear
transformation. The frame vectors of all frames are in-

volved in the loss calculation, while only the feature maps
of the frames with graph annotations are activated for fine-
grained learning.

3.3. Contrastive multi-modal losses

We introduce three contrastive loss functions for graph
representation learning, namely graphical intra-video con-
trastive loss, graphical inter-video contrastive loss, and
graphical fine-grained contrastive loss. The total loss func-
tion is the equal sum of these three loss functions.

Graphical intra-video contrastive loss. Temporal depen-
dencies and continuity are present in both visual appear-
ance and semantic representations. Therefore, we propose
to learn scene graph representations g from visual repre-
sentations v through temporal dependencies. We compute
the graphical intra-video contrastive loss of a video with T'
frames as:

T .
Lie = —S7(1 exp(sim(gi, fi))
2T simig,. £0)
exp(sim(g;, fi)) )
ZjT:l exp(sim(g;, f;)) ’

(@)

+ log

where sim(g;, f;) indicates the cosine similarity between
the graph representation of the i-th frame and the frame vec-
tor of the j-th frame. The first term denotes that the frame
vector should have a higher similarity to the graph represen-
tation of the current frame compared to the graph represen-
tation of other frames, while the second term is symmetrical
for the graph representation.

Graphical inter-video contrastive loss. Because a scene
graph is the semantic description of a scene, videos with
different visual appearances correspond to different scene
graphs. The objective here is to learn graph representations
by comparing scenes from different videos. Given a batch
of B videos, the graphical inter-video contrastive loss of the
t-th frame can be formulated as:

Lfn er — 1 eXp(sim(gi7 .fv))
¢ ;( og 25;1 exp(sim(g;, fi))

exp(sim(g;, f;)) )
EleeXp(Sim(gi:fj)) ’

where the frame index ¢ on the right side of the equation is
omitted for brevity. The graph representation g; and frame
vector f; are inferred from the the ¢-th frames of the i-th
video and the j-th video in the batch. The complete L;, e,

are the sum of L¢,, . of T frames.

3)
+log

Graphical fine-grained contrastive loss. Inspired by [59],
we propose a fine-grained loss function that supervises the
consistency between the frame and the semantic nodes as
well as edges of the scene graph. The graph representations
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Figure 3. Overview of our semantic scene graph-to-video synthesis framework SSGVS. During training, Transformer learns the prior
distribution of the sequence consisting of the latent embeddings provided by VQ-VAE and the scene graph embeddings provided by the
VSG encoder. In inference, the latent embeddings of the starting frame and graph embeddings are given. The latent embeddings of future
frames are sampled from the prior and decoded into the video by VQ-VAE.

are improved at a fine-grained level by associating the node
and edge representations with the sub-regions in the video
frame. We view both the node and edge representations of
the scene graph as semantic embeddings e. For a scene
graph with N,, nodes and N, edges, there are totally N, =
N, + N, semantic embeddings. We compute the visual
context ¢; of the i-th node or edge in the graph as:

hw
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j=1 Zkil exp(simgot (€i, 1))
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r; € R? is the vector of the j-th sub-region in the fea-
ture map with h x w shape provided by the frame en-
coder, whereas simg,:(e;,7;) denotes the normalized dot-
product similarity between the i-th semantic embedding
of the scene graph and the visual vector of the j-th sub-
region. The matching score S(G, F') between the scene
scene G and the frame F' can be formulated as S(G, F') =
log(Z:ivzg1 exp(sim(e;, ¢;)). When there are P pairs of
video frames and scene graphs in the batch of B videos,
the graphical fine-grained contrastive loss is defined as:

P
L inegrain — lo eXp(S(Gi’Fi))
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4. Semantic scene graph-to-video synthesis

In this section, we introduce a semantic scene graph-to-
video synthesis framework (SSGVS) consisting of a video
scene graph (VSG) encoder, a VQ-VAE, and an auto-
regressive Transformer. The overview of SSGVS is illus-
trated in Fig. 3.

VQ-VAE. We adopt the VQ-VAE proposed by [28] and pre-
train it using videos in the training set. Given a frame, the
CNN-based encoder produces the output with the down-
sampled spatial resolution. The discrete latent variables z
for the output are quantified by the nearest neighbor look-up
using the shared embedding space. The latent embeddings
are forwarded to the decoder to reconstruct the input frame.
We freeze the pre-trained VQ-VAE in other stages.

Auto-regressive Transformer. We utilize an auto-
regressive Transformer with full attention mechanism to
learn a prior over the VQ-VAE latent embeddings z and
video scene graph representations g. The basic architecture
of the auto-regressive Transformer is almost identical to the
Transformers in Sec. 3.1, but with more layers. During the
training stage, the latent embeddings of the video frames are
flattened frame by frame into a 1D sequence in row-major
order. The learned temporal encodings are added to the la-
tent embeddings. Then we insert the graph representations
provided by the VSG encoder into the sequence. Note that
each frame has a corresponding scene graph representation.
For frames where no scene graph is given, the VSG encoder
is responsible for inferring the representations. To prevent
information leakage, an empty embedding z is given at the
beginning of the sequence by convention. The Transformer
learns to model the prior distribution of z by minimizing



the negative log-likelihood for latent codes as:

Llatent = Ezwp(zdam) (_ IOg p(Z)) (6)

Although scene graph embeddings are known in the infer-
ence stage, we also optimize the mean square error loss be-
tween the input and output graph embeddings.

During the inference, the starting frame and video scene
graphs are given. The discrete latent embeddings of the
starting frame are computed by the VQ-encoder, while the
VSG encoder infers the scene graph representations. The
initial sequence is constructed with the empty embedding,
these latent embeddings, and graph representations. The
latent embeddings of the future frames are randomly sam-
pled from the categorical distribution learned by the auto-
regressive Transformer. The VQ-decoder synthesizes the
video with the known and predicted latent embeddings.
There are three approaches to inserting graph representa-
tions: 1) Insert the graph representation in front of the la-
tent embeddings of the corresponding frame as shown in
Fig. 3; 2) insert the graph representation after the latent em-
beddings of the corresponding frame; 3) insert all graph rep-
resentations in front of the latent embeddings of all frames.
We use the first approach because it has the best perfor-
mance.

5. Experiments

Dataset and evaluation metrics. We split a sub-dataset
from the video scene graph dataset Action Genome [20],
which is built upon the In-Home dataset Charades [45].
There are 70k training videos and 7k test videos with 36
object categories and 17 relationship categories. Each video
with a resolution of 128 x 128 contains 16 frames and a vari-
able number of video scene graphs. The maximum number
of nodes in scene graphs is set to 5. We sampled every 5
frames from the original videos to capture large motion.

To evaluate the model performance, we adopt the Fréchet
Video Distance (FVD) proposed by [51] that estimates the
distribution distance between real and synthesized videos
in the feature space. Following [28], we calculate the mean
and standard deviation of FVD in 5 evaluations. Further-
more, we evaluate the structural similarity index measure
(SSIM) [55] which evaluates the similarity between the
original and synthetic frames.

Implementation details. In the video scene graph en-
coder, both the spatial Transformer and temporal Trans-
former have 3 Transformer layers. We employ 4 attention
heads for each attention module, while the dimension d of
the input queries, keys, and values is set to 256. We train the
video scene graph encoder and frame encoder using ADAM
optimizer [25] with a learning rate of 1 x 10~* and a batch
size of 12 images. The training takes about 20 hours on 2
RTX 2080 TI GPUs.

Table 1. Comparison with state-of-the-art video synthesis meth-
ods on the split Action Genome. Given the starting frame, a 16-
frame video with 128 x 128 resolution is synthesized. For our
method SSGVS, video scene graphs are provided as additional
conditions. With the help of the VSG encoder, SSGVS achieves
the best performance in all metrics.v" denotes video scene graphs
are provided.

Method Graph FVD (}) SSIM (1)
MoCoGAN [50] - 911.2 +18.6 0.459
LVT [40] - 572.7+25.4 0.493
VideoGPT [60] - 888.6 = 19.7 0.472
CCVS [28] - 426.7 £21.4 0.516
SSGVS (Ours) v 382.2 +15.2 0.565

We train the VQ-VAE using ADAM optimizer [25] with
a learning rate of 2 x 10~* and a batch size of 32 videos
on 8 RTX 3090 TI GPUs for about 48 hours. The auto-
regressive Transformer consists of 24 Transformer layers
with a head number of 16. Due to the complexity of the
auto-regression task, the embedding dimension of the atten-
tion module is set to 1024. Therefore, a linear transforma-
tion is utilized to project the dimension of video scene graph
representations from 256 to 1024, while 1024 latent embed-
dings with dimension 1024d are learned during the training.
We train the auto-regressive Transformer using ADAM op-
timizer [25] with a learning rate of 1 x 1075 and a batch size
of 64 videos on 8 RTX 3090 TI GPUs for about 48 hours.
Furthermore, the video scene graph encoder is frozen dur-
ing the training of the auto-regressive Transformer. Refer
to supplementary material for more details about the hyper-
paramters and model architecture.

5.1. Comparison with state-of-the-art methods

To the best of our knowledge, there is no previous work
that synthesizes videos from semantic video scene graphs.
To verify whether semantic scene graphs have a positive ef-
fect on video synthesis, we evaluated the performance of
some advanced models on our dataset that can synthesize
future frames given a starting frame. Please note that we
have selected only those works whose official code is pub-
lished, and the amount of computation required to repro-
duce them is within our capabilities. Tab. 1 demonstrates
that our model SSGVS outperforms other state-of-the-art
methods that only use the first frame to synthesize a video.
With the help of video scene graphs, FVD between the real
videos and videos synthesized by SSGVS is 382.2, which
is 44.5 lower than CCVS and 190.5 lower than LVT. For
SSIM, SSGVS also has the best performance. In addition,
when we train the models on the sub-dataset split from Ac-
tion Genome, VideoGPT does not perform well. We spec-
ulate that this is because Action Genome dataset is more
complex than the widely-used datasets for video synthe-
sis [14,46]. The scenes are diverse, the camera pose is not
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Figure 4. Attention maps of the node and edge representations to sub-regions in the frame. The node or edge in the scene graph corre-
sponding to the attention map in the second row is highlighted in green. phone cannot match the correct region due to the small bounding

box and low resolution.

Table 2. We evaluate the synthesize performance by integrating the
VSG encoders pre-trained with different contrastive loss functions
in SSGVS. The first row indicates that the VSG encoder is not
pre-trained, but optimized in the training of the auto-regressive
Transformer. The second to fourth rows denote different losses
are activated (v') in the pre-training.

Lintra Linter Lfinegrain FVD (\L) SSIM (T)
- - - 457.1 £10.6 0.509
v - - 403.1 £ 12.7 0.541
v v - 395.1 £ 16.1 0.551
v v v 382.2 £15.2 0.565

fixed, and the motions in the videos are large.

5.2. Graph representation learning analysis

In contrast to the previous generative methods, we intro-
duce video scene graphs as a condition to guide video syn-
thesis. In order to clarify how graph representation learning
contributes to the synthesis performance, we first ablate dif-
ferent contrastive multi-modal losses and present the results
in Tab. 2. The first row indicates that the video scene graph
encoder is integrated into SSGVS without pre-training and
optimized with the auto-regressive transformer. The FVD
score increases significantly from 382.2 to 457.1. In this
case, the quality of the generated videos is even worse than
if only the first frame was given. We conjecture that video
scene graph representations cannot be learned without a
reasonably designed loss function. In particular, it is si-
multaneously optimized when training a complex genera-
tive model. Although we pre-train the VSG encoder with
only the graphical intra-video contrastive loss, FVD rapidly
drops to 403.1. Because the VSG encoder learns tempo-
ral dependencies, which are crucial for graph representation
inference. The graphical inter-video contrastive loss also
helps the VSG encoder pre-training, while graph represen-
tation quality can be further improved by using the graphi-
cal fine-grained contrastive loss. The FVD score decreases
to 382.2, while SSIM increases to 0.565.

Table 3. Ablation study of graph representations. ) indicates
video scene graphs are not provided. The second to fourth rows
show the different representation insertion order used by SSGVS,
the numbers correspond to the order numbers in Sec. 4.

Order FVD () SSIM (1)
1] 426.7+21.4 0.516
1 382.2 +15.2 0.565
2 391.8 £ 17.5 0.553
3 387.2+13.1 0.559

To demonstrate how the node and edge representations
are associated with regions of interest using the graphical
fine-grained contrastive loss, an instance of the attention
weights in Eq. (4) is visualized in Fig. 4. The first row
shows the scene graph with different highlighted nodes and
edges, while the second row shows the corresponding atten-
tion maps. With our contrastive multi-modal learning, not
only node representations can be localized to entities, but
also semantic relationships can be projected to critical re-
gions. For example, holding and t ouching are usually
closely associated with the hand or arm of person.

5.3. Ablation study

To verify the effect of video scene graphs on video syn-
thesis, we ablate the video scene graph encoder during the
inference. In addition, we evaluate the performance of SS-
GVS using different insertion graph representation orders
introduced in Sec. 4: 1) Insert the graph representation in
front of the latent embeddings of the corresponding frame;
2) insert the graph representation after the latent embed-
dings of the corresponding frame; 3) insert all graph rep-
resentations in front of the latent embeddings of all frames.
The results are shown in Tab. 3. The first row indicates
no scene graphs are given, while the auto-regressive Trans-
former predicts latent embeddings only based on the first
frame. Without video scene graphs, it is difficult for SSGVS
to infer what will happen in the future and FVD decreases
to 426.7. Furthermore, the insertion order of graph repre-
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Figure 5. Qualitative result of complex semantic video synthesis. Given the first frame and a several video scene graphs (with red bounding
boxes), SSGVS can synthesize not only simple videos with small or repetitive movements, but also long-term videos with complex semantic

content.

sentations also effects the synthesis performance, although
it is not very critical. SSGVS performs best when inserting
the graph representation in front of the latent embeddings
of the corresponding frame.

To explore the optimal model structure, we train the
auto-regressive Transformer with different Transformer lay-
ers. The results are shown in Tab. 4. We used the same
settings for all experiments except for the number of lay-
ers = 32. For the Transformer with 32 layers, the batch
size is reduced to 24 videos due to GPU memory limitation.
In this case, the FVD score decreases to 410.4. There are
two possibilities, either the model is too complex causing
overfitting, or the optimization using a smaller batch size
does not perform well. Finally, we adopt the auto-regressive
Transformer with 24 Transformer layers which has the best
performance in practice.

Table 4. Ablation study of Transformer layers in the auto-
regressive Transformer.

Layer number FVD ({)
4 476.0+£16.3
8 4229+ 17.5
16 399.1 +13.7
24 382.2 +15.2
32 4104 +20.4

5.4. Qualitative results

Fig. 5 shows the qualitative result for semantic video
synthesis from video scene graphs. The three rows from top
to bottom are respectively the original video, video scene
graphs, and the synthetic video. As discussed in Sec. 3, the

given scene graphs are discrete. Given the first frame and
several scene graphs (with red bounding boxes), 15 future
frames are synthesized by SSGVS, while the even columns
are omitted to save space. SSGVS can synthesize seman-
tically controllable videos, in this example the person is
sitting and using a laptop, then stands up. Differ-
ent from the original video, the standing action starts at
T = 9 instead of 7" = 15. Since the command standing
is given in the scene graph at ' = 15, SSGVS infers that the
complete standing will take more time based on the learned
knowledge. In the original video, the person is not yet fully
standing up. The difference could be eliminated by giv-
ing more video scene graphs as constraints. However, some
visual details, such as the face, are not well rendered in
the last few generated frames, because generating long-term
videos with large motions is very challenging. For videos
with small motion, SSGVS can render better details. Due
to space limitation, we present more qualitative results and
discuss the limitations of SSGVS in the supplementary.

6. Conclusion

In this paper, we propose a semantic scene graph-to-
video synthesis framework SSGVS which aims to synthe-
size complex semantic videos. Through contrastive multi-
modal learning, our video scene graph encoder can infer
continuous graph representations based on the given dis-
crete scene graphs. Given the starting frame and graph
representations as constraints, the latent embeddings of fu-
ture frames are sampled from the distribution learned by the
auto-regressive Transformer and converted to frames by the
VQ-VAE. Our experiments demonstrate that video scene
graphs have a positive effect on video synthesis.



Appendix
A. Transformer architecture

We adopt a GPT-like multi-layer Transformer in this pa-
per. Each transformer layer consists of a classical multi-
head attention module, a feed-forward network, and nor-
malization layers as shown in Fig. 6. We use the original
full attention mechanism but not sparse attention in Trans-
formers. The feed-forward network is a two-layer percep-
tron, while layer normalization is used in the Transformers
for normalization.

s R

query

key

Add & Norm
Feed Forward
Add & Norm

value

Multi-Head Attention

\ Transformer Layer %

Figure 6. Architecture of the Transformer layer, which contain
a multi-head attention module, a feed-forward network, and two
normalization layers.

B. Dataset details

We split a sub-dataset from Action Genome [20], which
is built upon Charades [45]. To include more complex
semantic variations in the 16-frame video, we sampled 1
frame every 5 frames from the original videos of Charades
and resize the sampled frames to a resolution of 128 x128.
We only keep the objects whose bounding boxes with short
edges larger than 16 pixels. In order to avoid overly com-
plex scene graphs that make the representations difficult to
infer, we reduce the graph fidelity by cutting out redundant
nodes in the scene graph and keep a maximum of 5 ob-
ject nodes. In addition, each video contains at least 5 video
scene graphs so that the video scene graph (VSG) encoder
has enough information to infer the graph representations
that are not given. In the split dataset, there are 36 object
categories and 17 relationship categories. The distribution
of object and relationship occurrences are illustrated in Fig.
7.

C. Metrics details

Fréchet video distance (FVD). FVD [51] is developed
from Fréchett Inception Distance (FID) [17], which is
widely-used to evaluate the performance of image gener-
ation models. FVD takes into account a distribution over
entire videos in order to avoid the disadvantages of frame-
level metrics. A pre-trained Inflated 3D Convnet [5] is used

to capture video feature distributions. The 2-Wasserstein
distance between the ground truth video distribution and the
synthetic video distribution is calculated as the metrics.

Structural similarity index measure (SSIM). SSIM
[55] is a per-frame perceptual metrics that measures the
similarity between two images. The statistical measure
combines three different factors: luminance, variance and
correlation. We first split the ground truth videos and syn-
thetic videos into single frames. Then we calculate SSIM
between the ground truth frames and synthetic frames. The
average SSIM of all frames is taken as the final result.

D. Technical implementation details

Video scene graph representation learning framework.
In the video scene graph encoder, both the spatial Trans-
former and temporal Transformer have 3 Transformer lay-
ers. We employ 4 attention heads for each attention module,
while the dimension d of the input queries, keys, and values
is set to 256. The encodings are only added to queries and
keys when using the attention modules. For the frame en-
coder, we adopt the CNN-based model used in [59], which
is built upon Inception-v3 model [47]. The input frames
are first resized to a resolution of 299 x 299, while the
size of the feature maps extracted by the CNN backbone
is 768 x 17 x 17. A1 x 1 convolution layer is exploited to
reduce the dimension of the feature maps to d = 256. Then
we use a global average pooling layer to convert the feature
maps to the frame vectors. We train the video scene graph
encoder and frame encoder using ADAM optimizer [25]
with a learning rate of 1 x 10~ and a batch size of 12 im-
ages. The training takes about 20 hours on 2 RTX 2080 TI
GPUs.

Semantic scene graph-to-video synthesis framework.
We adopt the VQ-VAE from [28] and use almost the same
hyperparameters. The encoder of the VQ-VAE converts a
128 x 128 frame into a 512 x 8 x 8 feature map. The 8 x 8
sub-vectors of the feature map are then quantified to the dis-
crete latent embeddings. The length of the latent codebook
is set to 1024 to shorten the training time. The 8 x 8 dis-
crete latent embeddings are reconstructed to a video frame
by the decoder of the VQ-VAE. We train the VQ-VAE using
ADAM optimizer [25] with a learning rate of 2 x 10~* and
a batch size of 32 videos on 8 RTX 3090 TI GPUs for about
48 hours.

The auto-regressive Transformer consists of 24 Trans-
former layers with a head number of 16. Due to the com-
plexity of the auto-regression task, the embedding dimen-
sion of the attention module is set to 1024. Therefore, a
linear transformation is utilized to project the dimension of
video scene graph representations from 256 to 1024, while
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Figure 7. Distributions of object (left) and relationship (right) occurrences for the sub-dataset split from the Action Genome dataset.

1024 latent embeddings with dimension 1024d are learned
during the training. We train the auto-regressive Trans-
former using ADAM optimizer [25] with a learning rate of
1 x 1075 and a batch size of 64 videos on 8 RTX 3090 TI
GPUs for about 48 hours. Furthermore, the video scene
graph encoder is frozen during the training of the auto-
regressive Transformer.

E. Additional qualitative results and limita-
tions

Additional qualitative results. The details such as the
human face are not well presented in qualitative examples
in the main paper. As discussed, the reason is that the mo-
tion in the video is quite large. Another simple example is
shown in Fig. 8. In the original video, the girl is holding
and looking at the book (all the video scene graphs are the
simple triplet person-holding-book). Although there
is some change in the position of the girl’s head and book,
it is not significant. In this case, SSGVS can render bet-
ter details and perform well. The original video and some
generated frames are omitted because the synthetic frames
are very close to the original ones and the motion is small.
To visualize the small motion better, we also compute the
optical flows for the shown synthetic frames.

In Fig. 9, we show the video synthesized by CCVS [28],
which only use the first frame as input, and the video syn-
thesized by our SSGVS which use the first frame and also
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the video scene graphs. With the help of the input video
scene graphs, SSGVS can synthesize higher quality frames,
especially those far from the starting frame. In this example,
there are no significant semantic changes in the video scene
graphs. They control SSGVS to generate the frames that
maintain the current drinking action, whereas the distortion
in the frames generated by CCVS is getting worse.

Limitations. Since the resolution of our generated video
is 128 x 128, this constraint makes some small objects such
as the phone and medicine cannot be presented very clearly.
In addition, for some videos containing the large motion,
the auto-regressive transformer cannot successfully predict
the sequence of the latent embeddings. These videos usu-
ally involve a change of scene or camera pose. An example
is shown in Fig. 10.

F. Ethics statement

As machine learning methods are increasingly used in
everyday life, it makes sense to consider the potential so-
cial impact of our work. Our work could potentially be
used for deep fake as well as other state-of-the-art gener-
ative models. Since our model can synthesize videos with
specific semantic content, this even makes deep fake more
flexible. Developing better models has the potential to be
used maliciously to violate human likeness rights or create
false information. On the other hand, a good video syn-



Figure 8. Qualitative result for simple video synthesize, in which the girl keeps holding the book. The motion in the original video is very
small. Only 4 synthesized frames and their optical flow are shown. In this case, the details such as the face are well rendered.

CCVs Scene Graphs Real Video

SGVS

T=1 T=3 T=5 T=7

T=9

T=11 T=13

Figure 9. Comparison between the videos synthesized by CCVS and SSGVS. The real frames are given in the first row, while the cor-
responding video scene graphs are shown in the second row. The video synthesized by SSGVS has higher fidelity with the help of the
discrete video scene graphs.

thesis model helps the film and video game industries, for
example, by replacing live actors in dangerous scenes. It
can be also very promising in the metaverse.
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