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Abstract

The progress in modelling time series and, more gener-
ally, sequences of structured data has recently revamped
research in anomaly detection. The task stands for iden-
tifying abnormal behaviors in financial series, IT systems,
aerospace measurements, and the medical domain, where
anomaly detection may aid in isolating cases of depression
and attend the elderly. Anomaly detection in time series
is a complex task since anomalies are rare due to highly
non-linear temporal correlations and since the definition of
anomalous is sometimes subjective.

Here we propose the novel use of Hyperbolic uncer-
tainty for Anomaly Detection (HypAD). HypAD learns self-
supervisedly to reconstruct the input signal. We adopt best
practices from the state-of-the-art to encode the sequence
by an LSTM, jointly learned with a decoder to reconstruct
the signal, with the aid of GAN critics. Uncertainty is esti-
mated end-to-end by means of a hyperbolic neural network.
By using uncertainty, HypAD may assess whether it is cer-
tain about the input signal but it fails to reconstruct it be-
cause this is anomalous; or whether the reconstruction er-
ror does not necessarily imply anomaly, as the model is un-
certain, e.g. a complex but regular input signal. The novel
key idea is that a detectable anomaly is one where the model
is certain but it predicts wrongly. HypAD outperforms the
current state-of-the-art for univariate anomaly detection on
established benchmarks based on data from NASA, Yahoo,
Numenta, Amazon, and Twitter. It also yields state-of-the-
art performance on a multivariate dataset of anomaly ac-
tivities in elderly home residences, and it outperforms the
baseline on SWaT. Overall, HypAD yields the lowest false
alarms at the best performance rate, thanks to successfully
identifying detectable anomalies.

1. Introduction

Anomaly detection stands for detecting outliers (anoma-
lies) in data, i.e. points that deviate significantly from the
distribution of the data. Outlier detection, however, is an
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Figure 1. HypAD detects anomalies by the joint use of recon-
struction error and uncertainty, learning both aspects end-to-end.
In the illustration, the colored circular sector represents the hyper-
bolic Poincaré ball, where the radius distance of data embeddings
is their degree of certainty (points on the circumference are most
certain). h is the hyperbolic mapping of the input signal, which
HypAD attempts to match by the reconstruction h′. Thanks to
hyperbolic neural networks and their exponentially larger penal-
ization for errors at high certainty, HypAD learns to prefer signal
reconstructions such as h′′, i.e. with the same amount of error as
h′ (the same angle and cosine distance) but smaller radius ∥h′′∥2
and thus higher uncertainty. HypAD uses both the reconstruction
error and the uncertainty to identify detectable anomalies, where
the model is certain but the prediction is wrong, i.e. it knows what
to expect but something anomalous occurs.

under-specified and consequently ill-posed task due to its
inherent unsupervised nature. Anomaly detection strategies
such as distance-based [16, 22], density-based [9, 55], and
subspace-based methods [33, 40] have been pioneers in the
literature. Additionally, autoencoders [11, 59], and adver-
sarial networks [21] have given a substantial contribution.
However, the literature neglects assessing the trustfulness
of the predicted outcomes, namely their uncertainty.

Uncertainty is a measure of model confidence, which
may be learnt from the data [34, 38] or by the use of ex-
tra instances [18]. Uncertainty estimation has been a long-
standing challenge in machine learning. Most recently, it
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has been successfully adopted to improve performance on
object detection [32,37,45,54], pose estimation [64], unsu-
pervised and self-supervised learning [29,58,63]. Yet, end-
to-end and data-driven uncertainty estimation for anomaly
detection remains a complex task. This complexity is fur-
ther exacerbated by the rarity of anomalous events which,
generally, are not present during the learning (training)
phase - i.e., open set problem - leading deep learning mod-
els to be overconfident when predicting them [27].

In this work, we propose a novel model based on Hy-
perbolic uncertainty for Anomaly Detection, which we
dub HypAD. We leverage the current state-of-the-art tech-
nique for anomaly detection in univariate time series,
TadGAN [21]. TadGAN detects anomalies by attempting
to reconstruct the input signal, making use of an LSTM se-
quence encoding and two GAN critics, cf. Sec. 3.1. We
introduce uncertainty into the anomaly detector: i.e., we
map the input and the reconstructed signal into a hyperbolic
space, where the signals additionally have an uncertainty
score; and we train the novel embeddings end-to-end with a
Poincaré distance loss, cf. Sec. 3.2.

HypAD uses uncertainty to discern whether the recon-
struction error is large because the signal is anomalous, or
simply because the model cannot reconstruct it well. In
the former case, HypAD is certain about the reconstruc-
tion (e.g. most signal is well-behaved and the model expects
known patterns) but its reconstruction is wrong, as a part of
the signal is anomalous. In the latter, HypAD downgrades
its anomaly score because it is not certain about signal re-
construction. This may be because of a complex pattern,
which the model did not have enough capacity to learn. The
larger uncertainty indicates that the larger reconstruction er-
ror may be due to an anomaly or to a model failure in the
reconstruction. (See discussion in Sec. 3.2.2.)

Thanks to uncertainty, HypAD outperforms the state-of-
the-art univariate anomaly detector TadGAN [21] on the
established univariate benchmarks of NASA, Yahoo, Nu-
menta Anomaly Benchmark [39], as well as on two mul-
tivariate datasets of daily activities in elderly home resi-
dences CASAS [12] and industrial water treatment plant
SWaT [53]. As we show in experimental results in Sec. 4,
reducing anomaly scores in uncertain cases also yields
fewer false alarms (the model achieves the best F1 perfor-
mance with larger precision).

The main contributions of this work are:
• We propose the first model for anomaly detection

based on hyperbolic uncertainty;
• We propose the novel key idea of detectable anomaly:

an instance is anomalous when the model is certain
about it but wrong;

• We integrate the estimated uncertainty into a state-of-
the-art univariate anomaly detector and outperform it
on established univariate and multivariate datasets.

2. Related works

To the best of our knowledge, this is the first work
to have combined anomaly detection with end-to-end and
data-driven uncertainty estimation and the first work to have
further proposed hyperbolic uncertainty for it. Previous
work relates to ours from three main perspectives, which we
review here: uncertainty estimation techniques, anomaly
detection in time series, and hyperbolic neural networks.

2.1. Uncertainty Estimation Techniques

We identified two different strategies for approximating
uncertainty. Ensemble-based posterior approximation uses
several weak models to make naive predictions and com-
bine them according to a consensus function into a more
complex predictive model [14]. One of the most popular
approaches to uncertainty estimation based on ensembles is
Monte Carlo (MC) Dropout. It drops neurons on every layer
during training and test phases [18].

Generative models for aleatory modelling use an ad-
ditional latent variable to make stochastic predictions and
evaluate the uncertainty of the model. Generative Adver-
sarial Networks (GANs) [24] play a min-max game where
the discriminator needs to distinguish between real exam-
ples and the generated outcomes. GANs have state-of-the-
art performances and we build on top of that by attaching
hyperspace mapping layers to estimate the uncertainty of
the model. Another interesting approach to estimate uncer-
tainty is by using energy-based models [15, 57, 67]. They
learn an energy function that models the compatibility of
the input and the output. Our method transcends energy-
based models because the integrated hyperbolic uncertainty
mechanism does not suffer from cold- nor warm-start prob-
lems [68] which undermine the training complexity [66].

Besides the above methods of approximating uncer-
tainty, in the past, baselines like Hotelling’s T2 [28] ex-
ploited the Mahalanobis distance that incorporates uncer-
tainty by measuring the (co-)variance, with the deviation
(i.e., being anomalous or not). Nevertheless, current deep
learning models in anomaly detection do not exploit uncer-
tainty to calibrate their overconfident predictions for unseen
data (anomalies) that lie outside the manifold of normal in-
stances. Hence, an end-to-end and data-driven uncertainty
estimation technique for anomaly detection is necessary.

2.2. Anomaly Detection in Time Series

We identified five categories of methods proposed in the
literature for anomaly detection in time series. Distance-
based outlier detectors consider the distance of a point from
its k-nearest neighbours [4, 22, 36]. Density-based meth-
ods [9, 17, 26, 55, 61, 62, 65] take into account the density
of the point and its neighbours. Prediction-based meth-
ods [2, 8, 31] calculate the difference between the predicted



value and the true value to detect anomalies. Reconstruc-
tion based methods [1, 3, 52] compare the input signal and
the reconstructed one in the output layer typically by us-
ing autoencoders. These methods assume that anomalies
are difficult to reconstruct and are lost when the signal gets
mapped to lower dimensions. Thus, a higher reconstruction
error means a higher anomaly score. [52] uses an LSTM au-
toencoder for multi-sensor anomaly detection. [11, 59] use
an ensemble of autoencoders to boost performances by fo-
cusing on learning the inlier characteristics at each itera-
tion. [46] uses a hierarchical variational auto-encoder with
two stochastic latent variables to learn the temporal and
inter-metric embeddings for multivariate data.SISVAE [44]
uses a variational auto-encoder with a smoothness-inducing
prior over possible estimations to capture latent temporal
structures of time series without relying on the assumption
of constant noise. Recently, GANs have been employed
to detect anomalies in time series data. Our method also
lies in this category. MAD-GAN [43] combines the dis-
criminator output and reconstruction error to detect anoma-
lies in multivariate time series. BeatGAN [69] uses an
encoder-decoder generator with a modified time-warping-
based data augmentation to detect anomalies in medical
ECG inputs. TadGAN [21] uses a cycle-consistent GAN ar-
chitecture with an encoder-decoder generator and proposes
several ways to compute reconstruction error and its combi-
nation with the critic outputs. We build on top of TadGAN’s
architecture by incorporating the hyperbolic mapping layer
to the reconstructed time-windows to assess the uncertainty
of the detector.

2.3. Hyperbolic Neural Networks

Deep representation learning in hyperspaces has gained
momentum after the pioneering work of hyperNNs [19]
that generalizes Euclidean operations to their counterparts
in hyperspace. The authors propose analog counterparts
in the hyperspace of neural network components such as
fully connected (FC) layers, multinomial logistic regres-
sion (MLR), and recurrent neural networks. Furthermore,
methods like Einstain midpoint [25] and Fréchet mean [50]
propose different ways of aggregating features in hyper-
space. The work in [60] extends hyperNN and proposes
Poincaré split/concatenation operations, generalizing the
convolutional layer to hyperspace. [10, 47] propose hyper-
bolic graph neural networks, leveraging hyperNNs.

Thus formulated, hyperNNs have mainly been adopted
to improve performance by leveraging hierarchies and un-
certainty in zero-shot learning [48], re-identification [35],
and action recognition [49]. Of particular interest, [63] has
leveraged hyperNNs to model a hierarchy of actions from
unlabeled videos. To the best of our knowledge, this is the
first work to have applied hyperNNs for sequence modelling
with the goal of anomaly detection.

Encoder E Decoder G

Dx

Dz

x ~ PX

G(E(x))

z ~ PZ

Critic score

G(z)

E(x)

Poincaré 
distance

Euclidean to hyperbolic 
mapping

Legend:

Figure 2. Overall architecture of our proposed model HypAD. The
model integrates hyperNNs [19] with an LSTM based encoder-
decoder trained with two GAN-based discriminators, Dx and Dz .
HypAD maps the input signal x and the output of the decoder
(G(E(x))) to the Poincaré ball model of hyperbolic spaces, shown
as dotted red edge box with red background, to get the correspond-
ing hyperbolic embeddings. The two embeddings are then com-
pared using Poincaré distance, as described in Sec. 3.2.1. Solid
magenta and green boxes denote the input and output of the hy-
perbolic mapping, respectively.

3. Method

In this section, we first discuss best practises in anomaly
detection (Sec. 3.1); then we detail the proposed hyperbolic
uncertainty and its use for detecting anomalies (Sec. 3.2);
finally, we discuss the motivation for it (Sec. 3.3).

3.1. Background

The current state-of-the-art in univariate anomaly detec-
tion is a reconstruction-based technique [21] which addi-
tionally leverages a GAN critic score. TadGAN encodes
the input data x to a latent space and then decodes the en-
coded data. This encoding-decoding operation requires two
mapping functions E : X → Z and G : Z → X . The
reconstruction operation can be given as x → E(x) →
G(E(x)) → x̃ ≈ x. TadGAN leverages adversarial learn-
ing to train the two mappings by using two adversarial crit-
ics Dx and Dz . The goal of Dx is to distinguish between the
real and the generated time series, while Dz measures the
performance of the mapping into latent space. The model
is trained using the combination of Wasserstein loss [5] and
Cycle consistency loss [70]. TadGAN computes the recon-
struction error RE(x) between x and x̃ using three types
of reconstruction functions: i. Point-wise difference: con-
siders the difference of values at every timestamp; ii. Area
difference: is applied on signals of fixed lengths and mea-
sures the similarity between local regions; iii. Dynamic time
warping: additionally handles time gaps between the two
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Figure 3. Bar plot of the average cosine distance of all the datasets for specific intervals of uncertainty (see Sec. 3.3). The first two rows
contain three plots corresponding to the signals that report the best improvement in terms of F1-score (g-measure) and one plot (the last
column) that corresponds to the signal with the worst improvement. Notice that even the signals with the worst improvement follow the
same increasing trend. Because SWaT contains a single long-term signal, we report only its corresponding bar-plot.

signals to calculate the reconstruction error. To calculate the
anomaly score, TadGAN first normalises the reconstruction
error and critic scores by subtracting the mean and dividing
by standard deviation. The normalised scores, ZRE(x) and
ZDx

(x), are then combined using their product:

sp(x) = ZRE(x) · ZDx
(x) (1)

3.2. Hyperbolic uncertainty for Anomaly detection
(HypAD)

We propose a novel model for anomaly detection in
time series based on hyperbolic uncertainty. HypAD is a
reconstruction-based model and minimises the reconstruc-
tion loss, given by a measure of the hyperbolic distance be-
tween the input signal and its reconstruction. In hyperbolic
space, errors are exponentially larger when predictions are
certain. Therefore, HypAD tends to predict either certain
correct reconstructions or uncertain possibly mistaken re-
constructions. This leads, as we discuss in Sec. 3.3, to a
novel definition of detectable anomaly: i.e. the case of a

large reconstruction error with high certainty.

3.2.1 Hyperbolic Reconstruction Error

The proposed HypAD, illustrated in Fig. 2, integrates hy-
perbolic neural networks into the reconstruction-based ar-
chitecture of TadGAN. In HypAD the input signal x is first
passed through an encoder, then followed by a decoder sub-
network. The output of the decoder G(E(x)) as well as the
original signal x are mapped to the hyperspace, shown as
the red edge box with red background.

An n-dimensional hyperspace is a Riemannian geometry
with a constant negative sectional curvature. As in [35, 63],
we adopt the Poincaré ball model of hyperspaces, given by
the manifold Dn = {x ∈ Rn : ∥x∥ < 1} endowed with the
Riemannian metric gD(x) = λ2

xg
E , where λx = 2

1−∥x∥2 is
the conformal factor and gE = In is the Euclidean metric
tensor. For details, see [41, 42].

To map x and G(E(x)) to the Poincaré ball, we leverage
an exponential map centered at 0 [63]. This is followed by



Univariate Multivariate
NASA Yahoo NAB CASAS SWaT

SMAP MSL A1 A2 A3 A4 Art AdEx AWS Traf Tweets F MTC W SW N
Num. of signals 53 27 67 100 100 100 6 5 17 7 10 1 1 1 1 1 1
Num. of anomalies 67 36 178 200 939 835 6 11 30 14 33 2 2 4 2 2 33

Point anomalies 0 0 68 33 935 833 0 0 0 0 0 0 0 0 0 0 0
Collective anomalies 67 36 110 167 4 2 6 11 30 14 33 2 2 4 2 2 33

Num. of anomaly points 54,696 7,766 1,699 466 943 837 2,418 795 6,312 1,560 15,651 99 239 1,248 276 1,060 10786
Percentage of total 9.7% 5.8% 1.8% 0.3% 0.6% 0.5% 10% 9.9% 9.3% 9.8% 9.8% 0.7% 1.7% 8% 2.4% 6.3% 10.05%
Num. out of distribution 18,126 642 861 153 21 49 123 15 210 86 520 - - - - - -

Num. of instances ∼ 563k ∼ 132k ∼ 95k ∼ 142k 168k 168k ∼ 24k ∼ 8k ∼ 68k ∼ 16k ∼ 159k ∼ 54k ∼ 276k ∼ 39k ∼ 39k ∼ 39k ∼ 189k
Synthetic? No No No Yes Yes Yes Yes No No No No No No No No No No

Table 1. Overview of selected univariate and multivariate datasets and their characteristics, grouped by the sources of signals (NASA,
Yahoo, NAB, CASAS and SWaT). See Sec. 4.1 for details.

a hyperbolic feed-forward layer [19] to estimate the corre-
sponding hyperbolic embeddings h and h̃, solid green boxes
in Fig. 2. Finally, the two hyperbolic embeddings are com-
pared using the Poincaré distance, formulated as follows:

RE(x) = cosh−1

(
1 + 2

∥h− h̃∥2(
1− ∥h∥2

)(
1− ∥h̃∥2

)) (2)

where ∥h∥2 and ∥h̃∥2 are the distances of the embeddings
from the center of the Poincaré ball. The same reconstruc-
tion error function RE(x), is used at train and inference.

3.2.2 Hyperbolic Uncertainty

A key property of the Poincaré ball is that the distance be-
tween two points grows exponentially as we move away
from the origin. This means that an erroneous reconstruc-
tion towards the circumference of the disk is penalised ex-
ponentially more than an erroneous reconstruction close to
the centre. This leads to the useful tendency of HypAD to
either predict a matched reconstruction (h̃ and h are close
by) or an unmatched reconstruction towards the origin (h̃
and h are far away, ∥h∥2 and ∥h̃∥2 are small), in order to
minimize Eq. (2). Hence, the distance of the reconstruction
to the origin provides a natural estimate of the model’s un-
certainty, referred to as hyperbolic uncertainty, U(x), thus
formulated:

U(x) = 1− ∥h̃∥2 (3)

The smaller the distance from the origin, the more uncertain
the model.

3.2.3 Combining Hyperbolic Uncertainty with Recon-
struction Error and Critic Score

Hyperbolic uncertainty U(x) is integrated into the anomaly
score as follows:

su(x) = ZRE(x) · ZDx
(x) · (1− U(x)) (4)

Eq. (4) brings together the reconstruction error ZRE(x) (the
larger the error, the more likely the anomaly) with the critic

score ZDx
(x) (larger critic scores point to anomalies) and

the model certainty: 1 − U(x). The simple multiplication
formulation of the certainty of the model reduces the scores
of anomalies when HypAD is not confident of the recon-
structions. While being simple, this outperforms the current
state-of-the-art, as we show in Sec. 4.

3.3. Motivation for HypAD

HypAD takes motivation from a key idea: a detectable
anomaly is one where the model is certain, but it predicts
wrongly. In other words, if the model encounters a known
pattern, which it knows how to reconstruct, then it will call
it anomalous if the reconstruction does not match the in-
put signal. The principled formulation of hyperbolic uncer-
tainty is critical towards this goal: HypAD predicts a recon-
struction as uncertain if it is doubtful that it may be wrong.

Fig. 3 illustrates this key concept for all the datasets. The
first, second and third rows correspond to the univariate, U-
CASAS and SWaT datasets respectively. The bar plot de-
picts the average cosine distances between the input signals
and their reconstructions, against specific intervals of uncer-
tainty, along the x-axis. The higher the cosine distances, the
more distinct the reconstruction is from the provided sig-
nals1. Note that for the first two rows, the initial three plots
(columns) correspond to the signals that report the best im-
provement in F1-score and the last plot corresponds to the
signal with the worst improvement. A single bar plot is re-
ported for SWaT because this consists of a single long-term
signal. Observe, in the second row, how HypAD learns to
correctly assign higher uncertainty to wronger estimates for
the cases of Fall, Weakness, and Nocturia. For the last sig-
nal SlowerWalking, HypAD fails to learn a meaningful un-
certainty and labels all reconstructions as certain. It is how-
ever notable that the representation is still interpretable and
the case of failure discernible. Trends are similar for the
cases of Univariate and SWaT datasets.

1The Poincaré ball model is conformal to the Euclidean space and it
preserves the same angles [60].



4. Results
We compare HypAD against the best univariate anomaly

detector TadGAN [21] on a benchmark of 11-time series
and extend the comparison to 2 multivariate sensor datasets:
one comprising a water treatment plant and one comprising
daily activities in elderly residences. First, we introduce
the benchmarks (Sec. 4.1), then we compare against base-
lines and the state-of-the-art (Sec. 4.2), finally, we conduct
ablative studies on the importance of uncertainty for perfor-
mance and the reduction of false alarms (Sec. 4.3).

4.1. Datasets, metrics and experimental setup

Tab. 1 summarizes the main characteristics of the
datasets, which we coarsely divide into univariate, main
test bed of our baseline TadGAN [21], and multivariate, to
which we extend the comparison. In the table, we report
the sources of signals (NASA, Yahoo, NAB, CASAS and
SWaT) and the datasets within each source (SMAP, MSL,
A1, etc.), cf. detailed description later in the section.

In the table, the number of signals is the number of time
series within the datasets. Note that univariate datasets
are composed of multiple signals, while multivariate only
comprise single large time series. The number of anoma-
lies counts the instances, within the time series, labeled
as anomalous. These are further detailed as point anoma-
lies, anomalous values at a specific point in time, or collec-
tive anomalies, sets of contiguous times that are altogether
anomalous. Yahoo is the sole dataset with point anomalies
and with synthetic sequences A2, A3, and A4. We also re-
port the percentage of total anomalous points and, follow-
ing [21], for the univariate datasets, the number of out-of-
distribution points, exceeding the means by more than 4σ.
Univariate datasets. NASA includes two spacecraft teleme-
try datasets based on the Mars Science Laboratory (MSL)
and the Soil Moisture Active Passive (SMAP) signals. The
former consists of scientific and housekeeping engineering
data taken from the Rover Environmental Monitoring Sta-
tion aboard the Mars Science Laboratory. The latter in-
cludes measurements of soil moisture and freeze/thaw state
from space for all non-liquid water surfaces globally within
the top layer of the Earth. The Yahoo datasets are based on
real production traffic to Yahoo computing systems. Addi-
tionally, we consider three synthetic datasets coming from
the same source. The dataset tests the detection accuracy of
various anomaly types including outliers and change points.
The synthetic dataset consists of time-series with varying
trends, noise and seasonality. The real dataset consists
of time-series representing the metrics of various Yahoo
services. Numenta Anomaly Benchmark (NAB) is a well-
established collection of univariate time-series from real-
world application domains. To be consistent with [21], we
analyse Art, AdEx, AWS, Traf, and Tweets from the origi-
nal collection.

Multivariate datasets. We consider for analysis the
SWaT [23, 53] and CASAS [12, 13] datasets. SWaT is col-
lected from a cyber-physical system testbed that is a scaled-
down replica of an industrial water treatment plant. The
data was collected every second for a total of 11 days, where
for the first few days the system was operated normally,
while for the remaining days, certain cyber-physical attacks
were launched. Following [17], we sample sensor data ev-
ery 5 seconds. CASAS is a collection of two weeks of sen-
sor data from retirement homes. Each sensor reading has a
label attached to it, according to the activity of elderly peo-
ple recognised by human annotators. The 5-time series are
a collection of activities, organised by the pre-established
medical conditions: Falling, More Time in Chair, Weak-
ness, Slower Walking, and Nocturia for nightly time visits.
Although sensor readings give fine-grained information, we
are interested in creating daily patient profiles. Hence, we
collapse them into a single engendered activity with a start
and end time for each consecutive sensor signal. We then
create a time matrix structure M|d|,1440 where |d| is the
number of days the patient is monitored and 1440 represent
the total number of minutes in a day. M[i, j] represents the
label performed in minute j of day i. Lastly, we densify
each value M[i, j] with contextual and duration informa-
tion corresponding to the label therein.

Finally, we create train and test splits of this data, safe-
guarding the sequentiality of observations, and gathering
the few anomalies into the test set for evaluation only. We
name this Unsupervised-CASAS, dubbed U-CASAS, dif-
fering from the original CASAS [12, 13] since the latter in-
terleaves anomalous sensor readings with normal instances,
thus breaking the sequentiality of anomalies. For each
anomalous day encountered in the test set, we pad two days
prior to it and two after. If the padding overlaps with another
anomalous day, then we concatenate2 them and perform the
padding procedure again. We delete the days assigned to the
test set from the overall dataset and assign the rest as train-
ing. Moreover, since we employ a time-related strategy, we
create time windows of 30 actions to detect anomalies.
Metrics. Being all the enlisted datasets highly unbalanced,
accuracy is misleading. Therefore, as done in [63], we use
the F1 score to account for this challenge. Notice that we
do not use the cumulative F1 score as proposed in [20]
to evaluate the performances because not all datasets con-
tain anomalous events; rather they contain anomalous data
points. Based on [30], for the univariate and the CASAS
datasets, we penalize high false positive rates and encour-
age the detection of true positives in a timely fashion. Since
anomalies are rare events and come in collective sequences
in real-world applications, we proceed as follows:

2The concatenation procedure merges common sequences. If the se-
quence contains more than one anomalous day within the two-day padding
window, the padded sequence gets collapsed into a single one.



NASA YAHOO NAB
MSL SMAP A1 A2 A3 A4 Art AdEx AWS Traf Tweets F1 (µ± σ)

AE 0.199 0.270 0.283 0.008 0.100 0.073 0.283 0.100 0.239 0.088 0.296 0.176 ± 0.099
LstmAE 0.317 0.318 0.310 0.023 0.097 0.089 0.261 0.130 0.223 0.136 0.299 0.200 ± 0.103
ConvAE 0.300 0.292 0.301 0.000 0.103 0.073 0.289 0.129 0.254 0.082 0.301 0.212 ± 0.096
TadGAN 0.500 0.580 0.620 0.865 0.750 0.576 0.420 0.550 0.670 0.480 0.590 0.600 ± 0.115
HypAD (proposed) 0.565 0.643 0.610 0.670 0.670 0.470 0.777 0.663 0.630 0.570 0.670 0.631 ± 0.075

Table 2. Results on the univariate datasets from NASA, YAHOO and NAB, measured in terms of F1-score.

Fall Weakness Nocturia Slower-walking More time in chair
G F1 G F1 G F1 G F1 G F1 G (µ± σ) F1 (µ± σ)

LstmAE 0.085 0.014 0.182 0.108 0.000 0.000 0.158 0.049 0.133 0.035 0.112 ± 0.064 0.041 ± 0.037
AE 0.139 0.127 0.033 0.027 0.116 0.103 0.000 0.000 0.158 0.049 0.089 ± 0.062 0.061 ± 0.047
ConvAE 0.086 0.014 0.284 0.150 0.251 0.119 0.158 0.048 0.134 0.035 0.183 ± 0.074 0.073 ± 0.052
TadGAN 0.222 0.267 0.570 0.555 0.000 0.000 0.630 0.570 0.267 0.222 0.338 ± 0.233 0.323 ± 0.216
HypAD (proposed) 0.447 0.333 0.660 0.610 0.447 0.333 0.470 0.364 0.577 0.500 0.520 ± 0.095 0.428 ± 0.123

Table 3. Results for the U-CASAS multivariate datasets, measured in terms of F1-score and G-measure.

1. We record a true positive (TP) if any predicted window
overlaps a true anomalous window.

2. We record a false negative (FN) if a true anomalous
window does not overlap any predicted window.

3. We record a false positive (FP) if a predicted window
does not overlap any true anomalous region.

For U-CASAS, we also measure the g-measure which is the
geometric mean of the product of recall (R) and precision
(P), being a robust metric when classes are imbalanced [13].
Baselines. We include the following strategies as our base-
lines in this paper:

• AE [7] - We use a six-layer dense autoencoder.
• ConvAE [51] - We have three layers of convolutional

encoding interleaved with max pooling. The de-
coder has a specular composition as the encoder where
the de-convolution is aided by two-dimensional up-
sampling layers.

• LstmAE [56] - We use a deep-stacked LSTM autoen-
coder with four layers. The first LSTM hidden and
output vectors get passed to the second LSTM layer.
The latent representation of the encoder gets then re-
constructed in reverse order from the decoder.

• TadGAN [21] - We use a one-layer bidirectional LSTM
for the generator E, and a two-layer bidirectional
LSTM for G. For the critic Dz we use a fully con-
nected layer, and two dense layers for Dx.

Implementation details. For the first three baselines, we
set the number of epochs to 30, the batch size to 32, and
the learning rate to 10−3. For TadGAN3, we set the epochs
to 30, the batch size to 64, the window width to 100, the
learning rate to 5 × 10−4, and the iteration for the critic to
5. We use Adam as the optimizer to train all the baselines.
For our proposed method HypAD, we took inspiration from
the PyTorch implementation of TadGAN. We leave the ar-
chitecture of TadGAN unvaried, and incorporate the hyper-

3Pytorch implementation available at https://github.com/
arunppsg/TadGAN

bolic transformation as in [63]. The hyperparameters are
the same as in the original paper, using Riemannian Adam
as optimizer.

4.2. Comparison to the state of the art

HypAD defines a new state-of-the-art performance for
univariate anomaly detection by having the highest aver-
age F1-scores of 0.631. In Tab. 2, HypAD outperforms the
current best technique, TadGAN, by 5.17%, as well as all
baselines by a large margin. In the Table, the column F1
reports mean µ and standard deviation σ over all datasets.
Looking at σ = 0.075, HypAD also appears as the most
consistent performer. Considering the F1-score, the largest
performance gain of HypAD Vs TadGAN are on NAB and
NASA datasets, while it is outperformed more largely on
the A2, A3 and A4 Yahoo datasets, the synthetic ones.

In Tab. 3, we extend the evaluation of HypAD to the
multivariate U-CASAS dataset. We cannot include Isu-
dra [13] because the underlying architecture uses a small
amount of labels to select parameters for the execution. Ad-
ditionally, Isudra is trained in a supervised fashion differing
from all the other methods reported here. For complete-
ness, we report the g-measure [13] and its average across all
datasets. As shown in the table, HypAD surpasses TadGAN
by 32.51% in terms of the average F1-score.

Finally, in Tab. 4, we extend the comparison to the mul-
tivariate SWaT dataset. Here, following [17], we report
the precision and recall in addition to the F1-score. Hy-
pAD outperforms the baseline TadGAN (0.753 Vs. 0.722),
but both techniques are behind the current SoA on multi-
variate anomaly detection, NSIBF [17]. HypAD achieves
its highest F1 performance at the highest precision (0.996)
among all other methods. This confirms that HypAD de-
tects anomalies which it is certain about, i.e. when it under-
stands the time series and it is certain about what to expect,
but cannot reconstruct the input signal due to an anomaly.

https://github.com/arunppsg/TadGAN
https://github.com/arunppsg/TadGAN


Model Precision Recall F1
EncDec-AD [52] [ICML-WorkShop16] 0.945 0.620 0.748
DAGMM [71][ICLR18] 0.946 0.747 0.835
OmniAnomaly [61] [KDD19] 0.979 0.757 0.854
USAD [6] [KDD20] 0.987 0.740 0.846
TadGAN [BigData20] 0.937 0.587 0.722
NSIBF [17] [KDD21] 0.982 0.863 0.919
HypAD (Ours) 0.996 0.605 0.753

Table 4. Results on the SWAT dataset, in terms of F1-score, in-
cluding the corresponding precision and recall.

Figure 4. Qualitative Ablation on SWaT: Anomaly scores (blue
points) that lie above the anomaly detection threshold (red line)
but do not coincide with the ground-truth (green points) are FP.
Euclidean model in plot 1 has many FP. The corresponding hyper-
bolic model in plot 2 is more precise but loses some TP, especially
in the middle region. Integration of uncertainty helps to recover
these points, increasing the TP and overall F-1 score (Sec 4.3).

4.3. Ablation Studies

In Tab. 5, we analyze the importance of the hyperbolic
embedding and the use of uncertainty for anomaly detec-
tion on the univariate datasets, as well as the multivari-
ate U-CASAS and SWaT. The first row shows the perfor-
mance of the model in Euclidean space (average F1-score
across datasets). This corresponds to TadGAN in Tab. 2, 3
and 4. In the second row, we report the performance for
TadGAN with the inclusion of uncertainty via 100 Monte

Univariate U-CASAS SWaT
Euclidean (TadGAN) 0.600 0.323 0.722
Euclidean (TadGAN) + MC dropout 0.618 0.339 0.734
Hyperbolic 0.604 0.397 0.566
Hyperbolic + Uncertainty (HypAD) 0.631 0.428 0.753

Table 5. Ablative evaluation on the importance of the hyperbolic
mapping and the integration of uncertainty. Average F1-scores are
reported for Univariate, U-CASAS and SWaT datasets.

Carlo dropouts. In the third row, we report performance
for the hyperbolic TadGAN without including uncertainty
(cf. Sec. 3.2.1). This improves marginally over the uni-
variate (0.604 Vs. 0.600) and, more importantly, over the
U-CASAS datasets (0.397 Vs. 0.323), but it decreases per-
formance in SWaT (0.566 Vs. 0.722), which we further an-
alyze in the following subsection. The complete proposed
HypAD model, in the fourth row, improves consistently on
both ablative variants. HypAD yields a 4.5% gain on the
univariate datasets, 7.8% on U-CASAS, and 33% on SWaT.
We infer that hyperbolic mapping and its associated uncer-
tainty are fundamental for ameliorating anomaly detection
over the Euclidean counterparts.

Qualitative Ablation on SWaT. In Fig. 4, we demonstrate
qualitative ablation on the SWaT dataset, which consists
of a single long signal. The three plots correspond to the
three ablative variants of Tab. 5. In all plots, the blue and
green points represent the predicted anomaly scores and the
ground-truth anomalies, respectively. The red line denotes
the anomaly detection threshold i.e. blue points above the
red line are the predicted anomalies. FP are blue points
above the red line threshold outside the green (ground-truth)
anomalous regions. As shown in the figure, the Euclidean
model (first plot) yields many FP; the hyperbolic model w/o
uncertainty (second plot) reduces the number of FP sub-
stantially, but it also misses anomalies, esp. in the middle
signal part. This explains the drop in the F-1 score for the
SWaT dataset (cf. Table 5). Integrating hyperbolic uncer-
tainty (proposed HypAD, third plot) recovers the detection
of these anomalies. It increases TP but maintains the num-
ber of FP low, thus yielding the best F1 score of 0.753.

5. Conclusions

We have proposed a novel model for anomaly detection
based on hyperbolic uncertainty, HypAD. The proposed hy-
perbolic uncertainty allows HypAD to self-adjust its out-
put, encouraging the model to either predict a correct recon-
struction or a less certain wrong one. This benefits anomaly
detection in two ways: it provides better reconstructions of
the signal (the deviation from those being anomalous) and it
yields a measure of certainty. This is a novel viewpoint on
anomaly detection: detectable anomaly instances are those
which are certain but wrongly predicted.
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