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Abstract

There are two critical sensors for 3D perception in autonomous driving, the camera
and the LiDAR. The camera provides rich semantic information such as color,
texture, and the LiDAR reflects the 3D shape and locations of surrounding objects.
People discover that fusing these two modalities can significantly boost the perfor-
mance of 3D perception models as each modality has complementary information
to the other. However, we observe that current datasets are captured from expen-
sive vehicles that are explicitly designed for data collection purposes, and cannot
truly reflect the realistic data distribution due to various reasons. To this end, we
collect a series of real-world cases with noisy data distribution, and systematically
formulate a robustness benchmark toolkit, that simulates these cases on any clean
autonomous driving datasets. We showcase the effectiveness of our toolkit by
establishing the robustness benchmark on two widely-adopted autonomous driving
datasets, nuScenes and Waymo, then, to the best of our knowledge, holistically
benchmark the state-of-the-art fusion methods for the first time. We observe that: i)
most fusion methods, when solely developed on these data, tend to fail inevitably
when there is a disruption to the LiDAR input; ii) the improvement of the camera
input is significantly inferior to the LiDAR one. We further propose an efficient
robust training strategy to improve the robustness of the current fusion method. The
benchmark and code are available at https://github.com/kcyu2014/lidar-camera-
robust-benchmark.

1 Introduction

3D detection has received extensive attention as one of the fundamental tasks in autonomous driving
scenarios [41, 30, 42, 29, 11, 14, 27, 7, 39, 22]. Recently, fusing the two common modalities, input
from the camera and LiDAR sensors, has become a de-facto standard in the 3D detection domain as
each modality has complementary information of the other [4, 33, 34, 31, 40, 8, 44]. Similar to other
literature in the computer vision community, a common approach to showcase the effectiveness of a
proposed fusion method is to validate it on the existing benchmark datasets [32, 3], which are usually
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Figure 1: Benchmarking the robustness of state-of-the-art 3D detection methods. (a) We provide
a knowledge graph of all noisy fusion cases. (b) We report the performance of current methods on
two robustness datasets, Waymo-R and nuScenes-R, which are generated by our proposed toolkit. We
observe that current fusion methods are more robust to image disruption rather than the LiDAR one.

collected from explicitly designed, expensive data collection vehicles to minimize any potential error
from the hardware setup.

However, we discover that the data distribution of these popular datasets can be drastically different
from the realistic driving scenarios due to various reasons: i) there can be uncontrollable external
reasons, such as splatted dirt or BIOS malfunctions, that temporarily disable the input of certain
sensors; ii) the inputs can be difficult to synchronize due to external and internal reasons, like bumpy
road or system clock misalignment. Therefore, we cannot estimate the performance of methods under
these realistic settings, and evaluating only on these clean datasets is not trustworthy when deployed
to realistic scenarios.

To this end, we close this research gap by proposing a novel toolkit that transforms any clean
benchmark dataset, which has the camera and LiDAR input modality, into a robustness benchmark
to simulate realistic scenarios. We first conduct a systematic overview of potential sensor noisy
cases, both for the camera and LiDAR, based on realistic driving data, and summarized a knowledge
graph in Figure 1(a). Specifically, we identify seven unique cases under three categories, two for
noisy LiDAR cases, two for noisy camera cases, and three for ill-synchronization cases. We then
carefully study each case and construct a code toolkit to transform the clean data into a realistic data
distribution.

To verify the effectiveness of our approach, we apply our toolkit to two large-scale popular benchmark
datasets for autonomous driving, nuScenes and Waymo. Note that, though these noisy cases rarely
appear in realistic scenarios, we convert all data from a dataset to fully explore the robustness of a
given method in an extreme manner. We collect two single modalities and three fusion state-of-the-art
methods and benchmark them on the generated datasets. In Figure 1 (b), we observe several surprising
findings: i) state-of-the-art fusion methods tend to fail inevitably when the LiDAR sensor encounters
failures due to their fusion mechanism heavily relies on the LiDAR input; ii) fusing the camera
input only brings a marginal improvement, suggesting either the current methods fail to sufficiently
leverage the information from the camera or the camera information did not carry the complementary
information as intuited. Note that the toolkit only generates one failure case at a time, we do not create
a robust benchmark that has multiple malfunctions at the same time. Though the main purpose of this
work is to create a robustness bnechmark, we nonetheless provide a simple method, which finetunes
the model on these robustness scenarios, and show that it moderately improves the robustness of
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current methods. However, there is still a large performance gap when compared to the results of the
clean settings.

We argue that an ideal goal of a fusion framework is when there is only a single modality sensor
failure, the performance should not be worse than the method works on the other modality. Otherwise,
the current fusion methods should be replaced by using two separate networks for each modality and
performing fusion by post-processing steps [4, 21]. We hope our work can shed light on developing
robust fusion method that can be truly deployed to the autonomous vehicle.

In summary, our main contribution can be summarized as follow: i) we systematically study the
noisy sensor data in the realistic driving scenarios and propose a novel toolkit that can transform any
autonomous driving benchmark datasets, that contain camera and LiDAR input, into a robustness
benchmark; ii) to the best of our knowledge, we are the first to benchmark existing methods under
the same settings and find that current fusion methods has a fundamental flaw and can fail inevitably
when there is a LiDAR malfunction.

2 Related Work

In this section, we provide a literature review of current fusion methods in the 3D detection domain
and the robustness evaluation.

Fusion methods in 3D detection. LiDAR and camera are two types of complementary sensors for
3D object detection in autonomous driving. In essence, the LiDAR sensor provides an accurate
depth and shape information of the surrounding world in form of sparse point clouds [26, 25, 24,
30, 42, 13, 47, 37, 43, 29], while the camera sensor provides an RGB-based image that contains rich
semantic and texture information [19, 28, 18, 10, 46, 48, 27, 36, 35, 23, 27, 7, 39]. Recently, fusing
these modalities to leverage the complementary information becomes a de-facto standard in the 3D
detection domain. Based on the fusion mechanism location, these methods can be divided into three
categories, early, deep, and late fusion schemes.

Early fusion methods mainly concatenate the image features to the original LiDAR point to enhance
the representation power. Specifically, these methods rely on the LiDAR-to-world and camera-to-
world calibration matrix to project a LiDAR point on the image plane, where it serves as a query
of image features [33, 34, 31, 40, 8, 44]. Deep fusion methods extract deep features from some
pre-trained neural networks for both modalities under a unified space [1, 12, 9, 4, 45, 16, 15], where
a popular choice of such space is the bird’s eye view (BEV) [1, 45]. While both early and deep fusion
mechanisms usually occur within a neural network pipeline, the late fusion scheme usually contains
two independent perception models to generate 3D bounding box predictions for both modalities, then
fuse these predictions using post-processing techniques [4, 21]. One benefit of these works is their
robustness against single modality input failure. However, it is difficult to jointly optimize this line
of methods due to the post-processing technique being usually non-differentiable. In addition, this
pipeline has a potential higher deployment cost as it has three independent modules to be maintained.

Robustness of LiDAR-Camera Fusion. In the domain of autonomous driving, there lacks such a
benchmark dataset for robustness analysis to the best of our knowledge. There only exists a few
preliminary attempts to investigate the robustness issue of the fusion methods. TransFusion [1]
evaluates the robustness of different fusion strategies under three scenarios: splitting validation set
into daytime and nighttime, randomly dropping images for each frame, misaligning LiDAR and
camera calibration by randomly adding a translation offset to the transformation matrix from camera
to LiDAR sensor. However, TransFusion [1] mainly explores the robustness against camera inputs,
and ignores the noisy LiDAR and temporal misalignment cases. DeepFusion [12] examines the
model robustness by adding noise to LiDAR reflections and camera pixels. Though the noise settings
of DeepFusion [12] are straightforward and brief, the noisy cases almost never appear in real scenes.

By contrast, we systematically review the autonomous driving perception system and identify three
categories, in a total of seven cases of robustness scenarios, and propose a toolkit that can transform
an existing dataset into a robustness benchmark. We hope our work can help future research to
benchmark the robustness of their methods fairly, and give researchers more insights about designing
a more robust fusion framework. An ideal fusion framework should work better than a single modality,
and will not be worse than the single modality model while the other modality fails. We hope the
deep fusion method is better than late fusion methods that use post-processing techniques.
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Table 1: Common reasons for noisy data cases. Based on the realistic experiences, we report
various reasons that cause the noisy data cases. Note that both LiDAR and camera modality can
encounter the temporal misalignment issue.

Group Reason Consequent Case

Noisy LiDAR

LiDAR sensor damage no LiDAR point inputs

Installation limitation of LiDAR limited LiDAR field-of-view

Low reflection rate of objects LiDAR object failure

Noisy camera Camera sensors damage Missing of corresponding image inputs

Camera lens occlusion Lens Occlusion

Ill-synchronization

Vibration during driving Spatial misalignment

Loose physical mounting Spatial misalignment

Instability of car computer Temporal misalignment

Temporary insufficient cable bandwidth Temporal misalignment

Sensor connection failure Temporal misalignment

3 Robust Fusion Benchmark

In this section, we first provide a systematic overview of current autonomous driving vehicle systems
with LiDAR and camera sensors to show why the data distribution of clean datasets can differ from
real-world scenarios. These noisy data cases can be categorized into three broad classes, noisy
LiDAR, noisy camera, and ill-synchronization cases. Then, we present a toolkit that can transform
current clean datasets into realistic scenarios.

3.1 An overview of modern autonomous driving vehicle system

Computer
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Figure 2: Autonomous driving perception system with camera and LiDAR sensors.

In Figure 2, we visualize a common design of the autonomous driving perception system, whose main
components include the camera and LiDAR sensor, and an on-device computer. Specifically, the
camera and LiDAR sensors are physically mounted on certain fixed locations of the vehicle and are
connected to the computer via certain cables with communication protocols. In essence, the computer
can access the data stream from the sensors and capture the data into a point cloud or image with
a certain timestamp. As the raw data are in the sensor coordinate system, sensor calibration plays
a major role in performing efficient coordinate transformation such that the perception system can
recognize objects with respect to the ego-car coordinate system. Based on our experience, each step
of the aforementioned system can encounter certain failures or disruptions, and yield noisy data that
are drastically different from the normal clean data. We identify three categories of cases and briefly
discuss the potential reasons and consequences in Table 1, and provide a detailed case analysis later.

3.2 Case analysis

In this section, we analyze the collected real-world noisy data cases of autonomous driving in detail.
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Figure 3: Limited LiDAR field-of-view. This figure is better viewed in color. (Left) We visualize
the complete LiDAR point clouds that come from the data collection vehicle which has a complete
sensor rack. (Right) In realistic scenarios, the LiDAR is installed in a front-facing manner, yielding a
limited FOV.

Figure 4: LiDAR object failure. On rainy days, the reflection rate of some common objects (e.g.,
the black car in the yellow box) is below the threshold of LiDAR hence causing the issue of object
failure. This figure is better viewed in color.

3.2.1 Noisy LiDAR Data

We identify two common cases that can cause noisy LiDAR data in practice.

Limited LiDAR field-of-view (FOV). While most companies collect the LiDAR data whose field-
of-view is 360 degrees, certain LiDAR data might not always be available for various reasons. For
example, a certain type of vehicle only installs a front-facing semi-solid LiDAR sensor on the roof of
the car instead of using a full rack, as shown in the right part of Figure 3. Another common reason
might be the temporary occlusion of the LiDAR sensor. Without loss of generality, we first convert
the coordinate of LiDAR points from Euclidean (in x, y, z) to polar coordinate system (r, θ, z). We
then can simulate such limited FOV by dropping the points that satisfy θ ∈ (−θ0, θ0). In practice,
we set θ0 to 0, 60, and 90 degrees to simulate three commonly seen scenarios.

LiDAR object failure. One common scenario that people tend to overlook is that the LiDAR can be
blind to objects under certain constraints. We show one example from the realistic data captured on a
commercialized autonomous driving system in Figure 4. We observe that the LiDAR point clouds are
drastically different from two side-by-side cars, where the black car has nearly zero points while the
white car has a normal point distribution. We dub this phenomenon LiDAR object failure. Without
loss of generality, we simulate such scenarios by randomly dropping the points within a bounding
box with a probability of 0.5. Note that we do not alter the camera input because the purpose is to
benchmark the single modality input data.
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Figure 5: Visualization of camera occlusion. We display the original images from four different
scenarios in the nuScenes dataset (Left), the randomly sampled dirt occlusion masks (Middle), and
the final composed images that simulating the occlusion (Right).

3.2.2 Noisy Camera Sensor

Different from the LiDAR module, the camera module is usually installed on much lower locations of
the autonomous driving vehicles to cover the blind region of the LiDAR sensor. Such blind region is
due to the fact that the LiDAR is usually installed on the roof of the car to maximize the visualization
distance, while it cannot see the near-car region due to blockage. As such, the camera can be easily
affected by the surrounding environment such as temporary generic object coverage or lens occlusion
of dirt. We discuss these two scenarios in detail.

Missing camera inputs. As the camera module is usually much smaller (within one centimeter) than
the LiDAR sensor, the probability of covering half of the camera sensor is minimal. Thus, we drop
the entire camera input to simulate such covering scenarios. In practice, we design two finer cases to
perform a robust benchmark, dropping one camera at a time, and dropping all other cameras except
the front one.

Camera lens occlusion. Another commonly seen camera covering problem is lens occlusion caused
by non-transparent liquid or dirt. To simulate the occlusion of camera lenses in real scenes, we
spray mud dots on a transparent film and cover the dirty film on the camera lens to take photos on a
white background. Then, we adopt an image matting algorithm to cut out the background part in the
images and separate the masks of mud spots. Finally, the separated masks are pasted on the images
of nuScene or Waymo to simulate the occlusion of their camera lens, as illustrated in the Figure 5. In
addition, we spray mud dots of different sizes and randomly move and rotate the film to create masks
with different occlusion areas and occlusion ranges to enhance the diversity of the mask.

3.3 Ill-synchronization

As illustrated in Figure 2, the data stream is firstly fixed into a data frame with a given timestamp
when passed into the on-device computer, then one needs to perform the coordinate transform via the
camera-to-world and LiDAR-to-world matrix that is obtained by the calibration process. However,
this leads to two potential ill-synchronization issues, spatial misalignment due to the external reasons
of calibration matrix and temporal misalignment for both LiDAR and camera data due to internal
system reasons.
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Figure 6: Visualization of spatial misalignment effect. As the physical size of a camera module is
drastically smaller than the size of vehicle, the relative position of car center to the camera center will
inevitably change due to various reasons, like the vibration during driving on the bumpy road, and
since such noise happens all the time, it cannot be avoided using online calibration. We provide one
visual example to showcase such misalignment.

Figure 7: Visualization of temporal misalignment. Here we show one concrete example of temporal
misalignment. This happens quite commonly on realistic autonomous vehicle. As the streaming
data is first fixed with a certain time stamp then passed into the corresponding code module of deep
learning model via system sockets, the timestamp of both modality sensors might not be always
synchronized. To simulate such effect, we let the frame remains the same as previous frame when
the data is ill-synchronized. We dub the phenomenon data stuck. We consider two type of temporal
misalignment, LiDAR stuck on the top of this figure and camera stuck on the bottom.

Spatial misalignment. The bumping and shaking of vehicles lead to the disturbance of the extrinsic
parameters of cameras and cause spatial misalignment between LiDAR and camera inputs. In addition,
such errors can accumulate while the mileage of a vehicle is increasing. To simulate such a situation,
we add random rotation and translation noise to the calibration of each camera independently. The
range of noise rotation angle is from 0◦ to 5◦ and the translation range is from 1 cm to 5 cm to
accord with the noise range in the real scene. Sensor calibration misalignment will cause spatial
misalignment between point cloud and image, as shown in Figure 6.

Temporal misalignment. In a realistic autonomous driving system, failure of the system components
is quite common throughout the time. One obvious consequence is the time-stamp of two modalities
might not always be aligned. In some rare cases, the data frame of one modality can be stuck by
over one minute depending on different system implementations. Here, we simulate such temporal
misalignment in detail and provide one illustration in Figure 7. Initially, we apply nine levels
of severity according to the percentage of stuck frames in all frames. The results show that the
performance degradation of the 3D detection methods is linearly related to the percentage of stuck
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frames, as discussed in Section 4.2. Thus, to reduce the load of the benchmarks, we only consider the
case where the stuck frames are 50% of all frames as the final benchmark setting.

3.4 A toolkit to transform generic autonomous driving dataset into robustness benchmark

To remove the randomness of benchmark comparison, we compose a toolkit that can transform any
autonomous driving dataset into a robustness benchmark 1. In essence, we only simulate noisy data
cases by altering the image and LiDAR data, the ground-truth annotation will remain the same as the
3D position of the object in the surrounding worlds will not change when the sensors malfunction.

To facilitate future research, we leverage two popular large-scale autonomous driving datasets,
nuScenes and Waymo, and benchmark state-of-the-art methods to evaluate their robustness for
the first time to the best of our knowledge. We denote the newly created robustness benchmark
nuScenes-R and Waymo-R.

Evaluation Metrics. To intuitively show the robustness of LiDAR-camera fusion methods, we
simply use the performance and the relative performance degradation on our benchmark datasets
as our evaluation metrics. Specifically, the LiDAR-camera fusion model performance on the clean
dataset is denoted as PC and its corresponding robustness performance against disruption type d under
severity level l on the benchmark is denoted as P d,lR . Then, we can estimate the model robustness
mPR by averaging over all noise types and severity levels. The formula can be summarized as
follows:

mPR =
1

Nd

Nd∑
d=1

1

Nl

Nl∑
l=1

P d,lR , (1)

where Nd is the number of disruption types and Nl is the number of severity levels. The relative
mean robustness performance of the model is defined as R = mPR/PC . The higher R means the
model is more robust to inferior senor fusion conditions. In practice, we adopt the mean Average
Precision (mAP) and the weighted consolidated metric NDS as PC for nuScenes-R and L2-mAP
and L2-mAPH as PC for Waymo-R.

4 Benchmark Existing Methods

We investigate and evaluate existing popular LiDAR-camera fusion methods with opening source
code on our benchmark, including PointAugmenting [34], MVX-Net [31], and TransFusion [1]. In
addition, we also evaluate a LiDAR-only method, CenterPoint [20], and a camera-only method,
DETR3D [38], for better comparison. It is worth noting that the metrics on waymo dataset focus
on intersection of union (IoU). However, strictly calculating the IoU of 3D bounding boxes is quite
challenging for camera-based methods. Thus we reduce the IoU threshold to 0.3 and report the
vehicle class for DETR3d on Waymo dateset.

4.1 Benchmark results

The fusion robustness results are shown in Table 2. Moreover, to analyze the robustness of models
against LiDAR and camera disruptions, we present the mPR and R of LiDAR and camera modal
separately in Table 3.

In general, existing methods perform poorly on our robust fusion benchmark as shown in Table 2,
and there is vast room for improvement. Especially, for all LiDAR-camera fusion methods shown in
Table 3, the LiDAR robustness is worse than camera robustness. Among the LiDAR-camera fusion
methods we investigated, TransFusion achieves the overall best robustness. It is worth noting that the
robustness against camera noise of TransFusion is unexpectedly outstanding. The average NDS of
TransFusion only decreases from 70.9 to 70.1 on nuScenes-R for camera failure and misalignment
cases. However, the robustness against LiDAR noise of TransFusion is worse than other fusion
methods. We speculate that this is mainly due to the fact that camera information has a small effect
on TransFusion. There is only a slight improvement (1.5 NDS on nuScenes) when fusing camera
information. Thus, when the camera information is missing or defective, the overall performance of
TransFusion is not affected.

1See our GitHub repository for more details. https://github.com/kcyu2014/lidar-camera-robust-benchmark.
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Table 2: Benchmarking the robustness of state-of-the-art methods in all seven scenarios of the
nuScenes-R and Waymo-R. M denotes input modality, camera (C) and LiDAR (L), of state-of-the-
art methods.

Approach M
LiDAR Camera

PC mPR R Stuck FOV Object Stuck Missing Occlusion Calib

nuScenes-R (mAP / NDS)

CenterPoint [43] L 56.8 / 65.0 23.4 / 46.3 0.41 / 0.71 26.1 / 47.5 15.6 / 43.0 28.4 / 48.5 - - - -
DETR3D [38] C 34.9 / 43.4 17.6 / 31.5 0.50 / 0.73 - - - 17.3 / 32.3 14.5 / 29.9 14.3 / 29.0 24.2 / 35.0
PointAugmenting [34] LC 46.9 / 55.6 33.7 / 48.3 0.72 / 0.87 25.3 / 43.5 13.3 / 37.7 21.3 / 39.4 42.1 / 52.8 37.0 / 49.8 40.7 / 52.2 43.6 / 53.8
MVX-Net [31] LC 61.0 / 66.1 38.4 / 53.6 0.63 / 0.81 35.2 / 51.4 17.6 / 43.1 34.0 / 51.1 48.3 / 58.8 32.7 / 50.6 45.5 / 57.6 50.8 / 59.9
TransFusion [1] LC 66.9 / 70.9 52.8 / 63.1 0.79 / 0.89 33.4 / 52.3 20.3 / 45.8 34.6 / 53.6 65.9 / 70.2 64.9 / 69.7 65.5 / 70.0 66.5 / 70.7

Waymo-R(L2 mAP / L2 mAPH)

CenterPoint [43] L 66.0 / 63.4 30.6 / 29.4 0.46 / 0.46 29.5 / 28.3 30.3 / 29.1 32.1 / 30.9 - - - -
DETR3D [38] C 16.2 / 15.7 10.1 / 9.8 0.62 / 0.62 - - - 13.0 / 12.6 8.4 / 8.2 10.9 / 10.5 8.0 / 7.8
PointAugmenting[34] LC 52.5 / 50.7 39.6 / 38.3 0.75 / 0.76 24.7 / 23.9 24.3 / 23.4 26.2 / 25.3 51.7 / 50.0 50.4 / 48.6 50.3 / 48.6 49.8 / 48.1
MVX-Net [31] LC 59.7 / 54.1 44.3 / 40.1 0.74 / 0.74 27.5 / 24.9 28.8 / 25.6 28.7 / 26.0 58.2 / 52.7 55.9 / 50.5 56.4 / 51.1 54.9 / 49.6
TransFusion [1] LC 66.7 / 64.1 51.2 / 49.1 0.77 / 0.77 30.2 / 29.0 30.2 / 29.0 32.7 / 31.3 66.5 / 63.9 66.1 / 63.5 66.2 / 63.6 66.3 / 63.7

Stuck: Temporal misalignment for both modalities. FOV: Limited LiDAR FOV. Object: LiDAR object failure.
Missing: Missing camera inputs. Occlusion: Camera Lens Occlusion. Calib: Spatial misalignment of camera-to-world matrix.

Table 3: Robustness against LiDAR and camera modals of state-of-the-art architectures. In
short, the robust metric (R) is computed by averaging the cases by the affecting modality.

Approach Modality
LiDAR Camera

PC mPR R mPR R

nuScenes-R (mAP / NDS)

CenterPoint [43] L 56.8 / 65.0 23.4 / 46.3 0.41 / 0.71 - -
DETR3D [38] C 34.9 / 43.4 - - 17.6 / 31.5 0.50 / 0.73
PointAugmenting [34] LC 46.9 / 55.6 19.3 / 40.6 0.41 / 0.73 40.9 / 52.2 0.87 / 0.94
MVX-Net [31] LC 61.0 / 66.1 26.4 / 47.3 0.43 / 0.72 44.3 / 56.7 0.73 / 0.86
TransFusion [1] LC 66.9 / 70.9 26.9 / 49.1 0.40 / 0.69 65.7 / 70.1 0.98 / 0.99

Waymo-R(L2 mAP / L2 mAPH)

CenterPoint [43] L 66.0 / 63.4 30.6 / 29.4 0.46 / 0.46 - -
DETR3D [38] C 16.2 / 15.7 - - 10.1 / 9.8 0.62 / 0.62
PointAugmenting[34] LC 52.5 / 50.7 25.1 / 24.2 0.48 / 0.48 50.6 / 48.8 0.96 / 0.96
MVX-Net [31] LC 59.7 / 54.1 28.3 / 25.5 0.47 / 0.47 56.4 / 51.0 0.94 / 0.94
TransFusion [1] LC 66.7 / 64.1 31.0 / 29.8 0.46 / 0.46 66.3 / 63.7 0.99 / 0.99

When comparing the performance of LiDAR-camera fusion methods with single modality methods
on our benchmark, we find all fusion methods have stronger robustness on both LiDAR and camera
modality than single modality methods. This indicates that when encountering imperfect single
modality inputs, the fusion methods can utilize another modality information to enhance the feature
and predict the final outputs.

4.2 A complete analysis of each noisy data case

Here, we analyze the robustness of existing popular fusion methods on each noisy case proposed in
Section 3.2.

4.2.1 Noisy LiDAR Data

Limited LiDAR field-of-view. We investigate the situations when the LiDAR points with limited
field-of-view in angle range (−π/3, π/3), (−π/2, π/2) and (−0, 0). The angle range of (−0, 0) is
an extreme case when the LiDAR sensor is completely damaged. The results are shown in Table 4.
For both LiDAR-only and fusion methods, their performance decreases largely in three situations.
Especially, in the extreme case where all LiDAR points are missing, current fusion methods fail to
predict any objects like the LiDAR-only method. Thus, for existing fusion methods, the LiDAR
modality is the main modality and the camera modality is auxiliary. The prediction results of existing
fusion methods largely rely on LiDAR information. There is considerable room for improvement on
fusion robustness. An ideal fusion model should still work as long as there is single modality input.
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Table 4: Results of the limited LiDAR field-of-view case. The angle ranges in brackets mean the
visible angle range. (−0, 0) means the extreme case when all LiDAR points are missing.

Approach Modality
nuScenes-R (mAP / NDS) Waymo-R(L2 mAP / L2 mAPH)

clean (−π/2, π/2) (−π/3, π/3) (−0, 0) clean (−π/2, π/2) (−π/3, π/3) (−0, 0)

CenterPoint [43] L 56.8 / 65.0 23.5 / 47.7 15.6 / 43.0 0 / 0 66.0 / 63.4 36.6 / 35.2 30.3 / 29.1 0 / 0
PointAugmenting [34] LC 46.9 / 55.6 19.5 / 41.2 13.3 / 37.7 0 / 0 52.5 / 50.7 29.4 / 28.3 24.3 / 23.4 0 / 0
MVX-Net [31] LC 61.0 / 66.1 26.0 / 47.8 17.6 / 43.1 0 / 0 59.7 / 54.1 34.5 / 30.8 28.8 / 25.6 0 / 0
TransFusion [1] LC 66.9 / 70.9 29.3 / 51.4 20.3 / 45.8 0 / 0 66.7 / 64.1 36.8 / 35.3 30.2 / 29.0 0 / 0

Table 5: Results of the LiDAR object failure case.

Approach Modality
nuScenes-R (mAP / NDS) Waymo-R(L2 mAP / L2 mAPH)

clean object failure clean object failure

CenterPoint [43] L 56.8 / 65.0 28.4 / 48.5 66.0 / 63.4 32.1 / 30.9
PointAugmenting [34] LC 46.9 / 55.6 21.3 / 39.4 52.5 / 50.7 26.2 / 25.3
MVX-Net [31] LC 61.0 / 66.1 34.0 / 51.1 59.7 / 54.1 28.7 / 26.0
TransFusion [1] LC 66.9 / 70.9 34.6 / 53.6 66.7 / 64.1 32.7 / 31.3

Table 6: Results of the missing camera inputs case. {X} denotes the location of the missing
camera, while the last column indicates the case only keeping the input from the front camera. Note
that there is no back camera in the Waymo Open Dataset.

Approach Modality
nuScenes-R (mAP / NDS)

clean {F} {B} {FL} {FR} {BL} {BR} Keeping F

DETR3D [38] C 34.9 / 43.4 25.8 / 39.2 23.9 / 38.0 28.9 / 39.5 29.1 / 39.8 30.0 / 40.7 29.7 / 40.2 3.3 / 20.5
PointAugmenting [34] LC 46.9 / 55.6 42.4 / 53.0 41.3 / 52.5 43.6 / 53.8 45.8 / 54.6 45.2 / 54.7 44.9 / 54.6 31.6 / 46.5
MVX-Net [31] LC 61.0 / 66.1 47.8 / 59.4 45.8 / 58.4 53.6 / 61.9 54.1 / 62.5 55.2 / 63.1 54.6 / 62.6 17.5 / 41.7
TransFusion [1] LC 66.9 / 70.9 65.3 / 70.1 66.0 / 70.4 66.2 / 70.4 66.4 / 70.5 66.3 / 70.5 66.3 / 70.5 64.4 / 69.3

Approach Modality
Waymo-R(L2 mAP / L2 mAPH)

clean {F} {B} {FL} {FR} {BL} {BR} Keeping F

DETR3D [38] C 16.2 / 15.7 9.2 / 8.8 - 13.4 / 13.0 14.2 / 13.8 14.0 / 13.6 14.4 / 14.0 7.7 / 7.5
PointAugmenting [34] LC 52.5 / 50.7 50.6 / 48.9 - 51.8 / 50.0 52.1 / 50.3 51.8 / 50.0 51.9 / 50.1 50.2 / 48.4
MVX-Net [31] LC 59.7 / 54.1 57.1 / 51.7 - 57.5 / 52.2 58.1 / 52.7 58.5 / 53.1 58.9 / 53.5 54.3 / 49.2
TransFusion [1] LC 66.7 / 64.1 66.3 / 63.7 - 66.5 / 64.0 66.4 / 63.8 66.4 / 63.8 66.5 / 63.9 65.8 / 63.2
Camera location abbr. F: front. B: back. FL: front-left. FR: front-right. BL: back-left. BR: back-right.

LiDAR object failure. The results of the LiDAR object failure case are shown in Table 5. We can
find that, with 50% probability to drop all points of the objects, the performance of both LiDAR-only
and LiDAR-camera fusion methods reduce by half approximately. This indicates current fusion
methods fail to work when the foreground LiDAR points are missing, even the objects appear in the
images. From another perspective, it shows that, for the fusion mechanisms of current LiDAR-camera
fusion methods, camera information is not well exploited. The fusion process still largely relies on
LiDAR information.

4.2.2 Noisy Camera Sensor

Missing of camera inputs. In the case of missing camera inputs, we consider several combinations
of cameras installed in different positions and report the results in Table 6, in which we can find that
the missing front camera or back camera (for nuScenes) has a greater impact on the detection results.
When all cameras except the front camera are missing, the performance of PointAugmenting and
TransFusion decreases no more than 50% on both nuScenes-R and Waymo-R. This demonstrates that
the robustness of PointAugmenting and TransFusion against camera noise is much better than the
other two methods. Besides, the performance degradation on Waymo-R is much smaller than that on
nuScenes-R , which indicates the robustness on the various datasets is different.

Occlusion of camera lens. The results for the case of the dirty camera lens are shown in Table 7.
We surprisingly find all methods have inferior performances when compared to the previous missing
camera inputs experiments. It seems the modern deep learning method is akin to a black image
instead of occluded ones. This shows a potential new research direction to design a better image
feature extractor to address the robustness issue.
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Table 7: Results of the camera occlusion case.

Approach Modality
nuScenes-R (mAP / NDS) Waymo-R(L2 mAP / L2 mAPH)

clean occlusion clean occlusion

DETR3D [38] C 34.9 / 43.4 14.3 / 29.0 16.2 / 15.7 10.9 / 10.5
PointAugmenting [34] LC 46.9 / 55.6 40.7 / 52.2 52.5 / 50.7 50.3 / 48.6
MVX-Net [31] LC 61.0 / 66.1 45.5 / 57.6 59.7 / 54.1 56.4 / 51.1
TransFusion [1] LC 66.9 / 70.9 65.5 / 70.0 66.7 / 64.1 66.2 / 63.6

Table 8: Results of spatial misalignment cases.

Approach Modality
nuScenes-R (mAP / NDS) Waymo-R(L2 mAP / L2 mAPH)

clean misalignment clean misalignment

DETR3D [38] C 34.9 / 43.4 24.2 / 35.0 16.2 / 15.7 8.0 / 7.8
PointAugmenting [34] LC 46.9 / 55.6 43.6 / 53.8 52.5 / 50.7 49.8 / 48.1
MVX-Net [31] LC 61.0 / 66.1 50.8 / 59.9 59.7 / 54.1 54.9 / 49.6
TransFusion [1] LC 66.9 / 70.9 66.5 / 70.7 66.7 / 64.1 66.3 / 63.7

4.2.3 Ill-synchronization

Spatial misalignment. For spatial misalignment, the effect of the noise rotation and translation
matrix on fusion models is comparable to that of the camera sensor failure case, as shown in Table 8.
We find that the TransFusion is the most robust cases that on average suffers less than 1pp. compared
to the clean settings, where the DETR3D is the most sensitive to the spatial misalignment.

Temporal misalignment. For temporal misalignment, we explore 9 levels of severity, in which
the proportion of stuck frames is from 10% to 90% among all frames in a regular step. The results
are shown in Figure 8. A trend can be observed that the performance degradation of all methods is
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Figure 8: Temporal misalignment case. The solid line denotes the discrete selection. The dash line
denotes the consecutive selection.
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linear to the percentage of stuck frames among all frames in both discrete selection and consecutive
selection. Thus, to reduce the cost of the evaluation, we only choose the case where the stuck frames
are 50% of all frames, whose value is approximately equal to the average of 9 levels of severity.
Interestingly, although TransFusion performs well against the stuck camera frame case, we can
observe that the perfromance of TransFusion decreases faster than other fusion methods when the
LiDAR stuck frame ratio increases, showing that it is more sensitive than other fusion methods.

5 Discussion and Future Work

Though the main contribution of this work is to provide a systematic overview of different aspects of
the perception system and construct a robustness benchmark, we nonetheless provide a simple yet
effective baseline method, robustness finetuning, to improve the robustness of these methods.

5.1 A simple baseline to improve the robustness: Robust Finetuning

We provide a simple baseline method by treating our toolkit as a data augmentation method to enrich
the training data as the first attempt to improve the robustness of performance. Specifically, we use the
toolkit to transform the training data. Different from the evaluation, where reproducibility is a must,
we can randomly generate corresponding noisy data during training. However, in practice, we discover
that transforming all data into a noisy format will significantly decrease the performance when there
is no such noise. To this end, we propose a cascaded augmentation policy during training: i) if a
randomly sampled float number is higher than an augmentation probability pa, proceed, otherwise
use the normal clean data; ii) sampling one transformation from all robustness cases according to the
probability distribution po, then proceeding data with the transformation. See Section 6.3 for more
details.

Table 9: Robust training results.

Approach Modality
Overall Lidar Camera

PC mPR R mPR R mPR R

nuScenes-R (mAP / NDS)

MVX-Net [31] LC 61.0 / 66.1 38.4 / 53.6 0.63 / 0.81 26.4 / 47.3 0.43 / 0.72 44.3 / 56.7 0.73 / 0.86
MVX-Net + finetune LC 59.4 / 65.0 40.9 / 54.8 0.69 / 0.84 24.6 / 46.1 0.41 / 0.71 49.1 / 59.2 0.83 / 0.91

Waymo-R(L2 mAP / L2 mAPH)

MVX-Net [31] LC 59.7 / 54.1 44.3 / 40.1 0.74 / 0.74 28.3 / 25.5 0.47 / 0.47 56.4 / 51.0 0.94 / 0.94
MVX-Net + finetune LC 59.5 / 54.0 47.7 / 43.1 0.80 / 0.80 27.8 / 25.2 0.47 / 0.47 57.6 / 52.1 0.97 / 0.96

We select the MVXNet to study the effectiveness of our method, as it has the most balanced LiDAR
and camera performance, and report the results in Table 9. We observe that, though applying such
robustness training slightly deteriorates the performance on the clean dataset, it significantly improves
the robustness, where the mean robustnessR improves from 0.63 and 0.81 to 0.69 and 0.84 in terms of
mAP and NDS on nuScenes-R , and from 0.74 to 0.80 in terms of L2 mAP and mAPH on Waymo-R.
However, we can still see a large gap between the robust benchmark and the clean ones, evidencing
there is an actual research gap in this research direction.

5.2 Future research directions

In general, we believe an ideal sensor fusion framework should be able to do the following: i) given
both modality data, it can significantly surpass the performance of single modality methods; ii) when
there is a disruption of one modality, the performance should not be worse than the single modality
method of the other. Currently, this approach is handled by using comprehensive post-processing
techniques of the perception system. We hope our robust benchmark can be a tool for the community
to fully exploit this research direction to develop truly robust methods that can be deployed on realistic
vehicles.
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6 Appendix

6.1 Autonomous driving datasets

nuScenes Dataset. nuScenes is a large-scale autonomous-driving dataset for 3D detection, consisting of 700,
150 and 150 scenes for training, validation, and testing, respectively. Each frame contains one point cloud and six
calibrated images that cover 360 fields-of-view. For 3D detection, the main metrics are mean Average Precision
(mAP) and nuScenes detection score (NDS). The mAP is defined by the BEV center distance with thresholds
of 0.5m, 1m, 2m, 4m, instead of the IoUs of bounding boxes. NDS is a consolidated metric of mAP and other
metric scores, such as average translation error and average scale error.

Waymo Open Dataset. Waymo Open Dataset is an another large-scale dataset for autonomous driving, which
contains 798 training, 202 validation, and 150 testing sequences. Each sequence has about 200 frames with
LiDAR points and camera images, which are collected by five LiDAR sensors and five pinhole cameras. The
official metrics are mean Average Precision (mAP) and mean Average Precision weighted by Heading (mAPH).
The mAP and mAPH are defined based on the 3D IoU with the threshold of 0.7 for vehicles and 0.5 for
pedestrians and cyclists. The measures are reported based on the distances from objects to sensor, i.e., 0-30m,
30-50m and >50m, respectively. Besides, two difficulty levels, LEVEL 1 (boxes with more than five LiDAR
points) and LEVEL 2 (boxes with at least one LiDAR point), are considered.

6.2 Implementation Details of Fusion Models

For the sake of better reproducibility, we re-implement the MVX-Net into the MMDetection3D[5] framework.
Here we detail the implementation settings.

MVX-Net. Following the original paper [31], we use PointPillars [11] as the LiDAR stream and ResNet50[6]
with FPN [17] as the image stream. At the fusion stage, we project each LiDAR point to all images from different
views to acquire the corresponding image features from the deep networks. Then, we average the features on
the channel dimension and then concatenate all features from different views with the original LiDAR point
feature before the downstream task. During training, we use the same training schedules and hyper-parameters
of PointPillars, where Adam optimizer is used with learning rate 0.001, weight decay 0.01, batch size 16, epoch
12, and learning rate decay to 1/10 at 8 and 11 epochs.

On the nuScenes dataset, we set the detection region of interest to [−50m, 50m] for the X and Y axis, and
[−5m, 3m] for the Z axis. The pillar size is kept as [0.25m, 0.25m]. The image feature extractor is trained for
36 epochs on nuImage[2]. On Waymo dataset, we set the detection range to [−74.88m, 74.88m] for the X and
Y axis, and [−2m, 4m] for the Z axis. The pillar size is hold as [0.32m, 0.32m]. The image feature extractor is
trained for 36 epochs on Waymo of the 2D detection task.

Table 10: Ablation of robustness finetuning

Approach Aug Lidar Camera

PC mPR R Stuck FOV Object Stuck Missing Occlusion Calib

nuScenes-R (mAP / NDS)

MVX-Net[31]

None 61.0 / 66.1 38.4 / 53.6 0.63 / 0.81 35.2 / 51.4 17.6 / 43.1 34.0 / 51.1 48.3 / 58.8 32.7 / 50.6 45.5 / 57.6 50.8 / 59.9
LIDAR stuck 58.4 / 64.2 35.6 / 51.5 0.61 / 0.80 39.1 / 52.1 17.8 / 42.8 34.2 / 51.4 42.4 / 54.9 28.2 / 47.6 41.0 / 54.8 46.6 / 56.9

FOV 54.2 / 59.1 33.9 / 49.9 0.63 / 0.84 33.3 / 49.5 18.4 / 44.0 30.3 / 47.4 41.4 / 50.8 27.7 / 47.0 40.5 / 54.9 45.7 / 56.0
Object 56.8 / 60.9 36.5 / 51.4 0.63 / 0.84 39.1 / 52.1 17.8 / 42.8 33.1 / 49.9 44.3 / 53.7 29.9 / 48.5 42.8 / 55.1 48.2 / 57.5

Camera stuck 58.6 / 64.7 38.7 / 53.7 0.64 / 0.84 31.0 / 48.9 17.2 / 42.9 32.7 / 50.0 51.3 / 60.4 35.2 / 51.8 45.7 / 57.6 52.0 / 60.9
Missing 60.9 / 66.0 41.1 / 55.0 0.66 / 0.83 34.9 / 51.1 18.3 / 43.6 34.1 / 50.8 48.7 / 59.1 45.1 / 57.1 48.2 / 58.9 51.1 / 60.2

Calib 60.0 / 65.4 39.4 / 54.0 33.6 / 50.3 17.8 / 43.3 33.6 / 50.7 50.0 / 59.6 34.6 / 51.3 45.8 / 57.6 54.9 / 62.2

Table 11: Probability distribution of transformation selection during finetuning.

Transformation
LiDAR Camera

Stuck FOV Object Stuck Missing Occlusion Calib

Probability 0 0 0 1/3 1/3 0 1/3

6.3 Ablation study of robustness finetuning

To determine the probability distribution po of all transformations, we first analyze the effects of each individual
transformation, as shown in Table 10. It’s worth noticing that the transformation of camera lens occlusion case is
included during finetuning stage, since the masks for simulating the occlusion is only available during validation.
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From Table 10, we can find that, compared with MVX-Net baseline trained on clean data, finetuning with noisy
LiDAR data decreases the average performance mPR on each noisy fusion cases. By contrast, finetuning with
noisy camera data improves the average performance mPR. Thus, the sampling probabilities of noisy LiDAR
transformations are set to be zero and the sampling probabilities of remaining noisy camera transformations, i.e.,
camera-stuck and missing of camera input, are set to be 1/3. The final probability distribution po is listed in
Table 11.
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