
MIPI 2023 Challenge on RGBW Fusion: Methods and Results

Qianhui Sun Qingyu Yang Chongyi Li Shangchen Zhou Ruicheng Feng
Yuekun Dai Wenxiu Sun Qingpeng Zhu Chen Change Loy Jinwei Gu

Hongyuan Yu Yuqing Liu Weichen Yu Lin Ge Xiaolin Zhang Qi Jia
Heng Zhang Xuanwu Yin Kunlong Zuo Qi Wu Wenjie Lin Ting Jiang

Chengzhi Jiang Mingyan Han Xinpeng Li Jinting Luo Lei Yu Haoqiang Fan
Shuaicheng Liu Kunyu Wang Chengzhi Cao Yuanshen Guan Jiyuan Xia

Ruikang Xu Mingde Yao Zhiwei Xiong

Abstract

Developing and integrating advanced image sensors
with novel algorithms in camera systems are prevalent with
the increasing demand for computational photography and
imaging on mobile platforms. However, the lack of high-
quality data for research and the rare opportunity for an in-
depth exchange of views from industry and academia con-
strain the development of mobile intelligent photography
and imaging (MIPI). With the success of the 1st MIPI Work-
shop@ECCV 2022, we introduce the second MIPI chal-
lenge, including four tracks focusing on novel image sen-
sors and imaging algorithms. This paper summarizes and
reviews the RGBW Joint Fusion and Denoise track on MIPI
2023. In total, 69 participants were successfully registered,
and 4 teams submitted results in the final testing phase. The
final results are evaluated using objective metrics, including
PSNR, SSIM, LPIPS, and KLD. A detailed description of the
models developed in this challenge is provided in this paper.
More details of this challenge and the link to the dataset can
be found at https://mipi-challenge.org/MIPI2023/.

1. Introduction
RGBW is a new type of CFA (Color Filter Array) pattern

(Fig. 1 (a)) designed for image quality enhancement under
low light conditions. Thanks to the higher optical transmit-
tance of white pixels over conventional red, green, and blue
pixels, the signal-to-noise ratio (SNR) of images captured
by this type of sensor increases significantly, thus boosting
the image quality, especially under low light conditions. Re-
cently, several phone OEMs [1, 2, 3] have adopted RGBW
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sensors in their flagship smartphones to improve the camera
image quality.

The binning mode of RGBW is mainly used in the
camera preview mode and video mode, in which a half-
resolution Bayer is generated from the RGBW image,
where spatial resolution is traded off for faster response.
In this mode, every two pixels of the same color within a
2 × 2 window of the RGBW are averaged in the diagonal
direction, and a diagonal-binning-Bayer image (DbinB) and
a diagonal-binning-white image (DbinC) are generated. A
fusion algorithm is demanded to enhance details and reduce
noise in the Bayer image with the help of the white image
(Fig. 1 (b)). A good fusion algorithm should be able to fully
take advantage of the SNR and resolution benefit of white
pixels.

The RGBW fusion problem becomes more challenging
when the input DbinB and DbinC become noisy, especially
under low light conditions. A joint fusion and denoise task
is thus in demand for real-world applications.

Figure 1. The RGBW Fusion task: (a) the RGBW CFA. (b) In the
binning mode, DbinB and DbinC are obtained by diagonal aver-
aging of pixels of the same color within a 2×2 window. The joint
fusion and denoise algorithm takes DbinB and DbinC as input to
get a high-quality Bayer.

In this challenge, we intend to fuse DbinB and DbinC
in Fig. 1 (b) to denoise and improve the Bayer. The solu-
tion is not necessarily learning-based. However, we pro-
vide a high-quality dataset of binning-mode RGBW input
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Figure 2. An ISP to visualize the output Bayer and to calculate the loss function.

(DbinB and DbinC) and the output Bayer pairs to facil-
itate learning-based methods development, including 100
scenes (70 scenes for training, 15 for validation, and 15
for testing). The dataset is similar to the one provided in
the first MIPI challenge, while we replaced some similar
scenes with new ones. We also provide a simple ISP for
participants to get the RGB image results from Bayer for
quality assessment. Fig. 2 shows the pipeline of the simple
ISP. The participants are also allowed to use other public-
domain datasets. The algorithm performance is evaluated
and ranked using objective metrics: Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM) [15],
Learned Perceptual Image Patch Similarity (LPIPS) [22],
and KL-divergence (KLD).

We hold this challenge in conjunction with the second
MIPI Challenge which will be held on CVPR 2023. Sim-
ilar to the first MIPI challenges [7, 14, 17, 18, 16], we are
seeking algorithms that fully take advantage of the SNR and
resolution benefit of white pixels to enhance the final Bayer
image in the binning model. MIPI 2023 consists of four
competition tracks:

• RGB+ToF Depth Completion uses sparse and noisy
ToF depth measurements with RGB images to obtain a
complete depth map.

• RGBW Sensor Fusion fuses Bayer data and a
monochrome channel data into Bayer format to in-
crease SNR and spatial resolution.

• RGBW Sensor Remosaic converts RGBW RAW data
into Bayer format so that it can be processed by stan-
dard ISPs.

• Nighttime Flare Removal is to improve nighttime im-
age quality by removing lens flare effects.

2. MIPI 2023 RGBW Sensor Fusion
To facilitate the development of high-quality RGBW fu-

sion solutions, we provide the following resources for par-
ticipants:

• A high-quality dataset of aligned RGBW (DbinB and
DbinC in Fig. 1 (b)) and Bayer. We enriched the scenes

compared to the first MIPI challenge dataset. As far as
we know, this is the only dataset consisting of aligned
RGBW and Bayer pairs;

• A script that reads the provided raw data to help par-
ticipants get familiar with the dataset;

• A simple ISP including basic ISP blocks to visualize
the algorithm outputs and to evaluate image quality on
RGB results;

• A set of objective image quality metrics to measure the
performance of a developed solution.

2.1. Problem Definition

The RGBW fusion task aims to fuse the DbinB and
DbinC of RGBW (Fig. 1 (b)) to improve the image qual-
ity of the Bayer output. By incorporating the white pixels
in DbinC of higher spatial resolution and higher SNR, the
output Bayer would potentially have better image quality.
In addition, the binning mode of RGBW is mainly used for
the preview and video modes in smartphones, thus requiring
the fusion algorithms to be lightweight and power-efficient.
While we do not rank solutions based on the running time
or memory footprint, the computational cost is one of the
most important criteria in real applications.

2.2. Dataset: Tetras-RGBW-Fusion

The training data contains 70 scenes of aligned RGBW
(DbinB and DbinC input) and Bayer (ground-truth) pairs.
DbinB at 0dB is used as the ground truth for each scene.
Noise is synthesized on the 0dB DbinB and DbinC data to
provide the noisy input at 24dB and 42dB, respectively. The
synthesized noise consists of read noise and shot noise, and
the noise models are calibrated on an RGBW sensor. The
data generation steps are shown in Fig. 3. The testing data
includes DbinB and DbinC inputs of 15 scenes at 24dB and
42dB, and the ground truth Bayer results are hidden from
participants during the testing phase.

2.3. Evaluation

The evaluation consists of (1) the comparison of the fu-
sion output Bayer and the reference ground truth Bayer, and
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Figure 3. Data generation of the RGBW fusion task. The RGBW
raw data is captured using an RGBW sensor and cropped into a
size of 2400× 3600. A Bayer (DbinB) and white (DbinC) image
are obtained by averaging the same color in the diagonal direction
within a 2× 2 block.

(2) the comparison of RGB from the predicted and ground
truth Bayer using a simple ISP (the code of the simple ISP
is provided). We use

1. Peak Signal-to-Noise Ratio (PSNR)

2. Structural Similarity Index Measure (SSIM) [15]

3. Learned Perceptual Image Patch Similarity
(LPIPS) [22]

4. Kullback–Leibler Divergence (KLD)

to evaluate the fusion performance. The PSNR, SSIM, and
LPIPS will be applied to the RGB from the Bayer using the
provided simple ISP code, while KLD is evaluated on the
predicted Bayer directly.

A metric weighting PSNR, SSIM, KLD, and LPIPS is
used to give the final ranking of each method, and we will
report each metric separately as well. The code to calculate
the metrics is provided. The weighted metric is shown be-
low. The M4 score is between 0 and 100, and the higher
score indicates the better overall image quality.

M4 = PSNR · SSIM · 21−LPIPS−KLD. (1)

For each dataset, we report the average score over all the
processed images belonging to it.

2.4. Challenge Phase

The challenge consisted of the following phases:

1. Development: The registered participants get access
to the data and baseline code, and are able to train the
models and evaluate their running time locally.

2. Validation: The participants can upload their models
to the remote server to check the fidelity scores on the
validation dataset, and to compare their results on the
validation leaderboard.

3. Testing: The participants submit their final results,
code, models, and factsheets.

3. Challenge Results
Four teams submitted their results in the final phase,

which have been verified using their submitted code. Ta-
ble. 1 summarizes the results in the final test phase. RUSH
MI, MegNR, and USTC-Zhalab are the top three teams
ranked by M4 are presented in Eq. (1), and RUSH MI
shows the best overall performance. The proposed meth-
ods are described in Section 4, and the team members and
affiliations are listed in Appendix A.

Team name PSNR SSIM LPIPS KLD M4
RUSH MI 38.587 0.977 0.0661 0.0718 68.58
MegNR 37.822 0.966 0.0815 0.0717 65.84
USTC-Zhalab 37.323 0.965 0.0854 0.0767 64.67
VIDAR 37.160 0.968 0.1023 0.0698 63.98

Table 1. MIPI 2023 Joint RGBW Fusion and Denoise challenge
results and final rankings. PSNR, SSIM, LPIPS, and KLD are
calculated between the submitted results from each team and the
ground truth data. A weighted metric, M4, by Eq. (1) is used to
rank the algorithm performance, and the top three teams with the
highest M4 are highlighted.

To learn more about the algorithm performance, we eval-
uated the qualitative image quality in Fig. 4 and Fig. 5 in
addition to the objective IQ metrics. While all teams in Ta-
ble 1 have achieved high PSNR and SSIM, detail loss can
be found on the texts of the card in Fig. 4 and detail loss or
false color can be found on the mesh of the chair in Fig. 5.
When the input has a large amount of noise, oversmoothing
tends to yield higher PSNR at the cost of detail loss percep-
tually.

Team name 1200×1800 (measured) 16M (estimated)
RUSH MI 0.45s 3.33s
MegNR 8.46s 62.60s
USTC-Zhalab 69.60s 515.04s

Table 2. Running time of the top three solutions ranked by Eq. (1)
in the MIPI 2023 Joint RGBW Fusion and Denoise challenge. The
running time of input of 1200 × 1800 was measured, while the
running time of a 64M RGBW sensor was based on estimation
(the binning-mode resolution of a 64M RGBW sensor is 16M).
The measurement was taken on an NVIDIA Tesla V100-SXM2-
32GB GPU.

In addition to benchmarking the image quality of fusion
algorithms, computational efficiency is evaluated because
of the wide adoption of RGBW sensors in smartphones. We
measured the running time of the RGBW fusion solutions
of the top three teams in Table 2. While running time is
not employed in the challenge to rank fusion algorithms,
the computational cost is critical when developing smart-
phone algorithms. RUSH MI achieved the shortest running
time among the top three solutions on a workstation GPU
(NVIDIA Tesla V100-SXM2-32GB). With the sensor res-
olution of mainstream smartphones reaching 64M or even
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Figure 4. Qualitative image quality (IQ) comparison. The results of one of the test scenes (42dB) are shown. While the top three fusion
methods achieve high objective IQ metrics in Table 1, texts on the card are slightly blurred in (b) and are barely interpretable in (c) and (d).
The RGB images are obtained by using the ISP in Fig. 2, and its code is provided to participants.

Figure 5. Qualitative image quality (IQ) comparison. The results of one of the test scenes (42dB) are shown. Detail loss or false color in
the top three methods in Table 1 can be found when compared with the ground truth. The mesh of the chair is over-smoothed to different
extents in (c) and (d) and some false color can be found in (b). The RGB images are obtained by using the ISP in Fig. 2, and its code is
provided to participants.

higher, power-efficient fusion algorithms are highly desir-
able.

4. Challenge Methods
This section describes the solutions submitted by all

teams participating in the final stage of the MIPI 2023
RGBW Joint Fusion and Denoise Challenge.

4.1. RUSH MI

This team presents an end-to-end joint remosaic and de-
noise model, referred to as DEDD. As illustrated in Fig. 6,
the DEDD model is composed of three components: a de-
noising model, a main network, and a differentiable ISP

model. Specifically, in the first part, they employed a ba-
sic UNet [10], which incorporated two downsampling op-
erations. In the second part, they utilized the state-of-
the-art model in the low-level domain, NAFNet [4]. The
NAFNet contains the 4-level encoder-decoder and bottle-
neck. For the encoder, the numbers of NAFNet’s blocks for
each level are 2, 4, 8, and 24. For the decoder, the numbers
of NAFNet’s blocks for the 4 levels are all 2. In addition,
the number of NAFNet’s blocks for the bottleneck is 12. In
the third part, they reformulated the BLC, WBC, GAMMA,
and CCM modules in the conventional ISP pipeline into
differentiable models, and adopted the officially provided
demosaic model as the demosaic module. In the training
phase, the clean model is used as a guidance for boosting
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the noisy restoration performance. The images were ran-
domly cut into 256×256 patches, with a batch size of 64.
The optimizer used was AdamW [9], and the initial learn-
ing rate was set to 0.001, which was reduced by half every
5000 iterations. The training process is divided into two
stages; initially, the denoising network is trained for 40k it-
erations, after which the parameters of the denoiser are fixed
and the demosaic network is trained. The loss function uti-
lized is the L1 loss. When training the demosaic network,
two supervision signals are incorporated: the constraint of
the Bayer domain and the constraint of the RGB domain.
The model training is completed after retraining 80K itera-
tions in an end-to-end training mode.
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Figure 6. The model architecture of RUSH MI.

4.2. MegNR
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Figure 7. The model architecture of MegNR.

This team proposes a novel two-stream pipeline based
NAF-blocks [4] for RGBW joint fusion and denoise task,
as shown in Fig. 7. Inspired by high signal-to-noise ratio
white pixels, they introduce a new module called W-guided
dynamic convolution(WGDC), which aggregates the spa-
tial and channel attributes of the white-pixel feature, guides
the dynamic change of network capability according to the
white-pixel characteristics. Moreover, the authors design a
method for synthesizing RGBW data, which effectively re-
duces the gap between synthetic data and real data. They
use the official simple ISP code to transfer the standard
Bayer to the RGB image for loss calculation, which con-
sists of PSNR, SSIM, LPIPS [22]. For training, the au-
thors randomly crop the training images into 128x128-sized
patches with the 8-sized batches. Bayer Preserving Aug-
mentation [8], Cutmix [19] are used for data augmentation.

They use cosine decay strategy to decrease the learning rate
to 1 × 10−7 with the initial learning rate 1 × 10−3 and
the entire training costs about 5 days and converges after
4 × 10−6 iters. In the final inference stage, Test-time Aug-
mentation [11] is used to get final result.

4.3. USTC-Zhalab

GRGBW

Restormer

Unshuffle

Augumentation

Shuffle

GRGBW

L1+LPIPS

KLD

Figure 8. The model architecture of USTC-Zhalab.

This team proposes an RGBW fusion and denoising
method based on the existing image restoration model
Restormer [20], as shown in Fig. 8. During training, the
Pixel-Unshuffle [13] is firstly applied to RGBW images to
split them from 2 channels into 8 channels. Then, the 8-
channel RGBW images are fed into the Restormer, obtain-
ing the output of 8 channels. Finally, the Pixel-Shuffle [12]
restores the output of 8 channels to the standard Bayer for-
mat. The training loss function consists of L1 loss, KLD
loss, and LPIPS loss [22], calculated on the output of 8
channels and GT Bayer. Moreover, they also utilize three
data augmentation strategies for training, i.e., Bayer Pre-
serving Augmentation [8], Cutmix [19], and Mixup [21].
The whole network is trained for 3 × 105 iterations. The
learning rate is decayed from 2 × 10−4 to 1 × 10−6 with
a CosineAnnealing schedule. The training batch size and
patch size are set to 8 and 224. The Self-ensemble strategy,
Test-time Augmentation [11], and Test-time Local Con-
verter [6] are applied during the testing phase. The testing
batch size and patch size are set to 1 and 224.

4.4. VIDAR

Figure 9. The model architecture of VIDAR.

This team proposes a multi-scale hybrid attention net-
work for RGBW Fusion and denoising task as shown in
Fig. 9. Inspired by Restormer [20] and HAT [5], the pro-
posed method employs the Spatial Attention Module as the
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decoder (SAE), which is decoded by the Multi-Scale De-
coder (MSD) via skip-connections. The hybrid attention
transformer (HAT) is also used in this strategy to consider
both global and local information. The combination of these
techniques enables efficient processing of high-resolution
images as well as the extraction of significant information.
The training process includes two stages. In the stage 1,
the network is trained with the patches of size 256 × 256.
The batch size is set to 12 and the optimizer is ADAM by
setting of β1 = 0.9 and β2 = 0.999. The learning rate
is initialized as 10−4 and it is decayed by a factor of 0.5
at 50, 000, 80, 000, and 100, 000 iterations. Thanks to the
network in stage 1 to greatly improve Bayer by using the
white-channel information. The stage 2 finetunes the net-
work from stage 1. In stage 2, the network is trained with
the L1 loss and LPIPS loss on RGB domain. The learning
rate is initialized as 5 × 10−5 and decayed by a factor of
0.5 at 10, 000, 20, 000, and 40, 000 iterations. In the test-
ing phase, the results are from the two stages to achieve the
best performance. To be specific, the self-ensemble is used
in the period of testing single model to get a better result.
The input frame is flipped and regard it as another input.
Then an inverse transform is applied to the corresponding
output. An average of the transformed output and original
output will be the self-ensemble result. The final result is a
mixed results of the outputs from different iterations.

5. Conclusions

This report reviewed and summarized the methods and
results of the RGBW Fusion challenge in the 2nd Mobile In-
telligent Photography and Imaging workshop (MIPI 2023)
held in conjunction with CVPR 2023. The participants were
provided with a high-quality dataset for RGBW fusion and
denoising. The four submissions leverage learning-based
methods and achieve promising results. We are excited to
see so many submissions within such a short period, and we
look forward to more research in this area.
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