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Abstract

Self-supervised pretraining has been observed to im-
prove performance in supervised learning tasks in med-
ical imaging. This study investigates the utility of self-
supervised pretraining prior to conducting supervised fine-
tuning for the downstream task of lung sliding classification
in M-mode lung ultrasound images. We propose a novel
pairwise relationship that couples M-mode images con-
structed from the same B-mode image and investigate the
utility of data augmentation procedure specific to M-mode
lung ultrasound. The results indicate that self-supervised
pretraining yields better performance than full supervi-
sion, most notably for feature extractors not initialized with
ImageNet-pretrained weights. Moreover, we observe that
including a vast volume of unlabelled data results in im-
proved performance on external validation datasets, under-
scoring the value of self-supervision for improving gener-
alizability in automatic ultrasound interpretation. To the
authors’ best knowledge, this study is the first to character-
ize the influence of self-supervised pretraining for M-mode
ultrasound. 1

1. Introduction
Pneumothorax (PTX) is a potentially life-threatening

acute condition in which air occupies the space between
the pleura of the lungs, resulting in collapse of the lung.
Rapid identification of PTX is crucial in emergency, crit-
ical, and acute care settings to expedite medical interven-
tion. Point-of-care lung ultrasound (LUS) is a quick, in-
expensive, portable, imaging examination that does not ex-
pose patients to radiation. Despite its low prevalence com-
pared to chest radiographs, LUS has been shown to ex-
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hibit superior diagnostic performance for the diagnosis of
PTX [1, 18]. The lung sliding artefact, caused by the nor-
mal motion of the pleura, has been described as a means
to rule out PTX [16]. Notably, the presence of lung sliding
excludes a diagnosis of PTX within the purview of the ultra-
sound probe [16]. Conversely, PTX is likely present when
lung sliding is absent.

Previous studies have demonstrated that deep convolu-
tional neural networks (CNN) can be trained to distinguish
between the presence and absence of lung sliding on mo-
tion mode (M-mode) ultrasound images [13,25]. Prior stud-
ies were limited by the amount of labelled data available
for training and evaluation. Furthermore, previous studies
initialized their networks using weights pretrained on the
ImageNet dataset [9]. Despite the fact that M-mode im-
ages are profoundly distinct from the natural images present
in ImageNet, it is common for medical imaging studies to
leverage ImageNet-pretrained weights. They are publicly
available for several common architectures and are able to
extract low-level features present in medical images. Un-
fortunately, there are no publicly available equivalents for
M-mode images, let alone LUS.

Self-supervised learning (SSL) is a representation learn-
ing strategy applicable in the absence of labelled data.
CNNs pretrained using SSL have exhibited superior per-
formance and label efficiency compared to fully supervised
counterparts [5, 7, 11, 26]. Broadly, SSL pretraining con-
sists of training a deep neural network to solve a pretext
task, whose solution can be computed from unlabelled ex-
amples. The pretrained weights may be fine-tuned to solve
a downstream task for which labels are present. This study
explores the impact of self-supervised pretraining for the
downstream task of detecting absent lung sliding in M-
mode LUS, varying the choice of SSL method, weight ini-
tialization, data augmentation strategy, and inclusion of un-
labelled data. Crucially, we demonstrate that incorporat-
ing large volumes of unlabelled M-mode images during the
pretraining phase improves the performance of a fine-tuned
classifier on external datasets. More specifically, our major
contributions are as follows:
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• A pairwise relationship for contrastive and non-
contrastive learning that is specific to M-mode images
• A data augmentation pipeline specific to M-mode im-
ages in the context of pretraining
• A comprehensive investigation of factors that influence
the utility of SSL pretraining for the downstream task of
absent lung sliding detection, such as label efficiency, Im-
ageNet initialization, and data augmentation
• Evidence that the inclusion of unlabelled data results
in improved generalization to external datasets for absent
lung sliding detection

Fig. 1 summarizes our methods. To the best of our
knowledge, no study has investigated the efficacy of SSL
for M-mode ultrasound tasks.

2. Related Work
2.1. Lung Sliding Classification

Multiple studies have explored the use of CNNs for auto-
matically identifying absent lung sliding in LUS M-modes.
Jaščur et al. [13] were the first to attempt this task. Us-
ing a dataset of 48 videos acquired from 48 post-thoracic
surgery patients with a single ultrasound probe, their model
achieved a sensitivity of 0.82 and specificity of 0.92. Van-
Berlo et al. [25] developed a binary classifier using a dataset
of 2535 examples acquired from hundreds of patients with
variable probes. When evaluated on a test set of 540 ex-
amples, their model attained a sensitivity and specificity of
0.935 and 0.873 respectively.

2.2. Self-supervised Learning in Computer Vision

Self-supervised learning methods in computer vision can
be categorized in various manners, based on the pretext
task. Generative methods, such as image colourization [27]
and inpainting [20], often involve reconstructing a cor-
rupted image. Predictive tasks, on the other hand, consist
of learning to predict or undo a transformation applied to an
image. For example, the jigsaw pretext task is characterized
by unscrambling randomly permuted rectangular patches of
an image [19].

Several contemporary approaches adopt the joint-
embedding architecture, in which representations of paired
samples are compared. In a contrastive learning task, objec-
tives are designed to minimize the distance between repre-
sentations of paired examples (i.e., positive pairs) and maxi-
mize the distance between those of examples from different
pairs (i.e., negative pairs) [7, 12]. Non-contrastive meth-
ods aim to minimize the difference between positive pairs,
disregarding negative pairs [5, 8, 11, 26]. Recent methods
have added regularizers to mitigate a degenerate solution in
non-contrastive learning in which representations for all ex-
amples trend toward zero vectors [5, 26].

In the context of joint-embedding methods, the pair-
wise relationship enforces constraints between examples
that qualify them as a positive pair. Typically, a positive pair
consists of two perturbations of a single example, where
each perturbation is sampled from a distribution over image
transformations. In their paper demonstrating how SimCLR
improves performance and label efficiency in chest X-ray
and dermatological image classification, Azizi et al. [3] sug-
gested an alternative, situation-specific pairwise relation-
ship that reflects a stronger inductive bias in the pretrained
network – they considered any two distinct images of the
same pathology to be a positive pair. For example, pos-
teroanterior and lateral chest X-rays from the same patient
encounter are a positive pair. A recent theoretical analy-
sis by Balestriero and LeCun lends credence to the idea of
context-specific positive pairs, providing justification that
pretraining using SimCLR [7], Barlow Twins [26], or VI-
CReg [5] will improve performance on a downstream su-
pervised learning task, as long as the pairwise relationship
aligns with the labels for that task [4]. The authors’ results
underline the importance of medical knowledge in design-
ing pretext tasks, motivating the definition of the M-mode
pairwise relationship presented in this study.

2.3. SSL for Medical Ultrasound

SSL for medical ultrasound is underexplored compared
to other medical image modalities, but some studies have
investigated its utility for brightness mode (B-mode) ultra-
sound images and videos. Jiao et al. [14] observed an im-
provement in performance on the downstream task of fetal
plane detection after pretraining a CNN to both reorder the
images of a shuffled fetal ultrasound video and predict a
transformation that was applied to it. Basu et al. [6] ex-
plored the benefit of defining negative pairs within the same
ultrasound video in addition to those across videos, con-
structing a contrastive learning procedure in which intra-
video pairs are introduced to the model after inter-video
pairs. Self-supervised pretraining has also been effective
for multiple echocardiography tasks, including atrial fibril-
lation detection [10], left ventricle segmentation [21], and
view identification [2].

3. Methods
3.1. Dataset

The datasets used for all training experiments in this
study originated from a large, private B-mode LUS database
collected from two hospitals within an academic healthcare
institution, the use of which is permitted by ethics approval
granted by Western University (REB 116838) A portion of
this database was previously labelled for the presence or ab-
sence of lung sliding by a critical care physician possessing
expertise in LUS (hereafter referred to as the LUS expert).
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Figure 1. An overview of the methods in this paper. (1) Self-supervised pretraining using pairs of M-mode images extracted from the
same B-mode LUS video. Both M-mode images are passed through a joint-embedding SSL architecture, consisting of a CNN feature
extractor and multilayer perceptron projector in series. The objective, LSSL, is computed using the embeddings outputted by the projector.
The pretrained CNN feature extractor is retained and the multilayer perceptron projector is discarded. (2) A single-node output layer
is appended to the pre-trained feature extractor. The resulting model is fine-tuned to solve the downstream task of absent lung sliding
detection by minimizing the binary cross entropy loss with respect to the labelled training set.

All LUS videos were divided into 3 s segments, with excess
frames discarded. The resulting dataset, hereafter referred
to as Dlab, contained 4793 videos. Dlab was then randomly
split by patient into three partitions: a training set of 3254
videos (Dtrain), validation set of 743 videos (Dval), and test
set of 796 videos (Dtest). The database was queried for ad-
ditional videos containing the A-line artefact but that were
missing labels for lung sliding. This additional tranche of
14249 unlabelled videos is referred to as Dunl. Fig. 2 illus-
trates the dataset split.

To investigate model generalizability, we evaluate on
three additional datasets from external healthcare institu-
tions labelled for lung sliding: Dext1, Dext2, and Dext3. Tab. 1
provides details on the label and patient decomposition of
all labelled datasets.

3.1.1 M-modes from B-modes

We follow a similar method outlined in [25] to extract M-
mode images from greyscale B-mode videos. For the binary
classification task, the vertical slice of the B-mode video
with the maximum total pixel intensity is selected from all
possible vertical slices within the horizontal bounds of the
pleural line. This heuristic is consistent with the clinical
notion that, in the vast majority of cases, the pleural line
is the brightest artefact in a LUS image of the upper and
middle lobes of the lung. All M-mode images were resized

D unl

D train D val D test D ext1 D ext2 D ext3

D lab

Figure 2. The datasets used in this study. Dlab is labelled for the
downstream lung sliding classification task. It is split randomly by
70%/15%/15% into Dtrain, Dval, and Dtest, such that patients do
not appear in multiple partitions.

to 128× 128 pixels prior to pretraining. When pretraining,
we retain the top 50% of each video’s M-modes, ordered
by total pixel intensity. As will be discussed in Sec. 3.2.2,
the pairwise relationship for M-modes requires distinct M-
mode images from the same video.

3.2. Self-Supervised Learning

3.2.1 Pretext Tasks

We investigate three commonly employed joint-embedding
self-supervised pretraining techniques from the literature.
SimCLR [7] is a contrastive learning method that employs a
temperature-scaled cross entropy objective. We set the tem-
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Dtrain Dval Dtest Dunl Dext1 Dext2 Dext3

Lung sliding Present Videos 2509 564 607 - 84 121 424
Patients 366 76 72 - 25 55 155

Lung sliding Absent Videos 745 179 189 - 26 30 77
Patients 199 49 48 - 4 11 40

Total Videos 3254 743 796 14 249 88 151 501
Patients 565 125 120 3113 29 66 195

Table 1. Class decomposition

perature to τ = 0.1. Barlow Twins [26] is a non-contrastive
learning method that minimizes distance between embed-
dings of pairs and includes an embedding decorrelation reg-
ularizer. We employ Barlow Twins with λ = 0.005 for the
weight of the decorrelation regularizer. Inspired in part by
Barlow Twins, VICReg [5] is a non-contrastive method that
includes a regularizer that minimizes variance across the
embedding dimension. We conduct pretraining trials with
each of these methods. We set the weights of VICReg’s
three objective components to λ = 25, µ = 25, and ν = 1.

We pretrain for 100 epochs and use a batch size of 128
for all experiments. As in [3], we also investigate the ef-
fect of initializing the feature extractors with ImageNet-
pretrained weights prior to self-supervised pretraining. Af-
ter all pretraining experiments, weights of the projector are
discarded and the feature extractor are preserved for ini-
tialization in the downstream task. We adopt the Efficient-
NetB0 [23] architecture as the feature extractor for all ex-
periments, discarding the final block to reduce model capac-
ity. In each experiment, the projector is a multilayer percep-
tron with 3 layers of 128 nodes, with the rectified linear unit
activation applied to each hidden layer.

3.2.2 Pairwise Relationship

As outlined in Sec. 3.1.1, the brightest 50% of the M-mode
images within the bounds of the pleural line are utilized for
pretraining. We consider any such M-mode images from the
same video to be a positive pair. Qualitatively, different M-
mode images produced from the same B-mode video appear
very similar. Crucially, they would have the same lung slid-
ing label, fulfilling the alignment condition outlined in [4].
Fig. 3 displays examples of positive pairs of M-modes. We
fix the pairwise relationship to focus on evaluating data aug-
mentation transformations and the effects of pretraining un-
der different settings, relegating an ablation study for the
M-mode pairwise relationship to future work.

3.2.3 Data Augmentation Strategy

A pretraining data augmentation strategy was devised to
improve the invariance against inconsequential transforma-

tions and noise inherent to M-mode images. Transforma-
tions were identified that simulate natural variations present
in M-mode LUS but that do not impact the patterns exhib-
ited by absent or present lung sliding, such as speckle noise
and variable depth, gain, and contrast. The following series
of stochastic transformations is applied to each M-mode im-
age prior to subjecting it to the forward pass in pretraining:

1. With probability 0.8, we random crop of c ∼
U(0.08, 1.0) of the image’s area, which is resized to
its original dimensions. To ensure the pleural line was
retained, the top of the crop was always within the up-
per half of the image.

2. With probability 0.5, horizontal flip

3. With probability 0.5, Gaussian blur with a horizontal
kernel of 10 pixels and σ ∼ U(0.1, 2.0)

4. With probability 0.5, random additive Gaussian noise
is added to each pixel, sampled from N (µ, σ2), where
µ ∼ U(−10, 10) and σ ∼ U(0, 25)

5. With probability 0.5, application of speckle noise, sim-
ulated using multiplicative Gaussian noise, sampled
from N (1, σ2), with σ ∼ U(0, 0.1)

6. With probability 0.8, brightness adjustment by
c ∼ U(−0.4, 0.4)

7. With probability 0.8, contrast adjustment by
c ∼ U(−0.4, 0.4). With probability 0.5, contrast ad-
justment occurs before brightness adjustment.

In summary, a positive pair consists of two M-mode im-
ages taken from a 3 s segment of the same original B-mode
LUS video that are then transformed via data augmentation.
See Fig. 4 for some examples of positive pairs.

3.3. Evaluation Protocol

3.3.1 Lung Sliding Classification

The downstream supervised learning task is the identifica-
tion of absent lung sliding in M-mode images, which is a
binary classification task. M-mode images of the upper and
middle lobes of the lung are well suited for this problem,
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(a) Lung sliding, seashore sign. (b) Lung sliding, seashore sign. (c) Absent lung sliding, barcode sign. (d) Absent lung sliding, barcode sign

Figure 3. Examples of M-mode images satisfying the pairwise relationship of belonging to the same original B-mode video and intersecting
the pleural line.

(a) Custom M-mode augmentation pipeline (b) BYOL augmentation pipeline [11]

Figure 4. A selection of M-mode positive pairs that have been subjected to the M-mode-specific data augmentation pipeline.

as there exist established visual patterns employed by clini-
cians to distinsuish between present and absent lung sliding.
The seashore sign is indicative of lung sliding [15], whereas
the barcode sign signals absent lung sliding [17]. We con-
sider absent lung sliding to be the positive class.

3.3.2 Data Augmentation Pipeline Evaluation

We first ascertain the merit of the custom M-mode LUS
data augmentation pipeline for the pretext task (described
in Sec. 3.2.3), as opposed to the ubiquitously cited augmen-
tation pipeline for the “Bring Your Own Latent” (BYOL)
SSL pretraining method proposed by Grill et al. [11], which
we accordingly refer to as the BYOL augmentation pipeline.
Unlike the original BYOL study, we do not apply hue
changes because LUS M-mode images are greyscale. For
each of the three studied pretraining methods, two CNN
feature extractors are trained using Dtrain on the pretext task
using the custom and BYOL augmentation pipelines respec-
tively, producing a total of six feature extractors. A linear
classifier is then appended and trained on the downstream
task for each of the feature extractors. The best-performing
augmentation pipeline across such experiments is then used
for all subsequently performed pretraining trials.

3.3.3 Linear and Fine-tuning Evaluation

To investigate the effect of self-supervised pretraining on
the performance in the downstream task, we adopt an eval-
uation protocol similar to those conducted by contemporary
SSL publications that evaluate on natural images. We ap-
pend a single-node fully connected layer to the feature ex-
tractor with sigmoid activation.

We consider two methods to evaluate the utility of
weights pretrained with SSL – linear modelling and fine-
tuning. In the linear evaluation, the weights of the pre-
trained model are fixed and a linear classifier is trained us-
ing the feature representations from the extractor. In the
case of fine-tuning, all model weights past the first block of
the network are subject to updates. In both cases, we train
for 40 epochs with a learning rate of 1× 10−4, which is
decayed by 0.03 every epoch after the 15th epoch. There
is a heavy class imbalance in Dlab that favours present lung
sliding. As a result, we oversample the minority class, tak-
ing the second, third, and fourth brightest M-modes from
each absent lung sliding video. Models are trained using
the binary cross entropy loss function. Data augmentation
is applied to training images, with random contrast reduc-
tion by c ∼ U(0, 0.3), random brightness adjustment by
b ∼ U(−0.1, 0.1), additive Gaussian noise sampled from
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N (0, 5), and random horizontal flip. The model weights re-
sulting in the lowest loss on Dval were saved for evaluation.

The performance of self-supervised pretrained models
are compared against two fully supervised baselines, where
weights are initialized with either ImageNet-pretrained
weights or random weights.

3.3.4 Label Efficiency

To assess the effects of SSL pretraining in its entirety, it is
essential to consider its potency with respect to both perfor-
mance differences and the ability to leverage otherwise un-
usable unlabelled datasets. Accordingly, we carry out a se-
ries of experiments that compare downstream performance
under different levels of labelled data availability. We pre-
train on Dtrain and fine-tune using progressively larger sub-
sets of Dtrain. Fine-tuning is repeated using ImageNet-
pretrained weights and randomly initialized weights, facil-
itating comparisons in low-label scenarios. Lastly, we pre-
train on a large dataset consisting of Dlab and Dunl.

3.3.5 Explainability

Saliency maps (also referred to as “heatmaps”) are a type of
explanation for CNN predictions that consist of the orginal
image superimposed onto a colour map indicating the re-
gions that were most contributory to the prediction. We
generate saliency maps using Grad-CAM [22] for selected
predictions using models pretrained with SSL, initialized
with ImageNet weights, and randomly initialized. The LUS
expert compares the appropriateness of the saliency maps
produced for pretrained and fully supervised models.

4. Results
4.1. Data Augmentation

We investigate the effect of applying our custom M-
mode data augmentation pipeline in the pretraining phase.
Three models were pretrained using the examined SSL
methods. We execute linear evaluation trials and compare
the AUC on Dval. As demonstrated in Tab. 2, the cus-
tom M-mode augmentation pipeline results in higher per-
formance in linear evaluation when the pretrained models
are initialized randomly. Interestingly, the BYOL augmen-
tation pipeline exhibits a marked improvement compared
to the M-mode-specific augmentations in the case of Ima-
geNet initialization. As a result, all further experiments pre-
trained from scratch and from ImageNet-pretrained weights
use the M-mode augmentations and BYOL augmentations
respectively.

4.2. Comparison with Supervised Baselines

To assess the quality of the pretrained representations,
we conduct linear evaluation and fine-tuning trials using

Random init. ImageNet init.
BYOL M-mode BYOL M-mode

SimCLR 0.585 0.658 0.864 0.827
Barlow Twins 0.554 0.578 0.826 0.818
VICReg 0.6208 0.6377 0.826 0.798

Table 2. AUC on Dval of linear classifier trained using feature
representations from various self-supervised networks.

pretrained feature extractors. The results on Dtest are com-
pared with a linear classifier trained atop feature extractors
initialized randomly and with ImageNet-pretrained weights.
Tab. 3 summarizes the performance on Dtest. Immedi-
ately apparent is the utility of initializing all feature extrac-
tors with ImageNet-pretrained weights, including those pre-
trained with SSL. Among the fine-tuning trials initialized
with ImageNet, self-supervised pretrained models exhibit
greater test performance. The results are less clear for lin-
ear evaluation using ImageNet weight initialization, as lin-
ear models using a frozen ImageNet-pretrained feature ex-
tractor achieve the greatest test AUC and sensitivity. We ad-
ditionally find that in all cases where weights are initialized
randomly, self-supervised pretrained models outperform the
fully supervised baselines.

4.3. Label Efficiency

One of the major benefits of SSL is its ability to lever-
age unlabelled examples. To measure the effect of varying
proportions of labelled data, we drop fractions of the labels
in Dtrain and conduct fine-tuning using networks pretrained
using Barlow Twins on all examples in Dtrain. Fig. 5 de-
tails the results. The feature extractor trained from scratch
benefitted from self-supervised pretraining in the low-label
setting. However, it appears that this benefit is greatly di-
minished when the pretrained feature extractor and fully su-
pervised feature extractor are both initialized with weights
pretrained on ImageNet.

To further elucidate the benefit of pretraining with
greater volumes of unlabelled data, we pretrain on both
Dtrain and Dunl using Barlow Twins and compare the perfor-
mance to pretraining with Dtrain alone. As shown in Tab. 4,
more unlabelled data greatly improves the test performance
of the feature extractors pretrained using random initializa-
tion, while performance drops for those initialized with Im-
ageNet weights.

4.4. Evaluation on External Datasets

We evaluate all pretrained and fully supervised fine-
tuned models initialized with ImageNet-pretrained weights
on Dext1, Dext2, and Dext3. The results, presented in Tab. 5,
do not indicate that the self-supervised models pretrained on
Dtrain outperform the fully supervised baseline when evalu-
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Dtest AUC Dtest Specificity Dtest Sensitivity Dtest Accuracy
Pretraining Method Initialization Linear Fine-tune Linear Fine-tune Linear Fine-tune Linear Fine-tune

SimCLR ImageNet 0.742 0.861 0.764 0.909 0.497 0.545 0.701 0.823
Random 0.645 0 .662 0.582 0.755 0.619 0.476 0.590 0.688

Barlow Twins ImageNet 0.707 0.866 0.705 0.845 0.598 0.741 0.680 0.820
Random 0 .646 0.634 0.644 0.718 0.534 0.460 0.618 0.657

VICReg ImageNet 0.738 0.834 0.661 0.84 0.703 0.656 0.671 0.797
Random 0.609 0.619 0 .926 0 .860 0.286 0.318 0 .774 0 .731

None ImageNet 0.768 0.854 0.638 0.834 0.751 0.714 0.665 0.805
Random 0.500 0.585 0.000 0.563 1 .000 0 .540 0.237 0.558

Table 3. Downstream performance on Dtest, trained Dtrain. Typescript entries correspond to the best performance when using randomly
initialized weights and boldface entries identify the best performance for trials initialized with ImageNet-pretrained weights.

Figure 5. AUC on Dtest for fine-tuned models initialized from
weights pretrained using Barlow Twins and fully supervised mod-
els initialized randomly or with ImageNet-pretrained weights.

Initialization Pretraining data Dtest AUC

Random Dtrain 0.634
Dtrain +Dunl 0.799

ImageNet Dtrain 0.866
Dtrain +Dunl 0.838

Table 4. Downstream classification performance of models pre-
trained using Barlow Net using labelled and unlabelled datasets.

ated on datasets originating from other centres. However,
with the exception of sensitivity, we find that performance
on external datasets distinctly increases when models are
pretrained on Dtrain and Dunl combined, highlighting a po-
tential benefit of leveraging unlabelled data when labels are
partially available.

4.5. Explainability

To explore the patterns learned by the fine-tuned models,
we select the pretrained network with the greatest Dtest AUC
(Barlow Twins) and produce saliency maps for 4 M-mode
images in Dtest, using the pretrained network and a fully

(a) False positive for both models. (b) True negative for both models.

(c) False negative for the fully su-
pervised model; true positive for the
pretrained model.

(d) True positive for both models.

Figure 6. A selection of saliency maps for predictions produced by
both a fully supervised model (left in each subfigure) and a model
pretrained with Barlow Twins.

supervised network initialized with ImageNet-pretrained
weights (see Fig. 6). The LUS expert reviewed the saliency
maps without knowing which method was used to produce
them and rated the appropriateness of the heatmaps using
a 4-point Likert scale from 0 to 3, based on whether the
highlighted regions correspond to the areas of clinical inter-
est. For instance, despite the false positive prediction by the
self-supervised model shown in Fig. 6a, the far field (bot-
tom of the image) is dark, and the saliency map indicates
activation by the poignant straight lines in the near field,
producing a prediction of absent lung sliding. The saliency
maps generated for the pretrained model and fully super-
vised model scored averages of 2.5 and 1.5 respectively.

5. Discussion

The results in this study characterize the utility of
self-supervised pretraining for M-mode LUS examinations.
First, it is clear that fine-tuning a self-supervised fea-
ture extractor provides improved initial feature represen-
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Pretraining dataset(s) AUC Specificity Sensitivity Accuracy

SimCLR
Dtrain 0.765 [0.063] 0.765 [0.043] 0.532 [0.042] 0.729 [0.037]

Dtrain + Dunl 0.778 [0.053] 0.862 [0.046] 0.429 [0.103] 0.834 [0.056]

Barlow Twins
Dtrain 0.802 [0.071] 0.728 [0.043] 0.727 [0.138] 0.731 [0.048]

Dtrain + Dunl 0.833 [0.059] 0.761 [0.042] 0.723 [0.076] 0.756 [0.036]

VICReg
Dtrain 0.807 [0.048] 0.727 [0.073] 0.785 [0.021] 0.740 [0.059]

Dtrain + Dunl 0.817 [0.053] 0.705 [0.076] 0.760 [0.114] 0.720 [0.054]
Fully Supervised - 0.804 [0.076] 0.682 [0.097] 0.761 [0.075] 0.699 [0.071]

Table 5. Mean [std] performance across the three external datasets for pretrained and fully supervised models. Each was initialized with
ImageNet weights and (pre)trained using Dtrain. Models pretrained using Dtrain and Dunl outperformed those pretrained using Dtrain alone.

tations compared to randomly initialized weights. The
gap in performance on unseen examples strikingly narrows
when pretrained models and their fully supervised coun-
terparts are initialized using the omnipresent ImageNet-
pretrained weights. These results indicate that, while there
may be performance gains when fine-tuning SSL-pretrained
models, the state-of-the-art constrastive and nonconstra-
tive methods alone are not sufficient to reap substantial
gains when trained on the labelled dataset and initialized
with ImageNet-pretrained weights. However, when training
from scratch, practitioners may benefit from pretraining.

A major insight derived from the results is that SSL-
pretrained models improve performance on datasets from
external centres for the task of lung sliding classification
when using large volumes of unlabelled data that do not
appear in the training set. Generalizability is a paramount
concern for any organization deploying machine learning
systems in healthcare settings. This finding is consistent
with the results of studies showing that SSL pretraining im-
proves performance on external data in other medical imag-
ing domains, such as chest X-ray classification [3, 24], der-
matologic image classification [3], and pathology slide clas-
sification [28]. Practitioners seeking to promote generaliz-
ability are therefore encouraged to employ self-supervised
pretraining using any available unlabelled data.

Another noteworthy finding is that ImageNet-initialized
feature extractors pretrained with the BYOL augmenta-
tion pipeline yield better performance for the downstream
classification task. Again, the duality between ImageNet-
pretrained and randomly initialized feature extractors man-
ifests itself, as the M-mode augmentation pipeline pro-
duces better feature representations when pretrained mod-
els were initialized randomly. We conjecture that the
BYOL augmentation pipeline’s efficacy is related to the fact
that the pretrained models were initialized with ImageNet-
pretrained weights, since the original BYOL paper (and
subsequent SSL publications, such as [5, 26]) focused on
improving downstream tasks with ImageNet [11].

The present work has notable limitations. The training
set consisted of LUS examinations collected within a single
healthcare institution, thereby limiting heterogeneity with

respect to sources of variance such as device manufacturer,
practitioner skill sets, and patient populations. Secondly,
SimCLR performs best when larger batch sizes are em-
ployed during pretraining [7]; however, due to material lim-
itations, we utilize a considerably small batch size. In keep-
ing with the authors’ findings, we train for a large number of
epochs to mitigate the impact of a small batch size. Lastly,
this study did not meet or exceed the performance metrics
reported in the most recent publication regarding automatic
lung sliding classification [25]. However, unlike [25], we
employ different datasets, we use standard binary cross en-
tropy loss, we do not apply any techniques to mitigate over-
fitting, and we do not add fully connected layers between
the feature extractor and the output layer. Rather than aim-
ing to maximize the performance of the classifier, our fo-
cus is to study the effect of different SSL strategies and data
augmentation distributions on the quality of representations.

There are multiple avenues for future work. First, a sub-
sequent investigation could undertake a comprehensive in-
quiry into the data augmentation transformations for joint-
embedding SSL methods applied to M-mode LUS. sec-
ondly, the lack of consensus regarding the augmentation
pipeline motivates future work concerning the underlying
reasons and possible discovery of novel M-mode ultrasound
data transformations. Lastly, further research could explore
alternative pretext tasks. In this study, we propose a pair-
wise relationship for M-mode images consisting of images
that were taken from the same B-mode video, adopting
common contrastive and non-contrastive learning pretext
tasks; however, a novel pretext task could be formulated to
better suit the M-mode ultrasound domain.

6. Conclusion

A selection of contemporary contrastive and non-
contrastive SSL pretraining methods were investigated for
LUS M-mode data, using a pairwise relationship specific
to M-mode LUS. When evaluated on the downstream bi-
nary classification task of absent lung sliding detection,
fine-tuned feature extractors initialized with self-supervised
pretrained weights generally exhibited greater performance
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than fully supervised counterparts. Pretraining with larger
unlabelled datasets resulted in improved metrics on evalu-
ation datasets from external institutions. The results spur
multiple directions for future work, such as the refinement
of M-mode ultrasound data augmentation pipelines for SSL
and the evaluation of alternative or novel pretext tasks.
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