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Abstract

Deep multimodal learning has achieved great progress
in recent years. However, current fusion approaches are
static in nature, i.e., they process and fuse multimodal in-
puts with identical computation, without accounting for
diverse computational demands of different multimodal
data. In this work, we propose dynamic multimodal fu-
sion (DynMM), a new approach that adaptively fuses mul-
timodal data and generates data-dependent forward paths
during inference. To this end, we propose a gating function
to provide modality-level or fusion-level decisions on-the-
fly based on multimodal features and a resource-aware loss
function that encourages computational efficiency. Results
on various multimodal tasks demonstrate the efficiency and
wide applicability of our approach. For instance, DynMM
can reduce the computation costs by 46.5% with only a
negligible accuracy loss (CMU-MOSEI sentiment analysis)
and improve segmentation performance with over 21% sav-
ings in computation (NYU Depth V2 semantic segmenta-
tion) when compared with static fusion approaches. We
believe our approach opens a new direction towards dy-
namic multimodal network design, with applications to a
wide range of multimodal tasks. '

1. Introduction

Humans perceive the world in a multimodal way,
through vision, hearing, touch, taste, etc. Recent years have
witnessed great progress of deep learning approaches that
leverage data of multiple modalities. Consequently, multi-
modal fusion has boosted the performance of many classi-
cal problems, such as sentiment analysis [2 1,38, 50], action
recognition [0, 36], or semantic segmentation [35,45].

Despite these advances, how to best combine informa-
tion characterized by multiple modalities remains a funda-
mental challenge in multimodal learning [2]. Various re-
search efforts [14, 20, 25,26,29,42,43,50] have been put
into designing new fusion paradigms that can effectively
fuse multimodal data. These approaches are generally task-

1Our code is available at https://github.com/zihuixue/
DynMM.
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Figure 1. Two examples in CMU-MOSEI [51] for emotion recog-
nition. Figure (a) shows an “easy” multimodal instance as using
textual information is sufficient to predict emotions correctly (this
is a positive emotion). Figure (b) shows a “hard” example where
all three modalities are required to make correct predictions (this
is a negative emotion). While static multimodal fusion networks
process “hard” and “easy” inputs identically, we propose dynamic
instance-wise inference that can achieve computational savings for
“easy” examples and preserve representation power for “hard” in-
stances. For (a), DynMM only activates the text path and skips
paths corresponding to the other two modalities, thus leading to
computational efficiency.

and modality-specific and require manual design. Building
on the success of Neural Architecture Search (NAS), a few
recent works [33,39,49] have adopted NAS to find effective
fusion architectures automatically.

However, both manually-designed and NAS-based ap-
proaches process all the instances in a single fusion archi-
tecture and lack adaptability to diverse multimodal data.
Namely, once the fusion network is trained, it performs
static inference on each piece of data, without accounting
for the inherent differences in characteristics of different
multimodal inputs. Thus, the computational efficiency, as
well as the representation power of a well-designed fusion
architecture may be limited by its static nature. As a mo-
tivating example, consider the two multimodal instances in
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Figure 1. As shown, it is relatively easy to classify emo-
tions for the upper example: the text modality alone pro-
vides strong evidence for a positive emotion. On the other
hand, it is unlikely to correctly predict emotions for the
lower example based solely on the textual information since
this sentence is confusing. Audio and visual modalities can
provide important cues to a multimodal network to make
correct decisions. From this example, we can see that mul-
timodal data enable a model to learn from the rich repre-
sentations of “hard” inputs; it can also bring redundancy in
computations for the “easy” inputs.

Inspired by this observation, we propose dynamic mul-
timodal fusion (DynMM), a new approach that adaptively
fuses input data from multiple modalities. Compared with
a static multimodal architecture, DynMM enjoys the bene-
fits of reduced computation, improved representation power
and robustness. More precisely, dynamic fusion leads to
computational savings for “easy” inputs that can be cor-
rectly predicted using only a subset of modalities or simple
fusion operations. For “hard” multimodal inputs, DynMM
can match the representation power of a static network by
relying on all modalities and complex fusion operations for
prediction. In addition, real-world multimodal data may
be noisy and contradictory [22]. In such cases, skipping
paths that involve noisy modalities for certain instances in
DynMM can reduce noise and boost performance.

Dynamic neural networks [ 1 ] have gained increasing at-
tention over the past few years and enjoys a broad range of
applications, such as image recognition [5, 28, 44, 46], se-
mantic segmentation [23,41] and machine translation [37].
Motivated by the great success of dynamic inference for
unimodal networks, this paper aims at proposing multi-
modal fusion as a new application domain. To this end,
we draw inspiration from the natural redundancy of multi-
modal data, which provides a different angle from existing
work. To be specific, we propose progressive fusion, both
at modality level and at fusion level. At modality level, we
train a gating network to select a subset of input modalities
(or all modalities) for predictions based on each input. At
fusion level, the gating network provides sample-wise deci-
sions on which fusion operation to adopt and when to stop
fusion. On one hand, by allowing exits at the early fusion
stages for “easy” inputs, DynMM saves the computations
of executing the later fusion modules. On the other hand,
in terms of “hard” multimodal inputs, DynMM can turn all
fusion modules on for accurate predictions.

To verify the efficacy and generalizability of our ap-
proach, we conduct experiments on various popular mul-
timodal tasks. DynMM strikes a good balance between
computational efficiency and learning performance. For in-
stance, for RGB-D semantic segmentation tasks, DynMM
achieves a +0.7% mloU improvement with over 21% re-
ductions in multiply-add operations (MAdds) for the depth

encoder when compared against [35]. Moreover, we find
that DynMM yields better predictions than static fusion net-
works when the input modality is perturbed by noise; this
suggests possible use of DynMM to improve the multi-
modal robustness.

2. Related Work

2.1. Dynamic Neural Networks

Dynamic neural networks have demonstrated a great po-
tential in classical computer vision problems, such as im-
age classification [5, 28, 44, 46], object detection [7, 52],
or semantic segmentation [23,41]. While popular deep
learning approaches perform inference in a static manner,
dynamic networks allow the network structure to adapt to
the input characteristics during inference. This flexibility
yields many benefits, including high efficiency, representa-
tion power and results interpretability [10,34,47]. Dynamic
network designs can be categorized into: (a) dynamic depth;
(b) dynamic width; (¢) dynamic routing [11].

The idea of dynamic depth is to adjust the network depth
based on each sample. By providing early exits [4,40] in
shallow layers, one can save computations by not activat-
ing deep layers for “easy” samples. For dynamic width, the
idea is to adapt the network width in a sample-wise manner.
To build a dynamic width network and achieve inference
efficiency, previous works have proposed to skip neurons
in fully-connected layers [3], skip branches in Mixture-of-
Experts (MoE) [28, 37], or skip channels in Convolutional
Neural Networks (CNNs) [17]. To enable more flexibility,
recent works [5, 23] build SuperNets with multiple infer-
ence paths. Dynamic routing is thus performed inside the
SuperNet to generate data-dependent forward paths during
inference. Our proposed modality-level DynMM belongs to
the category of dynamic width approaches; the fusion-level
DynMM can be seen as a dynamic routing approach.

2.2. Multimodal Learning

Multimodal fusion networks have a clear advantage over
their unimodal counterparts in various applications, such as
sentiment analysis [21,38,50], action recognition [6,36], or
semantic segmentation [8, 35,45]. However, how to effec-
tively combine multimodal features to better exploit infor-
mation remains a big challenge. Existing works either pro-
pose hand-crafted fusion designs based on domain knowl-
edge [20,25,26,29,43,50], or apply NAS to find good ar-
chitectures automatically [33, 39,49]. However, the scope
of these works is limited to static networks only.

There have been some early attempts in adopting dy-
namic neural networks for multimodal applications, such
as semantic segmentation [45], video recognition [9,

], visual-inertial odometry [48] and medical classifica-
tion [12]. Among them, CEN [45] dynamically exchanges



channels between sub-networks of the RGB and depth
modality for performance improvement. Han et al. [12] pro-
poses to dynamically evaluate feature-level and modality-
level informativeness of different samples for more trust-
worthy medical classification, yet the angle of computa-
tional efficiency brought by the dynamic neural networks is
overlooked. The work of Gao et al. [9] and AdaMML [32]
are most relevant to our approach as they also adaptively
utilize modalities for efficient video recognition. However,
their methods are tailored for video data and action recog-
nition. In this work, we aim to make the first step towards a
systematic and general formulation of dynamic multimodal
fusion that can suit various multimodal tasks.

3. Method

In this section, we present the key design contribu-
tions of our proposed dynamic multimodal fusion net-
work (DynMM). First, we introduce new decision making
schemes that enable DynMM to generate data-dependent
forward paths during inference. Two levels of granular-
ity are considered, i.e., modality-level (coarse level) and
fusion-level (fine level) decision making. Next, we propose
new training strategies for DynMM, which consist of (1) a
training objective that accounts for resource budgets, and
(2) optimization of a non-differentiable gating network.

3.1. Modality-level Decision

Assume that input data has M modalities, denoted by
x = (x1, 2, -,z ). Following the classical Mixture-of-
Experts (MoE) [27] framework, we design a set of expert
networks as follows. Each expert specializes in a subset of
all M modalities. If M = 3, for example, we can have up
to 7 expert networks, denoted by E;(x1), E2(x2), E3(x3),
Ey(x1,x2), Es(x2,x3), Eg(x1,x2), E7(x1, 2, x3). Inteal
applications, the candidate expert networks can be narrowed
down with domain expertise. For instance, depth images
can provide useful cues when combined with RGB images,
but often perform poorly by themselves in semantic seg-
mentation. In such a case, we do not consider adopting an
expert network that only takes depth as input.

Let B represent the number of expert networks that get
selected. We propose a gating network, denoted by G(x),
to decide which expert network should be activated. This
gating network takes multimodal inputs x to form a global
view and then produces a B-dimensional sparse vector g
as output. The final output y takes the form of: y =
Zf;l giFi(x;), where x; denotes the subset of modalities
that the ¢-th expert takes as input.

Different from conventional MoEs [27] where the out-
put is a weighted summation of expert networks and every
branch is executed, in our formulation, the output of the gat-
ing network g is a one-hot encoding, i.e., only one branch
is selected for each instance. Therefore, the computations
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Figure 2. An illustration of modality-level DynMM, where input
data has two modalities, denoted by x1 and x2, and the output is
denoted by y. We design a set of expert networks { £; } that spe-
cialize in different subsets of modalities and adopt a gating net-
work G(x) to generate data-dependent decisions on which expert
network to select.
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required for other expert networks can be saved. Note that
since our expert network already covers a broad range of
modality combinations, we only select one branch (as op-
posed to say selecting top K branches) during each forward
pass for maximum computational savings. Figure 2 pro-
vides an illustration of the proposed design with 2 modali-
ties and 3 expert networks (i.e., M = 2 and B = 3).

The design of the gating network G(x) follows two gen-
eral requirements: (1) it should be computationally cheap
to have a small overhead (2) it needs to be sufficiently ex-
pressive to make informative decisions on which expert to
select. Various gating networks have been proposed pre-
viously; they are usually tailored for specific tasks and
network architectures [11]. In the experiments, we con-
sider different gating networks (i.e., a multi-layer percep-
tron (MLP) gate, a transformer gate and a convolutional
gate) for three multimodal tasks and provide the detailed
description of our gating network architecture in Sec. 4.

One remaining problem is the training of gating network
G(x). Due to the non-differentiability of the discrete deci-
sions given by G(x), the network can not be directly trained
with back-propagation. Thus, we propose reparameteriza-
tion techniques and discuss them later in Sec. 3.4.

Finally, this gating network G (x) is not restricted to tak-
ing input-level features; it can also take intermediate fea-
tures per modality as inputs. Thus, modality-level DynMM
can be plugged into any part of a multimodal network and
achieve savings in computations after this gating network.

3.2. Fusion-level Decision

While the modality-level decisions directly impact the
computational efficiency, completely skipping computa-
tions of one modality will likely lead to a downgraded per-
formance for some challenging tasks, e.g., semantic seg-
mentation. Thus, we provide a finer-grain formulation of
DynMM with fusion-level decisions next.

We first present the design of a fusion cell. Assume in-
put data has M modalities, i.e., X = (z1,22, " ,Zp)-
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Figure 3. (a) An illustration of fusion-level DynMM, where input data has two modalities, denoted by x; and z2. We design a fusion cell
with a set of candidate operations {O; } and a gating network G (x). h represents output of the cell. (b) A dynamic multimodal architecture
with stacked fusion cells, where we interlace static feature extraction blocks (colored with green and yellow) with dynamic fusion cells.
Gating network G(x) in four fusion cells are integrated as one global gating network G (x) that outputs decisions for four cells at once.
(c) An example architecture when the gating network chooses O for the first 2 fusion cells and O; for the last 2 cells. Consequently,
computations of fusion cell 3 & 4 and feature extraction cell 3 & 4 for x> are saved.

Denote a set of fusion operations as {O;}. O; can be
implemented as any function to fuse multimodal features,
such as simple identity mapping (i.e., O; = x1), addi-
tion (i.e., O; = x1 + x2 + - - - + x ), concatenation (i.e.,
O; = [z1,x2, - ,2zp]) and self-attention. Figure 3 (a)
presents an example design of the fusion cell with two in-
put modalities (i.e., x = (21, x2)) and three operations (i.e.,
O1 = x1, Oy = 1 + 22, O3 = w11 + waxs), Where wy
and wo are learnable parameters. Note that here we sim-
plify the operation set for illustration; in practice, we can
always adopt more complex fusion operations in each cell
to enlarge the representation power. Let B represent the
total number of operations. A gating network G(x) takes
multimodal inputs and produces a B-dimensional vector g
that decides which operation to execute. The output of cell
h can be represented as: h = Zf;l 9:0;(x). Following the
previous discussion, we adopt hard gates (i.e., g is one-hot)
for computational efficiency.

Fusion-level DynMM allows decisions at a finer granu-
larity and in a more flexible way by stacking fusion cells
to build a dynamic network. We provide an example archi-
tecture in Figure 3 (b) that we use in our experiments for
semantic segmentation (z; and x5 denote RGB and depth
images, respectively). The network consists of four fusion
blocks and a global gating network, which allows us to flex-
ibly control the degree of fusion in a sample-wise manner.
For instance, we show the resulting architecture in Figure
3 (c), when the gating network selects Oz for fusion cell
1 & 2, and O; for fusion cell 3 & 4. This not only skips
complex fusion operations that are not selected within the
fusion cell, but also saves unnecessary computations in the
feature extraction layer. Since we only adopt features from
modality 1 after fusion cell 2, there is no need to further
process features from modality 2. Thus, we can skip com-
putations in the feature extraction layers for x2 (i.e., blocks

3-4 marked in gray). This strategy resembles early exit-
ing in unimodal dynamic networks, yet with different mo-
tivations. In essence, fusion-level DynMM saves future fu-
sion and modality-wise operations for some multimodal in-
puts when combining low-level features from each modal-
ity (i.e., fusing at early stages) is sufficient for good predic-
tions. On the other hand, for “hard” instances, DynMM pro-
vides the option of combining multimodal features in each
cell with complex fusion operations for maximum represen-
tation power. Note that we replace the four individual gating
networks G(x) in each fusion cell with a global gating net-
work G(x) for better integration; G(x) takes multimodal
features (1, z2) as input and makes decisions on which fu-
sion operation to adopt for the four fusion cells.

This paradigm is especially helpful in tasks where the
final prediction is mainly based on a dominant modality,
while the other auxiliary modalities provide useful cues to
improve the prediction. Fusion-level DynMM provides a
flexible way to control how and when the auxiliary modality
comes in to assist the main prediction process. Progressive
fusion is achieved by our carefully designed fusion cell and
dynamic architecture, leading to great computational sav-
ings, strong representation power and improved robustness.

Note that modality-level DynMM and fusion-level
DynMM are two approaches targeting different granularity
levels. In our experiments, we use modality-level DynMM
to solve two classification tasks, while the fusion-level
DynMM is used for the more challenging semantic segmen-
tation task (i.e., a dense prediction problem).

3.3. Training Objective

We notice that for both modality-level and fusion-level
DynMM designs, the computation for each expert network
E; (operation O;) is different. Normally, an expert network
(an operation) that is computationally heavy has strong rep-



resentation power. If we directly train the network by min-
imizing a task-specific loss, the gating network is likely
to learn a trivial solution that always chooses the branch
with the heavy computation. To achieve efficient infer-
ence, we introduce a resource-aware loss function into the
training objective. Let C(E;) denote the computation cost
(e.g., MAdds) of executing an expert network F;. Simi-
larly, C(O;, ;) represents the computation cost of the i-th
fusion operation in the j-th cell. Note that the computation
cost can be pre-determined before training and is a constant
term. The training objectives are shown below:

B
L= Liasr + A z g;C(E;) (modality-level) (1)

=1

F B
L= Liask + A Z Z gl(j)C’(Oiyj) (fusion-level) (2)

j=11i=1

where L;,sx denotes the task loss, e.g., cross entropy be-
tween the network prediction and true label for classifica-
tion. g/) represents the decision vector given by the j-th
fusion cell. B is the total number of experts (operations)
and F' is the number of fusion cells. A is a hyperparamter
controlling the relative importance of the two loss terms.

The new objectives (1) and (2) account for the compu-
tation cost of executing each path and enables DynMM to
achieve a desired tradeoff between accuracy and efficiency.
We can adjust the value of A based on the deployment con-
straints. For large A, DynMM will prioritize lightweight
computations for high computational efficiency. For small
A, DynMM will explore these computationally heavy paths
more often, thus yielding higher accuracy.

3.4. Optimization

We aim to train DynMM in an end-to-end manner. Since
the current gating network provides discrete decisions, the
branch selection is not directly differentiable with respect to
the gating network. Gumbel-softmax and reparameteriza-
tion techniques [ 18] are introduced in the training process.
Recall that g denotes the desired one-hot B-dimensional
decision vector produced by a gating network G(x), i.e.,
g = one-hot(arg max; G(x);). We adopt a real-valued soft
vector g with the following form:

__ exp((logG(x): +bi)/7)

i = —F . . =1,2
Zj:l exp((logG(x); + b;)/T)

g Ly ey

B

3)

where by, bs,...,bp are samples independently drawn
from Gumbel(0, 1) [18] and 7 denotes the softmax temper-
ature. The distribution of g is more uniform with large 7 and
resembles a categorical distribution with small 7. g serves
as a continuous, differentiable approximation of g. We con-
sider two training techniques: (a) Hard g is replaced with

soft g in Equations (1)-(2) to enable back-propagation. Dur-
ing training, we anneal 7 so that g gradually converges to
a desired one-hot vector. (b) Following the straight-through
technique [ 18], we adopt hard g in the forward pass and soft
g in the backward propagation with the gradient approxima-
tion Vg ~ Vg. In this way, the gating network still outputs
a discrete decision during training. Note that we always use
hard g during inference for computational benefits. Next,
we propose a two-stage training of DynMM that jointly op-
timizes the multimodal network and gating modules.

Stage I: Pre-training. We find that following sparse de-
cisions of the gating network in the early stage of train-
ing can result in a biased optimization. Branches that are
rarely selected have fewer and smaller weight updates; poor
performance may result in them getting selected less often
(thus never improving). The goal of a pre-training stage is
to ensure that every branch of DynMM is fully optimized
before the gating modules get involved. For modality-level
DynMM, we sufficiently train each expert network at this
stage. For fusion-level DynMM, we adopt random deci-
sions (i.e., randomly an operation from the set of candidate
operations) for each fusion cell so that each path of the dy-
namic network is optimized uniformly.

Stage II: Fine-tuning. We incorporate gating networks
into our optimization process at this stage. With the
reparamterization technique introduced above, we jointly
optimize the dynamic network along with gating networks
in an end-to-end fashion.

4. Experiments
4.1. Experimental Setup

We conduct experiments on three multimodal tasks: (a)
movie genre classification on MM-IMDB [1]; (b) sentiment
analysis on CMU-MOSEI [51]; (c) semantic segmentation
on NYU Depth V2 [30]. To demonstrate the wide applica-
bility of our proposed DynMM, we select the above three
tasks that include different modalities (i.e., image and text
in task (a), video, audio and text in task (b), RGB and depth
images in task (c)). We adopt modality-level DynMM for
the first two tasks and fusion-level DynMM for the more
challenging semantic segmentation task. Due to space lim-
itations, we present: (1) implementation details; (2) visu-
alization of the gating network decision; (3) an analysis of
varying regularization strength \; and (4) an ablation study
on training strategies of DynMM in the Appendix.

4.2. Movie Genre Classification

MM-IMDB is the largest publicly available multimodal
dataset for genre prediction on movies. It comprises 25,959
movie titles, metadata and movie posters. We select two
movie genres (i.e., drama and comedy) for multi-label clas-
sification from posters (image modality) and text descrip-



Micro  Macro

Method Modality FI (%) Fl (%) M)
Image Network I 39.99  25.26 5.0
Text Network (F) T 59.16 47.21 0.7
" Late Fusion [24] (E5) 5955 5094 103
LRTF [26] 59.18  49.26 10.3
MI-Matrix [19] 5845  48.36 10.3
DynMM-a 59.57 48.84 1.6
DynMM-b 4T 59.59  50.42 7.8
DynMM-c 59.72 51.20 9.8
DynMM-d 60.35  51.60 12.1

Table 1. Results on the MM-IMDB Movie Genre Classification.
Modalities I and T denote image and text, respectively. The com-
putation cost is measured by multiply-add operations (MAdds)
with one image-text pair as the input. M denotes million. Each
DynMM variant is obtained using a different value of the regular-
ization hyperparameter A during training.

tions (text modality). We follow the original data splitin [1],
and use 15,552 data for training, 2,608 for validation and
7,799 for testing. For preprocessing, we adopt the same
method as [, 24] to extract text and image features.

We adopt two expert networks for this task, namely, a
unimodal network E; that takes textual features as input and
another multimodal network F5 that adopts late fusion [24]
to combine image and text features. We do not consider the
use of an image-only network here due to its poor perfor-
mance on this task. The gating network is a 2-layer MLP
with hidden dimension of 128, which takes concatenated
image and text features as input and outputs a 2-dimensional
vector for expert network selection. We set the temperature
of Gumbel-softmax as 1 and adopt straight-through training
(i.e., the gating network outputs a one-hot decision vector
in the forward propagation).

Table 1 provides the comparison of our proposed
modality-level DynMM with static unimodal networks and
multimodal networks. We provide results of DynMM un-
der different resource requirements (i.e., use different A in
the loss). From Table 1, we can see that DynMM achieves
a good balance between computational efficiency and per-
formance. Compared to the static E'5 network, DynMM-c
improves both MAdds and macro F1 score. DynMM-d pro-
vides maximum representation power by using soft gates
(which leads to more computation) and achieves best micro
and macro F1 scores. On the other hand, DynMM-a in-
volves much less computation, while still maintaining good
performance (outperforms F; by 1.6% in macro F1). This
demonstrates the great flexibility and efficacy of DynMM.

In addition, we vary A in Equation (1) to control the
importance of resource loss during training. The resulting
DynMM models have varying computation costs and per-
formance, as shown in Figure 4 (a). On one hand, when
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Figure 4. Analysis of DynMM with varying resource regular-
ization strength (A) on MM-IMDB. (a): Comparison of DynMM
with static unimodal (UM) and multimodal (MM) baselines. (b):
Branch selection ratio in DynMM with respect to A. DynMM of-
fers a wide range of choices that balance computation and learning
behavior well.

compared against a multimodal baseline that is computa-
tionally heavy, DynMM maintains good performance with
much fewer MAdds. On the other hand, DynMM has better
representation power than a unimodal network and thus im-
proves the F1 score. Figure 4 (b) shows the selection ratio
of each expert network in DynMM with respect to A\. We
observe that as A increases, DynMM focuses more on re-
ducing computation and thus is more likely to select expert
network 1 (E7) with a small computation cost. Note that
for the A = 0 case, we adopt soft gates, i.e., every expert
network is activated and the output is a weighted combina-
tion of predictions given by the two expert networks. Thus,
DynMM achieves the best performance at the cost of in-
creased computation. This also demonstrates the flexibility
of DynMM, as we can easily adjust A to target high perfor-
mance or high inference efficiency.

4.3. Sentiment Analysis

CMU Multimodal Opinion Sentiment and Emotion In-
tensity (CMU-MOSEI) is the largest dataset of sentiment
analysis and emotion recognition. It contains 3,228 real-
world online videos from more than 1000 speakers and 250
topics. Each video is split into short segments of 10-20 sec-
onds. Each segment is annotated for a sentiment from -3
(strongly negative) to 3 (strongly positive). The task is to
predict the sentiment scores from video, audio and text. Fol-
lowing [24], we use 16,265 data for training, 1,869 data for
validation and 4,643 data for testing. The feature extraction
steps are the same as [24].

As text is the best performing modality in this task, we
adopt a unimodal network that takes textual features as in-
put to be the expert network F;. The second expert net-
work (E9) of our DynMM is selected as a late fusion net-
work [24] that receives inputs from three modalities. The
gating network is designed as a lightweight transformer
network with hidden dimension equal to 512 and 2 atten-
tion heads, followed by a linear layer. The gating network
receives concatenated features from three modalities and



Method Modality Acc? (%) MAE MAdds (M)
Video Network \Y% 69.02 0.80 123.1
Audio Network A 67.68 0.82 1233
TextNetwork (Bv) T _ 7835 _ 062 1247
Early Fusion [24] 78.45 0.65 313.5
Late Fusion [24] (Bo) V72T 7954 0.60 309.6
DynMM-a 79.07 0.62 165.5
DynMM-b V+A+T 79.73 0.61 254.5
DynMM-c 79.75 0.60 295.8

Table 2. Results on CMU-MOSEI Sentiment Analysis. Modalities
V, A, T represent video, audio and text, respectively. Acc? denotes
binary accuracy (i.e., positive/negative sentiments) and MAE rep-
resents mean absolute error. MAdds are measured with a video-
audio-text tuple. Each DynMM variant is obtained using a differ-
ent value of the regularization hyperparameter A during training.

- Hi, I'm here to review In the Name of the King

- It's a film currently in theaters

- (uhh) It's based on the xxx series of video games
- This one was horrible

- (uhh) It tries to be Lord of the Rings

- It has a many of orge like creatures, a wizard, a medieval time setting
- Basically stole everything out of Lord of the Rings but made a million
times worse

- (umhh) It's just everyone stay away from this film

- It was a horrible movie

- (umm) So yea that's In the Name of the King in a nutshell

@ ’ Text ‘ | Video + Audio + Text |

Figure 5. We visualize a few test instances on CMU-MOSEI for a
negative sentiment. DynMM identifies sentences marked with red
as “easy” instances and only uses textual information for predic-
tion. For sentences marked with blue, DynMM takes multimodal
inputs (i.e., video+audio+text) for more accurate predictions.

generates sample-wise decisions on which expert network
to activate during inference time. We set temperature of
Gumbel-softmax as 1 and adopt straight-through training.

Results are summarized in Table 2. We provide three
DynMM networks trained with different \. Compared
with the best performing static network (i.e., Late Fu-
sion), DynMM-a can reduce computations by 46.5% with
a slightly decreased accuracy (i.e., -0.47%). By allowing
more computation, DynMM-b improves both inference ef-
ficiency (i.e., reduce MAdds by 17.8%) and prediction ac-
curacy. Finally, DynMM-c further improves the accuracy
by trading off some computation; it achieves best accuracy
and smallest mean absolute error with reduced computation
cost. These results demonstrate the great advantages of dy-
namic multimodal fusion. Since multimodal data naturally
brings redundancy, we observe that many computations can
be reduced without loss in accuracy.

To have an intuitive sense of our gating network deci-

sion on which modality to select, we provide visualization
results of several test instances in Figure 5. For simplic-
ity only the text modality is shown here, and the other two
modalities (i.e., video and audio) are omitted. The gat-
ing network chooses F for sentences marked with red and
FE5 for sentences marked with dark blue. We find that the
sentences marked with red often possess strong evidence
indicating the sentiments of this sample, e.g., ‘horrible’,
‘amazingly good’. Therefore, they belong to the “easy”
samples category that can be correctly predicted using the
text modality alone. On the contrary, the sentences marked
with dark blue are vague and require additional modalities
to help with the prediction. These results indicate that the
gating function is well trained and can provide reasonable
decisions based on input characteristics.

4.4. Semantic Segmentation

NYU Depth V2 is an indoor dataset for semantic seg-
mentation. It contains 1,449 RGB-D images with 40-class
labels; 795 images are used for training and 654 images are
for testing. The two modalities are RGB and depth images.

Method mloU  Depth Enc MAdds
(%) MAdds (G) Reduction (%)
ESANet [35] (baseline)  50.5 24.7 -
DynMM (Stage 1) 48.5 11.7 52.6%
DynMM-a (Stage II) 499 11.1 55.1%
DynMM-b (Stage 1) 51.0 19.5 21.1%

Table 3. Results on RGB-D semantic segmentation. mloU de-
notes mean Intersection-over-Union. MAdds are calculated for in-
put size of 3 x 480 x 640. G stands for Giga.

We adopt fusion-level DynMM for this task and base our
dynamic architecture design on a (static) efficient architec-
ture, ESANet [35]. As illustrated in Figure 3, we incorpo-
rate four fusion cells in the encoder design, where each fu-
sion cell contains two operations. Operation 1 is an identity
mapping of RGB features, i.e., O; = x7. For the second
operation, we use channel attention fusion, where features
from both modalities are first reweighted with a Squeeze
and Excitation module [15] and then added element-wisely.
Two ResNet-50 [13] are used as feature extraction models
for RGB and depth modality. The decoder design is iden-
tical to [35]. The gating network comprises a pipeline of
2 convolution blocks with kernel size 5x5 and stride size
2, a global average pooling and a linear layer. RGB and
depth features after the first convolutional layer are con-
cantenated together and passed to the convolutional gate.
The gating network outputs a 4-dimensional vector per sam-
ple that determines which operation to select for each fu-
sion cell. We experiment with two training strategies: (1)
DynMM-a in Table 3 is trained with straight-through tech-
nique with Gumbel-softmax temperature 7 = 1; (2) We



Method Modality =~ Backbone  mloU (%) MAdds (G)
LW-RefineNet [31] RGB ResNet-50 41.7 38.5
_LW-RefineNet [1] " ResNet-101 436 612
ACNet [16] ResNet-50 48.3 126.2
SA-Gate [8] ResNet-50 50.4 147.6
CEN [45] RGB4D  peeNet-101 511 618.3
ESANet [35] ResNet-50 50.5 56.9
DynMM-a ResNet-50 49.9 434
DynMM-b RGB+D ResNet-50 51.0 522

Table 4. Comparison of our approach with SOTA methods for
RGB-D semantic segmentation on NYU Depth V2 test data.

obtain DynMM-b in Table 3 by exponentially decaying 7
from 1 to 0.0001 during 500 epochs.

Table 3 provides the detailed results of fusion-level
DynMM. We report performance of DynMM after first-
stage training in the second row; its great performance val-
idates the design of our random gating function in the pre-
training stage. This also lends support to our claim that
there exists a lot of redundancy in multimodal networks.
Utilizing the finding that depth modality plays an auxiliary
role in this task, fusion-level DynMM effectively reduces
computations of the depth encoder. DynMM-a reduces
MAdds by 55.1% with only -0.4% mloU drop. Further-
more, DynMM-b achieves a mloU improvement of 0.7%
and 21.1% reduction in MAdds at the same time, thus
demonstrating the superiority of DynMM over static fusion.

Table 4 presents a comparison of the resulting DynMM-
a and DynMM-b with SOTA semantic segmentation meth-
ods. For baseline methods, we list mIoU reported in their
original papers and report MAdds. These results clearly
show that our proposed method achieves the best balance
between performance and efficiency. The computation cost
of DynMM is similar to a unimodal lightweight RefineNet,
yet its performance can match methods that use ResNet-101
as the backbone and involve significantly larger MAdds.

Finally, we conduct experiments to demonstrate the im-
proved robustness of DynMM compared to ESANet. We
consider three settings by injecting random Gaussian noise
with probability 1/3 to (1) RGB modality; (2) depth modal-
ity and (3) both modalities. We experiment with differ-
ent degrees of random Gaussian noise and plot the perfor-
mance degradation of two approaches in Figure 6. From
the figure, we observe that the performance gap between
DynMM and ESANet becomes larger when the noise level
of depth images increases; This demonstrates another ad-
vantage of DynMM in reducing data noise and improving
robustness. Figure 7 shows some qualitative segmentation
results. While ESANet generates reasonable predictions in
the normal setting (i.e., first and third row), its performance
becomes significantly worse when multimodal data is per-
turbed by noise (i.e., the second and fourth row). On the
contrary, our DynMM is robust to noise and provides a good

noisy modality: RGB

52
50 <~ — DyaMM | 50
E———] I —— ESANet | 4

noisy modality: depth 5 noisy modality: RGB / depth

52

mloU(%)
P
E

—— DynMM 4 44] —— Dynmm
—— ESANet ) 42| —— ESANet \'\
0 0
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Figure 6. DynMM vs. ESANet on NYU Depth V2 with different
degrees of Gaussian noise injected into RGB / depth images.

ground truth ESANet

DynMM (ours)

Figure 7. Qualitative segmentation results on NYU Depth V2.
DynMM is more robust to noisy multimodal data compared with
the static ESANet.

prediction for both scenarios. These results suggest the po-
tential of a dynamic neural network architecture for improv-
ing robustness of multimodal fusion.

5. Conclusion

Multimodal data enable models to learn from an en-
riched representation space, but it also bring significant re-
dundancy. Motivated by this observation, we have pro-
posed dynamic multimodal fusion (DynMM), a new ap-
proach that adaptively fuses inputs during inference. Ex-
perimental results on three very different multimodal tasks
demonstrate the efficacy of DynMM. More importantly, our
work demonstrates the potential of dynamic multimodal fu-
sion and opens up a new research direction. Considering
the benefits of a dynamic architecture (i.e., reduced compu-
tation, improved performance and robustness) , we believe
that developing dynamic networks tailored for multimodal
fusion is a topic worthy of further investigations.

DynMM has limitations that we plan to address through
three areas of improvement in our future work. These in-
clude designing better dynamic architectures that can ac-
count for multimodal redundancy, extending DynMM to se-
quential decision-making tasks, such as long video predic-
tion and exploring the performance of DynMM on different
multimodal tasks and modalities.



References

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

John Arevalo, Thamar Solorio, Manuel Montes-y Gémez,
and Fabio A Gonzélez. Gated multimodal units for infor-
mation fusion. arXiv preprint arXiv:1702.01992, 2017. 5,
6

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe
Morency. Multimodal machine learning: A survey and tax-
onomy. /[EEE Transactions on Pattern Analysis and Machine
Intelligence, 41(2):423-443, 2018. 1

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and
Doina Precup. Conditional computation in neural networks
for faster models. arXiv preprint arXiv:1511.06297, 2015. 2
Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh
Saligrama. Adaptive neural networks for efficient infer-
ence. In International Conference on Machine Learning,
volume 70, pages 527-536. PMLR, 2017. 2

Shaofeng Cai, Yao Shu, and Wei Wang. Dynamic routing
networks. In Winter Conference on Applications of Com-
puter Vision, pages 3588-3597, 2021. 2

Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. Utd-
mhad: A multimodal dataset for human action recognition
utilizing a depth camera and a wearable inertial sensor. In
International Conference on Image Processing, pages 168—
172. IEEE, 2015. 1,2

Chunlin Chen and Qiang Ling.  Adaptive convolution
for object detection. IEEE Transactions on Multimedia,
21(12):3205-3217, 2019. 2

Xiaokang Chen, Kwan-Yee Lin, Jingbo Wang, Wayne Wu,
Chen Qian, Hongsheng Li, and Gang Zeng. Bi-directional
cross-modality feature propagation with separation-and-
aggregation gate for rgb-d semantic segmentation. In Eu-
ropean Conference on Computer Vision, pages 561-577.
Springer, 2020. 2, 8

Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo
Torresani. Listen to look: Action recognition by preview-
ing audio. In Conference on Computer Vision and Pattern
Recognition, pages 10457-10467, 2020. 2, 3

Alex Graves. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016. 2
Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021. 2,3

Zongbo Han, Fan Yang, Junzhou Huang, Changqing Zhang,
and Jianhua Yao. Multimodal dynamics: Dynamical fusion
for trustworthy multimodal classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20707-20717, 2022. 2, 3

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Deep residual learning for image recognition. In Conference
on Computer Vision and Pattern Recognition, pages 770-
7178, 2016. 7

Chiori Hori, Takaaki Hori, Teng-Yok Lee, Ziming Zhang,
Bret Harsham, John R Hershey, Tim K Marks, and Kazuhiko
Sumi. Attention-based multimodal fusion for video descrip-
tion. In International Conference on Computer Vision, pages
4193-4202, 2017. 1

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Conference on Computer Vision and Pattern
Recognition, pages 7132-7141, 2018. 7

Xinxin Hu, Kailun Yang, Lei Fei, and Kaiwei Wang. Acnet:
Attention based network to exploit complementary features
for rgbd semantic segmentation. In International Conference
on Image Processing, pages 1440-1444. IEEE, 2019. 8

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet using
learned group convolutions. In Conference on Computer Vi-
sion and Pattern Recognition, pages 2752-2761, 2018. 2
Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144,2016. 5

Siddhant M Jayakumar, Wojciech M Czarnecki, Jacob
Menick, Jonathan Schwarz, Jack Rae, Simon Osindero,
Yee Whye Teh, Tim Harley, and Razvan Pascanu. Multi-
plicative interactions and where to find them. 2020. 6
Hamid Reza Vaezi Joze, Amirreza Shaban, Michael L Tuz-
zolino, and Kazuhito Koishida. Mmtm: Multimodal transfer
module for cnn fusion. In Conference on Computer Vision
and Pattern Recognition, pages 13289-13299, 2020. 1, 2
Ramandeep Kaur and Sandeep Kautish. Multimodal sen-
timent analysis: A survey and comparison. International
Journal of Service Science, Management, Engineering, and
Technology, 10(2):38-58, 2019. 1, 2

Michelle A Lee, Matthew Tan, Yuke Zhu, and Jeannette
Bohg. Detect, reject, correct: Crossmodal compensation of
corrupted sensors. In International Conference on Robotics
and Automation, pages 909-916. IEEE, 2021. 2

Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu
Zhang, Xingang Wang, and Jian Sun. Learning dynamic
routing for semantic segmentation. In Conference on Com-
puter Vision and Pattern Recognition, pages 8553-8562,
2020. 2

Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun
Cheng, Jason Wu, Leslie Chen, Peter Wu, Michelle A
Lee, Yuke Zhu, et al. Multibench: Multiscale bench-
marks for multimodal representation learning. arXiv preprint
arXiv:2107.07502, 2021. 6, 7

Kuan Liu, Yanen Li, Ning Xu, and Prem Natarajan. Learn
to combine modalities in multimodal deep learning. arXiv
preprint arXiv:1805.11730,2018. 1, 2

Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshmi-
narasimhan, Paul Pu Liang, Amir Zadeh, and Louis-Philippe
Morency.  Efficient low-rank multimodal fusion with
modality-specific factors. arXiv preprint arXiv:1806.00064,
2018.1,2,6

Saeed Masoudnia and Reza Ebrahimpour. Mixture of ex-
perts: a literature survey. Artificial Intelligence Review,
42(2):275-293,2014. 3

Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and
Kayvon Fatahalian. Hydranets: Specialized dynamic archi-
tectures for efficient inference. In Conference on Computer
Vision and Pattern Recognition, pages 8080-8089, 2018. 2
Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen,
Cordelia Schmid, and Chen Sun. Attention bottlenecks for



(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

multimodal fusion. Advances in Neural Information Pro-
cessing Systems, 34,2021. 1,2

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European Conference on Computer Vision,
2012. 5

Vladimir Nekrasov, Chunhua Shen, and Ian Reid. Light-
weight refinenet for real-time semantic segmentation. arXiv
preprint arXiv:1810.03272,2018. 8

Rameswar Panda, Chun-Fu Richard Chen, Quanfu Fan, Xi-
meng Sun, Kate Saenko, Aude Oliva, and Rogerio Feris.
Adamml: Adaptive multi-modal learning for efficient video
recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7576-7585, 2021. 2,
3

Juan-Manuel Pérez-Rua, Valentin Vielzeuf, Stéphane Pa-
teux, Moez Baccouche, and Frédéric Jurie. Mfas: Multi-
modal fusion architecture search. In Conference on Com-
puter Vision and Pattern Recognition, pages 6966—6975,
2019. 1,2

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dy-
namic routing between capsules. Advances in Neural Infor-
mation Processing Systems, 30, 2017. 2

Daniel Seichter, Mona Kohler, Benjamin Lewandowski, Tim
Wengefeld, and Horst-Michael Gross. Efficient rgb-d se-
mantic segmentation for indoor scene analysis. In Inter-
national Conference on Robotics and Automation, pages
13525-13531. IEEE, 2021. 1, 2,7, 8, 11

Amir Shahroudy, Tian-Tsong Ng, Yihong Gong, and Gang
Wang. Deep multimodal feature analysis for action recogni-
tion in rgb+ d videos. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(5):1045-1058, 2017. 1,2
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy
Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outra-
geously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017. 2
Mohammad Soleymani, David Garcia, Brendan Jou, Bjorn
Schuller, Shih-Fu Chang, and Maja Pantic. A survey of mul-
timodal sentiment analysis. Image and Vision Computing,
65:3-14,2017. 1,2

Peng Sun, Wenhu Zhang, Huanyu Wang, Songyuan Li, and
Xi Li. Deep rgb-d saliency detection with depth-sensitive
attention and automatic multi-modal fusion. In Conference
on Computer Vision and Pattern Recognition, pages 1407—
1417,2021. 1,2

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. Branchynet: Fast inference via early exiting from
deep neural networks. In International Conference on Pat-
tern Recognition, pages 2464-2469. IEEE, 2016. 2

Hiroki Tokunaga, Yuki Teramoto, Akihiko Yoshizawa, and
Ryoma Bise. Adaptive weighting multi-field-of-view cnn for
semantic segmentation in pathology. In Conference on Com-
puter Vision and Pattern Recognition, pages 12597-12606,
2019. 2

Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux, and
Frédéric Jurie. Centralnet: a multilayer approach for multi-
modal fusion. In European Conference on Computer Vision
Workshops, pages 0-0, 2018. 1

10

[43]

(44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

[52]

Valentin Vielzeuf, Stéphane Pateux, and Frédéric Jurie. Tem-
poral multimodal fusion for video emotion classification in
the wild. In International Conference on Multimodal Inter-
action, pages 569-576, 2017. 1, 2

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. In European Conference on Com-
puter Vision, pages 409—424, 2018. 2

Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu
Rong, and Junzhou Huang. Deep multimodal fusion by chan-
nel exchanging. Advances in Neural Information Processing
Systems, 33:4835-4845, 2020. 1, 2, 8

Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang,
and Gao Huang. Glance and focus: a dynamic approach
to reducing spatial redundancy in image classification. Ad-
vances in Neural Information Processing Systems, 33:2432—
2444, 2020. 2

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. Advances in Neural Information
Processing Systems, 32,2019. 2

Mingyu Yang, Yu Chen, and Hun-Seok Kim. Efficient deep
visual and inertial odometry with adaptive visual modality
selection. arXiv preprint arXiv:2205.06187, 2022. 2

Zhou Yu, Yuhao Cui, Jun Yu, Meng Wang, Dacheng Tao,
and Qi Tian. Deep multimodal neural architecture search. In
International Conference on Multimedia, pages 3743-3752,
2020. 1,2

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. Tensor fusion net-
work for multimodal sentiment analysis. arXiv preprint
arXiv:1707.07250,2017. 1,2

Amir Zadeh and Paul Pu. Multimodal language analysis in
the wild: Cmu-mosei dataset and interpretable dynamic fu-
sion graph. In Annual Meeting of the Association for Com-
putational Linguistics, 2018. 1,5

Hong-Yu Zhou, Bin-Bin Gao, and Jianxin Wu. Adaptive
feeding: Achieving fast and accurate detections by adap-
tively combining object detectors. In International Confer-
ence on Computer Vision, pages 3505-3513, 2017. 2



In this appendix, we present: (1) implementation details;
(2) visualization results of decisions given by the gating net-
work (on NYU Depth V2); (3) an analysis of varying regu-
larization strength A (on CMU-MOSEI); and (4) an ablation
study on proposed training strategies (on NYU Depth V2).

A. Implementation Details

MM-IMDB. F; is a unimodal text network with 2-layer
MLPs (hidden dimension=512) as the text encoder and the
decoder. F5 is a multimodal late fusion network, where we
use the text and image encoders to extract features, concate-
nate the unimodal features and then pass the concantenated
features to a MLP decoder (hidden dimension=1024). The
text encoder is the same as in /7 and the image encoder is
a 2-layer MLP (hidden dimension=1024). We use AdamW
optimizer with Ir=1e-4 and weight decay=1e-2.

CMU-MOSEIL E; is a text network consisting of a 5-
layer transformer encoder (hidden dimension=120; 5 at-
tention heads) and a 2-layer MLP decoder (hidden dimen-
sion=64). FE5 is a multimodal late fusion network with
video, audio, and text encoders being 5-layer transformers
and a 2-layer MLP decoder (hidden dimension=128). We
use AdamW optimizer with Ir=1e-4 and weight decay=1e-
4.

NYU Depth V2. The image and depth encoder is a
ResNet-50 and the decoder is the same as in ESANet [35].
We use SGD optimizer with weight decay=1e-4 and mo-
mentum=0.9, also OneCycleLLR with max_Ir=1e-2.

The gating networks are designed to match the F; and
FE5 model architectures. Therefore, we use a MLP gate
for MM-IMDB, a transformer gate for CMU-MOSEI and
a convolution gate for NYU Depth V2.

C(F;) in Equations (1)-(2) is set as the MACs required
to do one forward pass with F;. Take MM-IMDB for ex-
ample: the MACs for executing E; and Ey are 1.25M and
10.87M, respectively. The resource loss of one data sample
is A if the gating network selects £ and A X % if Ey
is selected. The DynMM variants reported in Table 1-2 are
obtained using different values of the regularization param-
eter \.

B. Visualization Results

In our proposed DynMM, the gating network is crucial
as it provides data-dependent decisions on which expert net-
work to adopt. For modality-level DynMM, we have pro-
vided visualization of the gating network decisions for some
test instances on CMU-MOSEI in Figure 5 in the main pa-
per. Similarly, for fusion-level DynMM, we visualize sev-
eral test instances on NYU Depth V2 and the resulting ar-
chitecture in Figure 8 in the Appendix.

From Figure 8, we can see that DynMM adaptively ex-
ecutes the forward path for multimodal inputs. The depth
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features are combined with the RGB features to different
degrees, determined by the gating network in DynMM. This
provides a flexible way to control multimodal fusion in a
sample-wise manner. For the RGB-D images in the up-
per figure, DynMM performs one-time fusion for multi-
modal features after the first block and saves computations
of depth blocks 2-4. For the more challenging test samples
in the lower figure, DynMM decides to fuse features in ev-
ery layer to better incorporate multimodal information. Due
to the dynamic architecture, DynMM achieves a good bal-
ance between efficiency and performance.

C. Analysis of Regularization Strength

Recall that we propose a resource-aware loss function
in Equation (1) and (2) in the main paper, where \ is a
hyperparameter controlling the relative importance of task
loss and computation cost loss. Similar to Figure 4 in the
main paper (i.e., an analysis of A on MM-IMDB), we vary
A when training DynMM on CMU-MOSEI sentiment anal-
ysis and report its computation cost and performance cor-
responding to each A value. The results are provided in
Figure 9 in this Appendix. From Figure 9 (a), we can see
that DynMM achieves a good balance between inference
efficiency and accuracy. Moreover, DynMM offers a wide
range of choices that can be controlled by A, thus showing
great flexibility. Figure 9 (b) shows the branch selection ra-
tio of DynMM for different A\. When A is small, DynMM
focuses more on performance and chooses expert network
2 most of the time. As A increases, more test samples are
routed to the expert network 1 that requires fewer computa-
tions.

D. Ablation Study

To verify the efficacy of our proposed training strategies,
we present an ablation study of RGB-D semantic segmen-
tation on the NYU Depth V2 data. We train DynMM under
three settings: (1) We omit the pre-training stage and train
DynMM in one stage. (2) In the second stage of training, we
freeze the weights of the multimodal architecture and only
fine-tune the gating network. (3) We adopt our proposed
two-stage training with joint optimization of the multimodal

Two-stage Joint

Method Training  Optimization mloU (%)
_Baseline  ______________ 303
v 49.2
DynMM v 50.2
v v 51.0

Table 5. Ablation study on RGB-D semantic segmentation. Base-
line refers to a static model (ESANet).
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Figure 8. We visualize a few test instances on the NYU Depth
V2 data. z; and z2 denote RGB and depth images, respectively.
The corresponding network architecture based on the gating net-
work decision is shown. The upper figure shows examples when
the gating network chooses an early fusion architecture. DynMM
skips computations of the depth extraction layers, thus achieving
inference savings. The lower figure shows examples when the gat-
ing network decides to fuse representations at every middle layer.
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Figure 9. Analysis of DynMM with varying resource regulariza-
tion strength (A) on CMU-MOSEI. (a): comparison of DynMM
with static unimodal (UM) and multimodal (MM) baselines. (b):
branch selection ratio in DynMM with respect to \.

network and gating network. The other training parameters
(e.g., learning rate, resource regularization strength \) are
identical. The results are shown in Table 5 below.

Table 5 demonstrates the advantages of our proposed
training strategies. We observe that DynMM with one-stage
training does not have a dynamic architecture, i.e., all test
samples are routed to one particular forward path. Without
a pre-training stage, every forward path is not equally opti-
mized. Biased optimization further leads to suboptimal per-
formance (i.e., an mloU of 49.2%). Apart from two-stage
training, joint optimization also plays an important role. We
observe a +0.8% mloU improvement with end-to-end train-
ing. The possible reason is that (static) feature extraction
layers also improve in the joint optimization process; they
provide more informative features as input to the gating net-
work to a better gating network decision. Therefore, the
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