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Figure 1: t-SNE [130] visualization for the SHIFT15M.

Abstract

This paper addresses the problem of set-to-set matching,
which involves matching two different sets of items based
on some criteria, especially in the case of high-dimensional
items like images. Although neural networks have been ap-
plied to solve this problem, most machine learning-based
approaches assume that the training and test data follow the
same distribution, which is not always true in real-world sce-
narios. To address this limitation, we introduce SHIFT15M,
a dataset that can be used to evaluate set-to-set matching
models when the distribution of data changes between train-
ing and testing. We conduct benchmark experiments that
demonstrate the performance drop of naive methods due
to distribution shift. Additionally, we provide software to
handle the SHIFT15M dataset in a simple manner, with the
URL for the software to be made available after publica-
tion of this manuscript. We believe proposed SHIFT15M
dataset provide a valuable resource for evaluating set-to-set
matching models under the distribution shift.

{
"user":{"user_id":"xxxx"},
"like_num":"xx",
"set_id":"xxx",
"items":[
{"price":"xxxx","item_id":"xx","category_id1":"xx","category_id2":"xx"},
{"price":"xxxx","item_id":"xx","category_id1":"xx","category_id2":"xx"},
{"price":"xxxx","item_id":"xx","category_id1":"xx","category_id2":"xx"},
…
],
"publish_date":"yyyy-mm-dd"
}

Figure 2: Overview of SHIFT15M dataset.

Figure 3: Minimum sample code using SHIFT15M data
loader.

1. Introduction

One of the key problems for fashion data analysis is set-
to-set matching [110, 7, 3]. For example, we can consider
a task that measures the degree of completion of an outfit
by matching sets of clothing items (i.e., for two sets A =
{hat, shirt, skirt} and B = {jacket, shoes}, the matching
score of A and B corresponds to the goodness of the outfit
A∪B). To solve this, we need to investigate neural networks
that handle sets [119, 73, 155, 60, 125, 136, 159, 137]. We
summarize neural networks that deal with sets in Section 4.

Another common phenomenon in the domain of fashion
is a trend change. These phenomena are observed at various
scales, ranging from annual trend changes such as fashion-
able colors to seasonal trend changes such as summer to
winter clothing. In the field of machine learning, such an
assumption can be defined as a distribution shift (or dataset
shift) [102, 88, 121, 117, 48, 117, 148, 87]. We assume that
training examples {(xtri , ytri )}ntr

i=1 are independently and
identically distributed (i.i.d.) according to some fixed but
unknown distribution ptr(x, y), which can be decomposed
into the marginal distribution and the conditional probability
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distribution, i.e., ptr(x, y) = ptr(x)ptr(y|x). We also de-
note the test examples by {(xtei , ytei )}nte

i=1 drawn from a test
distribution pte(x, y) = pte(x)pte(y|x).

Definition 1.1. (Covariate shift [118]) We consider that the
two distributions ptr(x, y) and pte(x, y) satisfy the covariate
shift assumption if the following conditions hold:

ptr(x) 6= pte(x), p(y|x) = ptr(y|x) = pte(y|x).

Definition 1.2. (Target shift [156]) We consider that the
two distributions ptr(x, y) and pte(x, y) satisfy the target
shift assumption if the following conditions hold:

ptr(y) 6= pte(y), p(x|y) = ptr(x|y) = pte(x|y).

Definition 1.3. (General distribution shift [121]) Let Z ⊂
{Z,Y} ve a set of immutable variables whose marginal
distribution should remain fixed,W ⊂ {X ,Y}\Z be a set of
mutable variables whose distribution can be shifted, and V =
{X ,Y} \ {W ∪ Z} be the remaining dependent variables.
This partition of the variables defines a factorization of ptr
into

ptr(v|w, z)ptr(w|z)ptr(z), (1)

where z ∈ Z , w ∈ W and v ∈ V . We consider that the
two distributions ptr(x, y) and pte(x, y) satisfy the general
dataset shift assumption if the following hold:

ptr(w|z) 6= pte(w|z). (2)

Notably, this formulation generalizes other dataset shifts.
For example, if we let Z = ∅ andW = X , then this corre-
sponds to a covariate shift.

To address these problems, we provide SHIFT15M, a real-
world dataset that can handle the above two problem settings,
that is, the set-to-set matching dataset with distribution shift.
Our SHIFT15M dataset is built on data accumulated over
the past 10 years in our fashion SNS (see Figure 1). In this
SNS, users could post combinations of their clothing items
and other users could bookmark them as favorites. The data
accumulated by this service, which has been in operation for
a decade from 2010 to 2020, is very useful for dealing with
distribution shifts in the fashion sector. Figure 2 shows an
overview of the SHIFT15M dataset. Each column is a set of
posted fashion items, with information such as the user who
posted, the date of publication, and the price of each item.
We hope that our SHIFT dataset will encourage research on
set-to-set matching tasks under the distribution shift.

1.1. Contribution

Our contributions are summarized as follows:

• We propose SHIFT15M, a fashion-specific dataset that
can properly evaluate models for set-to-set matching
under the distribution shift assumptions. SHIFT15M

also enables the performance evaluation of the model
under various magnitudes of dataset shifts by switching
the magnitude. Figure 4 shows several sample images
from the SHIFT15M dataset. In Section 2, we introduce
overall statistics on the SHIFT15M dataset.

• We provide open-source software to handle the
SHIFT15M dataset in a very simple way. Figure 3
shows the minimum sample code of our software;

• We propose first-step benchmark methods for set-to-
set matching under distribution shift, numerical experi-
ments show the usefulness of these methods. Section 3
presents the proposed benchmark methods and the re-
sults of comparative experiments.

2. Statistics on the SHIFT15M dataset
In this section, we present some statistics for our

SHIFT15M dataset. First, Table 1 shows the overview
of statistics on the SHIFT15M dataset. Since our fash-
ion SNS was launched in 2010, the number of users and
posts gradually increased from 2010, reaching a peak around
2014∼2015, and slowly decreasing until 2020, the year the
service was terminated. Also, the number of items in a set
tends to increase over the years, indicating that users tend to
construct outfits with more and more items.

The top panel of Figure 5 shows the trend of price for
items included in the SHIFT15M dataset. It can be seen
that the fashion items posted by users are becoming more
expensive every year. The bottom panel of Figure 5 shows
the trend of the number of likes for posted sets.

Figure 6 plots the trend of the number of posted sets by
year. This figure shows that our fashion SNS, the source of
the SHIFT15M dataset, was most active around 2014∼2015.

Also, each item from the SHIFT15M dataset has two cat-
egories specifying the types of the item. Figure 11 show the
distributions of the number of items belonging to each cate-
gory. The figures show that there are categories in which the
number of items changes from year to year and categories in
which the number of items does not change much throughout
the entire period.

Finally, we confirm the covariate shift of the image fea-
tures included in SHIFT15M. If covariate shift assump-
tion 1.1 holds, we should be able to construct a classifier
f : x 7→ y = {0, 1}, where x is the image feature of the
item and y is the binary classification output for two years.
Figure 7 shows the experimental results. The results show
that classification between distant years (e.g., acc. of 2010
vs. 2020 is 0.85) is easier, while classification between close
years (e.g., acc. of 2010 vs. 2011 is 0.62) is more difficult,
indicating a gradual shift in image features. Figure 8 also
shows the experimental results of item categorization when
the training and test data were generated from different years.



Figure 4: Several sample images from SHIFT15M dataset. See Appendix A for more sample items.

Table 1: Statistics on the SHIFT15M dataset.

Property Total 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

#sets 2,555,147 1,423 4,813 131,611 466,583 730,443 617,844 299,502 137,510 92,944 59,412 13,062
#items 15,218,721 8,327 29,140 756,532 2,644,564 4,305,802 3,731,864 1,853,647 855,036 576,022 373,549 84,238
mean set size 6.03 5.85 6.05 5.74 5.66 5.89 6.04 6.18 6.21 6.19 6.28 6.44
median set size 6.00 6.00 6.00 5.00 5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
mean #likes 26.98 0.94 2.00 15.74 16.84 23.24 37.37 35.67 32.41 24.89 21.34 16.01
median #likes 9.00 0.00 1.00 8.00 6.00 6.00 13.00 18.00 23.00 19.00 17.00 12.00
#unique users 193,574 289 571 16,922 52,283 80,290 49,441 18,854 7,511 4,442 2,739 853

Figure 5: Top panel: the trend of price for items included in
SHIFT15M. Bottom panel: the trend of the number of likes
for posted sets.

Figure 6: Trends of the number of posted sets by year.

This figure shows that the closer the years of the training and
test data are, the higher the classification accuracy.

As we will see in the following sections, density ratio

Figure 7: Covariate shift of image features.

Figure 8: Category classification results under the covariate
shift.

pte(x)/ptr(x) is essential in distribution shift adaptation.
Let p(train) and p(test) be the probability that some data are
generated from train and test distributions, respectively. If
we assume that p(train) = p(test) = 0.5, we can estimate
density ratio as p(test|x)/p(train|x) via Bayes’ theorem:

pte(x)

ptr(x)
=

p(x|test)
p(x|train)

=
p(train)

p(test)
p(test|x)

p(train|x)
=

p(test|x)

p(train|x)
.

Conversely, the Bayes optimal classifier g∗(x) can be written



Figure 9: Density ratio estimation by using binary classifiers.

as a function of the density ratio r(x) = pte(x)
ptr(x) ,

r(x) =
pte(x)

ptr(x)
=

g∗(x)

1− g∗(x)
, g∗(x) =

pte(x)

ptr(x) + ptr(x)
.

Figure 9 shows the density ratio estimation by using the
above binary classifiers. These density ratios induce the
importance weighted set-to-set matching algorithm in the
following section. See Appendix E for more details.

3. Benchmarks
In this section, we introduce several numerical experi-

ments on the SHIFT15M dataset.

3.1. Importance weighted set-to-set matching

As the benchmark strategy for the distribution shift adap-
tation on the set-to-set matching, we propose importance
weighted set-to-set matching which is based on IWERM.

Definition 3.1. (Importance weighted ERM [118]) Impor-
tance Weighted Empirical Risk Minimization (IWERM) uses
the density ratio pte(x)/ptr(x) as the weighting function:

ĥ = arg min
h∈H

1

ntr

ntr∑
i=1

pte(x
tr
i )

ptr(xtri )
`(h(xtri ), ytri ). (3)

Adopting the density ratio as the weighting function, as in
Definition 3.1, leads to the following statistically important
property.

Theorem 3.1. (Consistency of IWERM[118]) If we set
w(x) = pte(x)/ptr(x) as the weighting function, the em-
pirical error computed by the weighted ERM is a consistent
estimator of the expected error in the test distribution.

Using the above ideas, we propose a novel covariate shift
adaptation method for set-to-set matching. Let L(V,W, f)

Figure 10: Overall distribution of the number of items in
each category.

Figure 11: Yearly distribution of the number of items in each
category.

be the K-pair-set loss [110] function for the set matching,
which is defined as follows:

L(V,W, f) = − 1

K

K∑
i=1

K∑
j=1

δij log
exp(f(Vi,Wj))∑K
k=1 exp(f(Vi,Wk))

,

where δ is Kronecker’s delta, and we can modify L(V,W, f)
as follows:

Lw(V,W, f) = − 1

K

K∑
i=1

K∑
j=1

δijΓ
p
i,j log

Γfi,j∑K
k=1 Γfi,k

, (4)

where Γpi,j = ep(test|Vi∪Wj) and Γfi,j = ef(Vi,Wj). This



Figure 12: Plots for Fill-In-The-N-Blank experiments.

Table 2: Experimental results of the Fill-In-The-N -Blank with four candidates. Evaluation metrics are the accuracy [%]

Models 2013 2014 2015 2016 2017

ERM [110] 0.924(±0.005) 0.907(±0.006) 0.886(±0.009) 0.865(±0.006) 0.855(±0.003)
ERM + mean-IW 0.924(±0.005) 0.917(±0.002) 0.886(±0.003) 0.866(±0.003) 0.860(±0.002)
ERM + max-IW 0.924(±0.005) 0.921(±0.002) 0.896(±0.006) 0.871(±0.001) 0.865(±0.005)

modification can be regarded as a weighting based on the
probability that the pair is included in the test set.

Here, we propose two weighting strategies:

max-IW : p(test|Vi ∪Wj) = max
x∈Vi∪Wj

w(x),

mean-IW : p(test|Vi ∪Wj) =
1

|Vi ∪Wj |
∑

x∈Vi∪Wj

w(x),

wherew(x) is the weighting function. Next, we approximate
w(x) by using unlabeled data from both ptr and pte. In
IWERM, the squared error can be decomposed as follows:

Epte
[
∆2
]

= Eptr
[
w(x)∆2

]
= Eptr

[
ŵ(x)∆2

]
+ Eptr

[
(w(x)− ŵ(x))∆2

]
,

where ∆2 = ‖f(x)− y‖2 and ŵ(x) is the approximator of
the weighting function w(x). The second term is bounded
as

Eptr
[
(w(x)− ŵ(x))∆2

]
≤ 1

2

(
Eptr

[
∆2
]

+ Eptr
[
(w(x)− ŵ(x))2

])
. (5)

Let s be the indicator of the distributions, where s = 1
corresponds to the train distribution and s = 0 corresponds
to the test distribution, and we assume that p(s) = 0.5. Then,
we also assume that

p(x|s) =

{
ptr(x) (s = 1),

pte(x) (s = 0).
(6)

Then, we havew(x) = p(x|s=0)
p(x|s=1) . Let g(x) be the optimal

source discriminator which identifies whether x is generated
ptr or pte. Then, we can write as g(x) = p(s = 1|x) =

1
1+w(x) . Suppose that the density ratio pte(x)/ptr(x) is
bounded by β > 0, we have 1

1+β ≤ g(x) ≤ 1 for all x.
From the unlabeled data generated from ptr and pte, we can
learn the estimator ĝ of g. Then, we can write the weight
estimation term as

Eptr
[
(w(x)− ŵ(x))2

]
= Eptr

[(
g(x)− ĝ(x)

g(x)ĝ(x)

)2]
≤ (1 + β)4Eptr

[
(g(x)− ĝ(x))2

]
= (1 + β)4Epte

[
(g(x)− ĝ(x))2 ptr(x)

pte(x)

]
≤ 2(1 + β)4Epte

[
(g(x)− ĝ(x))2

]
= 2(1 + β)4

{
Epte

[
(s− g(x))2

]
− Epte

[
(g(x)− ĝ(x))

]}
.

This indicates that the weighting function is approximated
by the function g(x).

3.2. Experimental results on set-to-set matching
problem under the covariate shift assumption

We introduce benchmark results for a set-to-set matching
under the covariate shift. The model architecture is the same
as the previous work [110], which is based on the archi-
tecture of Transformer [134, 73, 91]. Our task can be con-
sidered an extended version of a standard task, Fill-In-The-



Table 3: Experimental results of the Fill-In-The-N -Blank with eight candidates. Evaluation metrics are the accuracy [%]

Models 2013 2014 2015 2016 2017

ERM [110] 0.845(±0.000) 0.822(±0.001) 0.791(±0.005) 0.762(±0.008) 0.741(±0.004)
ERM + mean-IW 0.845(±0.000) 0.831(±0.008) 0.792(±0.002) 0.766(±0.004) 0.749(±0.002)
ERM + max-IW 0.845(±0.000) 0.842(±0.004) 0.807(±0.003) 0.769(±0.005) 0.753(±0.005)

Blank [21], which requires us to select an item that best ex-
tends an outfit from among four candidates. Because select-
ing a set corresponds to filling multiple blanks, we consider
the set matching problem as Fill-In-The-N -Blank [110]. To
construct the correct pair of sets to be matched, we randomly
halve the given outfit O into two non-empty proper subsets
V and W , as follows: O → {V,W}, where V ∩ W = ∅.
Tables 2, 3 and Figure 12 show the experimental results
of the Fill-In-The-N -Blank with four and eight candidates.
In these experiments, data from 2013 are used as training
data, and data from 2013∼2017 are used as test data. ERM
refers to empirical risk minimization [131, 132, 17], which
assumes that ptr(x) = pte(x). From these results, we can
see that the covariate shift adaptive set-to-set matching meth-
ods can achieve better performances than the ordinal ERM.
This means that for set-to-set matching on the SHIFT15M
dataset, we need to apply some distribution shift adaptation
methods.

Table 4 and 5 show the experimental results for the var-
ious models. The models used in the experiments are the
same as [110]. To quote,

• Cross Attention and Cross Affinity [110]: Set-to-Set
matching models which proposed by [110], with the
attention-based and affinity-based functions, respec-
tively.

• Set Transformer [73]: Set Transformer which intro-
duced by applying a self-attention based Transformer
to a set of data. Set Transformer is trained through
supervised or unsupervised learning and transforms a
set of data into a vector representation to recognize
set features. By using Set Transformer fST , we per-
form the extension by calculating the matching score
between the two sets V and W via the inner product
fST (V)>fST (W), sharing the weights between the
two fST .

• We consider a union of two sets as a set-input for the ex-
tension of BERT [27] and omit the individual token em-
bedding. We use the segment embedding to designate
items of X and Y. We use three variants: BERTBASE is
the same model as described in [27]; BERTBASE-AP uses
the average pooling in the last layer; and BERTSMALL
is a four-layered version of BERTBASE with eight heads,
and the hidden size is 512.

• GNN [21]: We combine two sets as one input for the
extension of GNN [21]. Because this model is not
presented to train in an end-to-end with the feature
extractor, we do not finetune the CNN in fashion set
matching, where pre-trained CNNs are used, but train it
in an end-to-end manner for the group re-id task. Note
that we omit the context provided from the external
graphs in the evaluation stage to apply this model in the
same scenarios of our tasks. We set the training epoch
to 256 in the group re-id to enhance the training results
of the GNN.

• HAP2S [154]: A conventional CNN trained by Hard-
Aware Point-to-Set loss.

See Appendix B.2 for the additional figures.

3.3. Additional experimental results on regression
problem under the target shift assumption

Additionally, we present benchmark results for a regres-
sion problem with the target shift. Although SHIFT15M is a
dataset for set-to-set matching, it can also be used for simple
regression problems by setting the input to image features
and the output to attributes associated with the items.

The target variable is the number of likes that each in-
stance possesses, and the input variables are the user ID and
the prices of the items. In this experiment, we evaluate the
robustness of the model for different shift magnitudes, and
the magnitudes of the shift are measured by the Wasserstein
distance. We use the simple linear regression as the ordinal
ERM, and we compare this with two other covariate shift
adaptation methods, IWERM and AIWERM.

Definition 3.2. (Adaptive importance weighted ERM [118])
AIWERM uses (pte(x)/ptr(x))α for α ∈ [0, 1] as the
weighting function:

ĥ = arg min
h∈H

1

ntr

ntr∑
i=1

(pte(xtri )

ptr(xtri )

)α
`(h(xtri ), ytri ). (7)

Definition 3.3. (Relative importance weighted ERM [146])
RIWERM uses pte(x)/((1− α)ptr(x) + αpte(x)) for α ∈
[0, 1] as the weighting function:

ĥ = arg min
h∈H

1

ntr

ntr∑
i=1

pte(x
tr
i )

mα(xtri )
`(h(xtri ), ytri ), (8)



Table 4: Experimental results of the Fill-In-The-N -Blank with four candidates with several models. Evaluation metrics are the
accuracy [%].

Models 2013 2014 2015 2016 2017

Set Transformer [73] 0.791(±0.036) 0.743(±0.041) 0.710(±0.047) 0.698(±0.050) 0.675(±0.051)
Set Transformer + mean-IW 0.791(±0.036) 0.755(±0.037) 0.732(±0.041) 0.710(±0.048) 0.696(±0.049)
Set Transformer + max-IW 0.791(±0.036) 0.760(±0.037) 0.731(±0.038) 0.714(±0.045) 0.700(±0.045)
BERTSMALL [27] 0.898(±0.008) 0.882(±0.005) 0.860(±0.005) 0.842(±0.007) 0.830(±0.011)
BERTSMALL + mean-IW 0.898(±0.008) 0.893(±0.003) 0.866(±0.005) 0.844(±0.007) 0.839(±0.008)
BERTSMALL + max-IW 0.898(±0.008) 0.895(±0.002) 0.878(±0.003) 0.859(±0.002) 0.851(±0.004)
BERTBASE [27] 0.880(±0.011) 0.875(±0.009) 0.844(±0.004) 0.827(±0.007) 0.817(±0.010)
BERTBASE + mean-IW 0.880(±0.011) 0.878(±0.010) 0.853(±0.007) 0.840(±0.013) 0.822(±0.004)
BERTBASE + max-IW 0.880(±0.011) 0.877(±0.003) 0.870(±0.012) 0.852(±0.003) 0.830(±0.003)
BERTBASE-AP [27] 0.869(±0.008) 0.860(±0.007) 0.825(±0.013) 0.802(±0.010) 0.785(±0.009)
BERTBASE-AP + mean-IW 0.869(±0.008) 0.864(±0.009) 0.837(±0.009) 0.829(±0.010) 0.797(±0.012)
BERTBASE-AP + max-IW 0.869(±0.008) 0.866(±0.005) 0.844(±0.004) 0.833(±0.008) 0.810(±0.002)
GNN [21] 0.370(±0.032) 0.361(±0.035) 0.355(±0.035) 0.351(±0.035) 0.349(±0.033)
GNN + mean-IW 0.370(±0.032) 0.366(±0.033) 0.360(±0.032) 0.357(±0.033) 0.354(±0.033)
GNN + max-IW 0.370(±0.032) 0.367(±0.032) 0.362(±0.030) 0.362(±0.031) 0.359(±0.030)
HAP2S [154] 0.433(±0.041) 0.420(±0.044) 0.409(±0.053) 0.385(±0.053) 0.370(±0.062)
HAP2S + mean-IW 0.433(±0.041) 0.428(±0.042) 0.415(±0.045) 0.408(±0.050) 0.395(±0.057)
HAP2S + max-IW 0.433(±0.041) 0.427(±0.042) 0.418(±0.042) 0.413(±0.047) 0.400(±0.055)
Cross Attention [110] 0.920(±0.007) 0.892(±0.009) 0.867(±0.012) 0.844(±0.012) 0.836(±0.014)
Cross Attention + mean-IW 0.920(±0.007) 0.901(±0.008) 0.873(±0.012) 0.850(±0.013) 0.843(±0.014)
Cross Attention + max-IW 0.920(±0.007) 0.913(±0.009) 0.877(±0.010) 0.849(±0.011) 0.841(±0.013)
Cross Affinity [110] 0.924(±0.005) 0.907(±0.006) 0.886(±0.009) 0.865(±0.006) 0.855(±0.003)
Cross Affinity + mean-IW 0.924(±0.005) 0.917(±0.002) 0.886(±0.003) 0.866(±0.003) 0.860(±0.002)
Cross Affinity + max-IW 0.924(±0.005) 0.921(±0.002) 0.896(±0.006) 0.871(±0.001) 0.865(±0.005)

Table 5: Experimental results of the Fill-In-The-N -Blank with eight candidates with several models. Evaluation metrics are
the accuracy [%]

Models 2013 2014 2015 2016 2017

Set Transformer [73] 0.711(±0.042) 0.690(±0.040) 0.663(±0.037) 0.637(±0.044) 0.605(±0.041)
Set Transformer + mean-IW 0.711(±0.042) 0.702(±0.038) 0.685(±0.043) 0.662(±0.040) 0.630(±0.040)
Set Transformer + max-IW 0.711(±0.042) 0.708(±0.037) 0.699(±0.044) 0.675(±0.040) 0.641(±0.045)
BERTSMALL [27] 0.824(±0.015) 0.799(±0.023) 0.772(±0.025) 0.740(±0.039) 0.716(±0.039)
BERTSMALL + mean-IW 0.824(±0.015) 0.815(±0.016) 0.787(±0.023) 0.759(±0.031) 0.720(±0.030)
BERTSMALL + max-IW 0.824(±0.015) 0.813(±0.015) 0.805(±0.020) 0.782(±0.035) 0.732(±0.030)
BERTBASE [27] 0.810(±0.017) 0.780(±0.027) 0.764(±0.035) 0.733(±0.043) 0.700(±0.044)
BERTBASE + mean-IW 0.810(±0.017) 0.799(±0.020) 0.778(±0.028) 0.750(±0.022) 0.714(±0.033)
BERTBASE + max-IW 0.810(±0.017) 0.805(±0.023) 0.794(±0.021) 0.764(±0.020) 0.738(±0.029)
BERTBASE-AP [27] 0.801(±0.012) 0.765(±0.028) 0.741(±0.030) 0.719(±0.042) 0.694(±0.048)
BERTBASE-AP + mean-IW 0.801(±0.012) 0.788(±0.025) 0.763(±0.026) 0.734(±0.026) 0.709(±0.030)
BERTBASE-AP + max-IW 0.801(±0.012) 0.795(±0.025) 0.777(±0.020) 0.748(±0.028) 0.722(±0.021)
GNN [21] 0.346(±0.030) 0.329(±0.033) 0.319(±0.036) 0.301(±0.045) 0.287(±0.050)
GNN + mean-IW 0.346(±0.030) 0.337(±0.031) 0.325(±0.040) 0.310(±0.040) 0.299(±0.044)
GNN + max-IW 0.346(±0.030) 0.342(±0.035) 0.338(±0.036) 0.317(±0.038) 0.306(±0.038)
HAP2S [154] 0.382(±0.044) 0.367(±0.046) 0.340(±0.048) 0.325(±0.045) 0.310(±0.053)
HAP2S + mean-IW 0.382(±0.044) 0.371(±0.040) 0.343(±0.048) 0.331(±0.046) 0.312(±0.051)
HAP2S + max-IW 0.382(±0.044) 0.380(±0.043) 0.359(±0.046) 0.342(±0.046) 0.324(±0.048)
Cross Attention [110] 0.839(±0.002) 0.808(±0.005) 0.772(±0.005) 0.740(±0.009) 0.717(±0.010)
Cross Attention + mean-IW 0.839(±0.002) 0.810(±0.009) 0.788(±0.007) 0.752(±0.006) 0.720(±0.008)
Cross Attention + max-IW 0.839(±0.002) 0.836(±0.003) 0.800(±0.005) 0.783(±0.007) 0.743(±0.003)
Cross Affinity [110] 0.845(±0.000) 0.822(±0.001) 0.791(±0.005) 0.762(±0.008) 0.741(±0.004)
Cross Affinity + mean-IW 0.845(±0.000) 0.831(±0.008) 0.792(±0.002) 0.766(±0.004) 0.749(±0.002)
Cross Affinity+ max-IW 0.845(±0.000) 0.842(±0.004) 0.807(±0.003) 0.769(±0.005) 0.753(±0.005)



Table 6: Experimental results for the regression problem with distribution shift adaptation. Evaluation metrics are the MSE.

Models W = 0 W = 10 W = 20 W = 30 W = 40 W = 50

ERM 9.36(±0.02) 10.44(±0.04) 17.10(±0.06) 28.80(±0.05) 39.56(±0.05) 48.84(±0.05)
IWERM (optimal) 9.36(±0.02) 25.67(±0.12) 32.58(±0.12) 26.83(±0.11) 20.19(±0.10) 14.52(±0.10)
RIWERM (α = 0.25) 9.36(±0.02) 9.34(±0.04) 9.53(±0.03) 11.37(±0.04) 14.89(±0.09) 17.00(±0.14)
RIWERM (α = 0.50) 9.36(±0.02) 9.73(±0.04) 9.57(±0.03) 9.69(±0.04) 12.37(±0.10) 14.68(±0.15)
RIWERM (α = 0.75) 9.36(±0.02) 11.59(±0.05) 11.35(±0.05) 9.39(±0.03) 10.46(±0.09) 12.60(±0.14)

Figure 13: Experimental results of the regression problem
for the number of likes

where mα(xtri ) = (1− α)ptr(x
tr
i ) + αpte(x

tr
i ).

Note that there are other variants of IWERM, as in [65].
Figure 13 and Table 6 show the experimental results of

the regression task. These results show that the performance
of ERM decreases with increasing shift magnitude, while
IWERM and its variants allow the robustness to target shifts.

4. Related works and conclusion
There are many studies for handling set data with neural

networks. DeepSets [155] proposes a model that satisfies
the key concepts of permutation invariant and permutation
equivariant for approximating functions that deal with sets.

Definition 4.1 (Permutation invariant). A set function
f is said to be permutation invariant if f(V,W) =
f(πwW, πvV) for permutations πw and πv .

Definition 4.2 (Permutation equivariance). A set function
f is said to be permutation equivariant if f(πwW, πvV) =
πwf(W,V) for permutations πw and πv. Note that f is
permutation invariant for permutations within V .

Theorem 4.1 (Sum-decomposable[155]). A function f on
set X from countable particle space is invariant if and only
if there exists a decomposition,

f(X ) = ρ

(∑
x∈X

φ(x)

)
, f = ρ ◦

∑
◦φ,

with appropriate functions φ and ρ.

It is pointed out that the necessary and sufficient of sum-
decomposable is guaranteed only for countable sets [136].

Theorem 4.2 ([136]). A continuous function f on finite
sets X , |X | < p, is invariant if and only if it is sum-
decomposable via Rp.

That is, for an arbitrary continuous function f , the image
space of φ has to have at least dimension p, which is both
necessary and sufficient. For more details, see Appendix C.

SetTransformer [73] is an attention-based neural network
module that allows us to handle sets as inputs. SetVAE [63],
an extension of VAE to set data, has also been proposed.

Several distribution shift datasets exist for general clas-
sification and regression tasks where the input is a vector.
WILDS [68] is the collection of benchmark datasets [10,
8, 126, 52, 24, 16, 20, 153, 93, 85] under the distribution
shift, including histopathological images, satellite images
or sequence of source code tokens. PACS [74] and Office-
Home [135] adopt the image style to differentiate distribu-
tions, and VLCS [31] takes data collected independently
from four sources as environments. Also, DomainNet [160]
extends PACS to a far larger scale.

There are also a number of studies that evaluate robust-
ness to distribution shifts by introducing artificial distribution
shifts, such as noise corruptions [42, 49, 90, 108, 145], spa-
tial transformations [30, 32], ImageNet [26] variants (e.g.
ImageNet-A [50], ImageNet-C [49], ImageNet-R [48]), and
adversarial examples [14, 123, 72, 45, 143, 18]. However, a
recent study [124] has indicated that there is no correlation
between the robustness of such artificial distribution shifts
and the robustness of natural distribution shifts.

We believe that our SHIFT15M is a very useful dataset for
evaluating the still underdeveloped task of set-to-set match-
ing under natural distribution shifts. See Appendix D and
F for more related literature including domain adaptation,
out-of-domain generalization, concept drift adaptation, or
other fashion datasets. We also provide the datasheet for the
SHIFT15M in Appendix H, which is based on [41].

4.1. Future works

• More ablation studies: more model architectures and
parameter influences need to be investigated.

• Experiments on model calibration: model calibra-
tion and distribution shift are known to be closely re-



lated [138, 95, 70]. We expect that observing the met-
rics for evaluating model calibration in experiments on
the SHIFT15M will provide meaningful insights.

• Additional API development: currently, our API is
based on PyTorch [97]. In the future, we would like to
expand the APIs for other machine learning libraries
(e.g., TensorFlow [1] or Keras [19]).
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A. Sample items from the SHIFT15M

Figure 15,16,17,18 show the additional sample items from
the SHIFT15M dataset.

In addition, we provide the year-wise visualization for the
SHIFT15M dataset with t-SNE in Figure 19,20,21 like as
Figure 1. t-SNE is a dimensionality reduction technique that
is often used for visualizing high-dimensional data in a lower-
dimensional space. In this case, the data being visualized is
likely a collection of fashion-related features, such as color,
texture, and style, that have been extracted from the dataset.
These figures are likely to show the distribution of fashion-
related features across different years or time periods, which
can help to reveal trends and patterns in the fashion industry
over time.

B. Details and additional figures for the numer-
ical experiments

Here, we describe the details for numerical experiments
and introduce additional figures.

B.1. Details for numerical experiments

Training Settings We use a stochastic gradient descent
method [106, 61] with a learning rate of 0.005, a momentum
of 0.5, and a weight decay of 0.00004. We train both the
CNN and set-matching model in an end-to-end manner. In
each iteration, we randomly swap pairs of sets and items in
each set, and randomly flip images horizontally, to learn all
the methods stably.

Preparing Set Pairs To construct the correct pair of sets
to be matched, we randomly halve the given outfit O
into two non-empty proper subsets X and Y as follows:
O → {X ,Y}, where X ∩ Y = ∅. Here, we extend this set-
ting to include more general situations. We select Q outfits
O(1), . . . ,O(Q) randomly and split the respective outfits in
half O(q) → {X (q),Y(q)}, where q ∈ {1, . . . , Q}. We re-
gard the two sets {X (1), . . . ,X (Q)} and {Y(1), . . . ,Y(Q)}as
the correct pair, which consists of Q fashion styles. In the
training phase, we set Q = 4. Figure 14 shows the overview
of set-to-set matching problem.

B.2. Additional figures for the numerical experi-
ments

Figure 22,23,24,25,26 show the additional figures for the
Fill-In-The-N Blank experiments. These figures are based
on Table 4 and 5.

Figure 27,28 and 29 shows the PCA [35] dimensionality
reduction for items in each year. The color of each point
corresponds to the item category.

Figure 14: This figure is a citation of Figure 1 from Y.Saito et
al. [110]. Set-to-set matching aims to answer a fundamental
question: which candidate set is more compatible with the
reference set than others? In this process, we match the
reference set with each candidate set and select the best pair
based on some criteria.

C. Details for the sum-decomposable set func-
tion

From Definition 4.1, we say that (ρ, φ) is a sum-
decomposition of f . Given sum-decomposition (ρ, φ), we
write Φ(X ) =

∑
x∈X φ(x) and f = ρ ◦ Φ. We may also

refer to the function ρ ◦ Φ as a sum-decomposition.

Definition C.1. Let (ρ, φ) be a sum-decomposition. Write
Z for the domain of ρ and the codomain of φ. We refer to Z
as the latent space of the sum-decomposition (ρ, φ).

Definition C.2. Given a space Z, we say that f is sum-
decomposable via Z if f has a sum-decomposition whose
latent space is Z.

Definition C.3. We say that f is continuously sum-
decomposable when there exists a sum-decomposition (ρ, φ)
of f such that both ρ and φ are continuous. (ρ, φ) is then a
continuous sum-decomposition of f .

We give a brief reproduction of the statements and proof
of two key theorems from [155].

Theorem C.1. Let f : 2U → R where U is countable. Then
f is sum-decomposable via R.

Proof. Since U is countable, each x ∈ U can be mapped to
a unique element in N by a bijective function c : U → N.
If we can choose φ so that Φ is invertible, then we can set
ρ = f ◦ Φ−1, giving

f = ρ ◦ Φ, (9)

so f is sum-decomposable via R.
Considering the mapping φ(x) = 4−c(x), each set X ⊂

U corresponds to a unique real number r := Φ(X ). The



number r can be decoded to the set X and the element
c−1(n) ∈ U belongs to X if and only if the n-th digit of r is
1. This decoding procedure shows that Φ is invertible, and
the conclusion follows.

Theorem C.2. Let M ∈ N, and let f : [0, 1]M → R be
a continuous permutation-invariant function. Then, f is
continuously sum-decomposable via RM+1.

Theorem C.3. Deep Sets can represent any continuous
permutation-invariant function function ofM elements if the
dimesion of the latent space of the model is at least M + 1.

Recent work [137] argue that the guarantee of sum-
decomposability via R given by Theorem C.1 cannot
hold in practice, and prove that the guarantee of sum-
decomposability via RM+1 is essentially the bestpossible.

Theorem C.4. Let M,N ∈ N, with M > N . Then there
exist continuous permutation-invariant functions f : RM →
R which are not continuously sum-decomposable via RN .

Theorem C.5. Let M ∈ N, and let f : RM → R be a
continuous permutation-invariant function. Then, f is con-
tinuously sum-decomposable via RM .

Theorem C.6. Denote the set of subsets [0, 1] containing at
most M elements by [0, 1]≤M . Let f : [0, 1]≤M → R be
continuous and permutation-invariant. Then, f is continu-
ously sum-decomposable via RM .

Let M be a positive integer, U ⊂ RM be compact, and
f : U → R.

Definition C.4. Let ε > 0. (φ, ρ) is a within-ε sum-
decomposition of f if |f(U) − ρ(Φ(U))| < ε for every
U ∈ U .

Definition C.5. A sequence (φ, ρ)k := {(φk, ρk) : k ∈ N}
is an approximate sum-decomposition of f if, for any ε > 0,
there is some K ∈ N such that (φK , ρK) is a within-ε
sum-decomposition of f . We also require that (φk, ρk) is
a sequence of ever-closer approximations to f . The exis-
tence of an approximate sum-decomposition of f guaran-
tees that f can be approximated arbitrarily closely by sum-
decomposition.

Theorem C.7. Let M,N ∈ N with M > N , and recall
that IM = [−1, 1]M ⊂ RM . Then there exists a continuous
permutation-invariant function f : IM → R which has no
continuous approximate sum-decomposition via RN .

D. Generalization bounds under the distribu-
tion shift

The SHIFT15M dataset is a valuable resource for evaluat-
ing the performance of machine learning models in settings

where the underlying distribution of the data may shift over
time. One important aspect of this dataset is that it allows
researchers to calculate the distance between the distribu-
tions in the train and test splits. This distance measure can
provide valuable insight into how much the distribution has
shifted between the two sets of data, which in turn can help
researchers to better understand the behavior of their models
under distributional shifts.

Furthermore, researchers have proposed several general-
ization bounds that are specific to distribution shifts and that
depend on the distance between distributions. These bounds
provide a way to quantify the relationship between the per-
formance of a model and the extent of the distributional shift,
which is a crucial factor in evaluating the robustness of a
model. By considering these generalization bounds when
analyzing experimental results on the SHIFT15M dataset,
researchers can gain a more precise understanding of how
their models perform under distribution shifts and how to
improve them. Overall, the SHIFT15M dataset and the as-
sociated generalization bounds represent important tools for
evaluating and improving the robustness of machine learning
models. Here, we introduce several known generalization
bounds under the distribution shift [105].

Definition D.1 (Total variation distance). Denote by B be
the set of measurable subsets under two probability distribu-
tions p1 and p2. Then, the total variation distance between
p1 and p2 is defined as

dTV (p1, p2) = 2 sup
B∈B
|p1(B)− p2(B)| . (10)

Let

R`D(h) = E(x,y)∼D [`(x, y)] . (11)

Theorem D.1 ([12]). Given two domains S and T, and a
hypothesis classH over X × Y , the following holds for any
h ∈ H.

R`01T (h) ≤ R`01S (h) + dTV (SX ,TX )

+ min {Ex∼SX [J(x;SX ,TX )] ,Ex∼TX [J(x;SX ,TX )]} ,

where J(x;SX ,TX ) = |fS(x) − fT(x)|, and fS(x) and
fT(x) are source and target true labeling functions associ-
ated with S and T, respectively.

Definition D.2. Given marginal distributions of two do-
mains SX and TX over the input space X , let H be a hy-
pothesis class, and denoteH∆H the symmetric difference
hypothesis space defined as

h ∈ H∆H ⇐⇒ h(x) = g(x)⊕ g′(x) (12)

for some (g, g′) ∈ H2, where ⊕ stands for XOR operation.
Let I(h) denote the set for which h ∈ H∆H is the char-
acteristic function, that is x ∈ I(h) ⇔ g(x) = 1. The
H∆H-divergence between SX and TX is defined as:

dH∆H(SX ,TX ) = 2 sup
h∈H∆H

∣∣∣∣PrSS
(I(h))− Pr

TX
(I(h))

∣∣∣∣ . (13)



Lemma D.2. LetH be a hypothesis space of VC dimension
V C(H). If Su, Tu are unlabeled samples of size m each,
drawn independently from SX and TX respectively, then
for any δ ∈ (0, 1) with probability at least 1 − δ over the
random choice of the samples we have

dH∆H(SX ,TX ) ≤ d̂H∆H(Su,Tu) + 4

√
2V C(H) ln 2m+ ln 2

δ

m
,

where d̂H∆H(Su,Tu) is the empirical H∆H-divergence
estimated on Su and Tu.

Lemma D.3 ([11]). LetH be a hypothesis space. Then, for
two unlabeled samples Su, Tu of size m we have

d̂H∆H(Su, Tu)

= 2

{
1− min

h∈H∆H

(
1

m

∑
x∈H0

1x∈Su
+

1

m

∑
x∈H1

1x∈Tu

)}
,

where H0 = {x : h(x) = 0} and H1 = {x : h(x) = 1}.

Lemma D.4 ([11]). Let S and T be two domains on X ×Y .
For any pair of hypothesis (h, h′) ∈ H∆H2, we have∣∣∣R`01T (h, h′)−R`01S (h, h′)

∣∣∣ ≤ 1

2
dH∆H(SX ,TX ), (14)

where

R`D(h, h′) = Ex∼DX [`(h(x), h′(x))] . (15)

Theorem D.5 ([11]). Let H be a hypothesis space of VC
dimension V C(H). If Su and Tu are unlabeled samples
of size m′ each, drawn independently from SX and TX ,
respectively, then for any δ ∈ (0, 1) with probability at least
1− δ over the random choice of the samples, we have that
for all h ∈ H

R`01T (h) ≤ R`01S (h) +
1

2
d̂H∆H(Su, Tu)

+ 4

√
2V C(H) ln 2m′ + ln 2

δ

m′
+ λ,

where λ is the combined error of the ideal hypothesis h∗.

The trade-off between source risk, divergence and the
capability to adapt for distribution shift is a crucial phe-
nomenon that plays a significant role in experiments related
to distribution shift adaptation using SHIFT15M. This trade-
off refers to the balance that needs to be maintained between
the risk of the source, the extent of divergence between the
source and target domains, and the ability of a model to adapt
to distribution shift. Therefore, it is essential to evaluate the
performance of models while keeping this trade-off in mind.
By doing so, researchers can ensure that the models they
develop are not only accurate but also robust and adaptable

to changes in the underlying distribution of the data. Ul-
timately, this can lead to better real-world performance of
machine learning models and improve their utility in various
applications.

Since our numerical experiments use the Wasserstein
distance W p

p as the distance between distributions, we also
introduce generalization bounds based on this distance:

W p
p (SX ,TX ) := inf

γ∈Π(SX ,TX )

∫
X×X

c(x,x′)pdγ(x,x′),

where c : X × X → R+ is a cost function for transporting
one unit of mass x to x′, and p ∈ [1,+∞].

Lemma D.6 ([104]). Let SX ,TX ∈ P(X ) be two prob-
ability measures on Rd. Assume that the cost function
c(x,x′) = ‖φ(x) − φ(x′)‖Hk`

, where H is an RKHS
equipped with kernel k` : X ×X → R induced by φ : X →
Hk` and k`(x,x′) = 〈φ(x), φ(x′)〉Hk`

. Assume further that
the loss function `h,f : x 7→ `(h(x), f(x)) is convex, sym-
metric and bounded and obeys the triangular equality and has
the parametric form |h(x)−f(x)|q for some q > 0. Assume
also that kernel k` in the RKHS Hk` is square-root integrable
with respect to both SX , TX for all SX ,TX ∈ P(X ) where
X is separable and 0 ≤ k`(x,x

′) ≤ K,∀x,x′ ∈ X if
‖`‖Hk`

≤ 1, then the following holds:

R`qT (h, h′) ≤ R`qS(h, h′) +W1(SX ,TX ), (16)

for all (h, h′) ∈ H2
k`

.

This lemma allows us to relate the source and target errors
by using Wasserstein distance. Also, we have

‖φ(x)− φ(x′)‖H =
√
〈φ(x)− φ(x′), φ(x)− φ(x′)〉H

=
√
k(x,x)− 2k(x,x′) + k(x′,x′).

Theorem D.7 ([15]). Let µ be a probability measure in Rd
so that for some α > 0, ∈Rd exp{α‖x‖2}dµ <∞, and µ̂ =
1
N

∑N
i=1 δxi

be its associated empirical measure defined on
a sample of independent variables {xi}Ni=1 drawn from µ.
Then for any d′ > d and ζ ′ <

√
2 there exists some constant

N0 depending on d′ and some square exponential moment of
µ such that, for any ε > 0 and N ≥ N0 max(ε−(d′+2), 1),

Pr {W1(µ, µ′) > ε} ≤ exp

{
−ζ
′

2
Nε2

}
(17)

where d′ and ζ ′ can be calculated explicitly.

Theorem D.8. Under the assumption of Lemma D.6, let
Su and Tu be two samples of size NS and NT drawn i.i.d.
from SX and TX , respectively. Let ŜX = 1

NS

∑NS

i=1 δxS
i

and T̂X = 1
NT

∑NT

i=1 δxT
i

be the associated empirical mea-
sures. Then for any d′ > d and ζ ′ <

√
2, there exists some



constant N0 depending on d′ such that for any δ > 0 and
min(NS , NT ) ≥ N0 max(δ−(d′+2), 1) with probability at
least 1− δ for all h, we have

R`qT (h) ≤ R`qS(h) +W1(ŜX , T̂X )

+

√
2 ln 1

δ

ζ ′

(√
1

NS
+

√
1

NT

)
+ λ,

where λ is the combined error of the ideal hypothesis h∗ that
minimizes the combined error ofR`qS(h) +R`qT (h).

E. Density ratio estimation for the importance
weighted set-to-set matching

In the experiments, we proposed the importance-weighted
set-to-set matching as the baseline method. Recall that,
under the covariate shift assumption, we have

Etr
[
pte(x)

ptr(x)
`(h(x), y)

]
=

∫
pte(x)

ptr(x)
`(h(x), y)ptr(x, y)dxdy

=

∫
`(h(x), y)pte(x, y)dxdy

= Ete [`(h(x), y)] .

Density ratio estimation is a technique used in machine
learning to quantify the difference between the distribu-
tions of two datasets. The goal of density ratio estima-
tion is to estimate the density ratio r(x), which is defined
as the ratio of the probability density functions of the test
distribution pte(x) and the training distribution ptr(x) as
r(x) = pte(x)/ptr(x).

The density ratio is a powerful tool because it allows us
to compare the distributions of the two datasets and measure
the extent of the distribution shift. In particular, if we can es-
timate the density ratio accurately, we can obtain a consistent
estimator under the distribution shift. This means that we
can use this estimator to accurately predict the performance
of our model on the test set, even if the distribution of the
test set is different from that of the training set.

To estimate the density ratio, we used a probabilistic
classifier. However, there are several other strategies that
exist for estimating density ratios. Each of these methods has
its own strengths and weaknesses, and the choice of method
will depend on the specific application and the characteristics
of the data.

The main idea of moment matching is, to match the mo-
ments of p̂te(x) = r̂(x)ptr(x) and pte(x). For example,
matching the mean is∫

xr̂(x)ptr(x)dx =

∫
xpte(x)dx. (18)

However, matching a finite number of moments does not
necessarily yield the true density ratio even asymptotically.

Kernel mean matching [53, 46] allows that All moments are
efficiently matched in Gaussian RKHS H:

min
r̂∈H

∥∥∥∥∫ K(x, ·)r̂(x)ptr(x)dx−
∫
K(x, ·)ptr(x)dx

∥∥∥∥2

H

.

KLIEP [92, 122] minimize KL-divergence from pte(x)
to p̂te(x) = r̂(x)ptr(x) as

min
r̂
DKL[pte(x)‖p̂te] = min

r̂

∫
pte(x)

pte(x)

r̂(x)ptr(x)
dx.

Least-Squares Importance Fitting (LSIF) [57] minimize
squared loss:

min
r̂

∫
(r̂(x)− r(x))

2
ptr(x)dx.

F. Other related literature
Here we present the rest of the relevant literature.

F.1. Concept drift

In addition to covariate shift and target shift, the following
concept drift [128, 39, 82] is also well known.

Definition F.1 (Concept drift). We consider that the two
distributions ptr(x, y) and pte(x, y) satisfy the concept drift
assumption if the following conditions hold:

ptr(x|y) 6= pte(x|y),

ptr(y|x) 6= ptr(y|x).

Unlike covariate shift and target shift, concept drift as-
sumes that the conditional probabilities between the two
distributions are different. This means that a model that
is well-specified in the training distribution will be miss-
specified in the test distribution, making it the most difficult
problem setup. The strategies for addressing concept drift
can be broadly categorized as follows

• concept drift detection;

• concept drift understanding;

• concept drift adaptation.

Concept drift detection refers to the strategies that char-
acterize and quantify concept drift via identifying change
points or change time intervals [9]. Many algorithms focus
on tracking changes in the online error rate of base classifiers,
such as Drift Detection Method (DDM) [37], LLDD [36],
EDDM [6], HDDM [34] or FW-DDM [79]. Other strategies
based on data distribution [84, 120, 83] or multiple hypothe-
sis test [2, 139, 158].

Concept drift understanding refers to retrieving concept
drift information about "When" (the time at which the con-
cept drift occurs and how long the drift lasts) [115, 84],



"How" (the severity/degree of concept drift) [94], and
"Where" (the drift regions of concept drift) [78].

The main approaches for concept drift adaptation are
training new models for global drift [5, 86], model ensemble
for recurring drift [44, 69, 29], or adjusting existing models
for regional drift [54, 38, 147].

F.2. Domain adaptation

Domain adaptation [23, 22, 40, 111] is often used in a
similar context to distribution shift adaptation. It is often
referred to as visual domain adaptation [33, 55, 140, 98],
especially in the field of computer vision. This concept
is often referred to indistinguishably from covariate shift.
Depending on the availability of the source and target domain
data, the domain adaptation problem can be defined in many
different ways.

• supervised domain adaptation: In supervised domain
adaptation [89, 129], labeled data is available in both
the source and target domains. The model is trained
on the labeled data from the source domain and then
adapted to the target domain using the labeled data from
the target domain.

• semi-supervised domain adaptation: In semi-
supervised domain adaptation [71, 109, 28, 151], a
small amount of labeled data is available in the tar-
get domain in addition to the labeled data in the source
domain. The model is trained on the labeled data from
both domains and then adapted to the target domain us-
ing both the labeled and unlabeled data from the target
domain.

• unsupervised domain adaptation: In unsupervised
domain adaptation [40, 58, 77, 113, 81], labeled data
is only available in the source domain. The model is
trained on the labeled data from the source domain
and then adapted to the target domain using only the
unlabeled data from the target domain.

• multi-source domain adaptation: Unlike traditional
domain adaptation, which involves adapting from a
single source domain, multi-source domain adapta-
tion [99, 149, 161] deals with situations where there
are multiple source domains with different but related
feature distributions.

F.3. Out-of-distribution generalization

Another similar concept is out-of-distribution general-
ization [4, 48, 76, 117, 152]. The main difference with
distribution shift problem is that in the out-of-distribution
generalization problem setting we do not have any access
to the test data during training. For example, under the
covariate shift hypothesis, we often assume that we are
allowed to access unlabeled test data. Major approaches

for out-of-distribution generalization are disentangled repre-
sentation learning [13, 51, 62], causal representation learn-
ing [150, 112], domain generalization [162, 75, 163, 74],
invariant learning [100, 107, 47], stable learning [116, 157]
and distributionally robust optimization [103, 25, 43].

F.4. Other related topics

Active learning Active learning [114, 101, 66] is a sub-
field of machine learning that focuses on developing algo-
rithms that can automatically select the most informative
data to be labeled by an expert or a human annotator. The
goal of active learning is to achieve high accuracy models
with minimal labeled data. Active learning can help mitigate
the effects of distribution shift by actively selecting the most
informative data points to be labeled by an expert or a hu-
man annotator. By doing so, the active learning algorithm
can ensure that the labeled data used to train the model is
representative of the data that the model will encounter in
the real world.

Continual learning Continual learning [96], also known
as lifelong learning or incremental learning, is a subfield
of machine learning that deals with the problem of learn-
ing from a continuous stream of data over time, without
forgetting previously learned knowledge. One of the key
challenges in continual learning is avoiding catastrophic for-
getting [67, 59], which occurs when a model overwrites
previously learned knowledge with new information. Both
catastrophic forgetting and distribution shift can lead to poor
model performance and may require the model to be re-
trained or updated to address these issues. Continual learn-
ing algorithms are designed to address these challenges by
enabling models to learn from a continuous stream of data
over time, without forgetting previously learned knowledge
and without being affected by distribution shift.

Transfer learning Transfer learning [141, 127, 164] is a
machine learning technique that involves leveraging knowl-
edge learned from one task to improve performance on a
different, but related task. In transfer learning, a model is
first trained on a source task, which provides a foundation
of knowledge and skills. Then, the model is fine-tuned on
a target task, which is related to the source task but may
have different characteristics. Transfer learning is motivated
by the fact that many tasks in machine learning share com-
mon features and patterns. By leveraging knowledge from
a related task, a model can learn to recognize patterns and
features more effectively, even if the target task has different
characteristics.

F.5. Fashion datasets

Several fashion datasets have been introduced in the re-
search community to facilitate the development and eval-



uation of fashion-related machine learning models. These
datasets contain various types of fashion-related data, includ-
ing images, textual descriptions, and attribute labels.

Fashion MNIST [144] Fashion MNIST is a publicly avail-
able dataset of Zalando’s article images that is widely used
for research and development in computer vision and ma-
chine learning. The dataset consists of a training set of
60,000 examples and a test set of 10,000 examples, each
of which is a 28×28 grayscale image. The images in the
dataset are associated with labels from 10 different classes.

DeepFashion [80] DeepFashion is a dataset containing
around 800K diverse fashion images with their rich annota-
tions (46 categories, 1,000 descriptive attributes, bounding
boxes and landmark information) ranging from well-posed
product images to real-world-like consumer photos.

Fashionpedia [56] Fashionpedia consists of user uploaded
48K street-fashion photos collected from free license web-
sites such as Unsplash, Kaboompics etc. These photos con-
tain people wearing variety of clothes and accessories cap-
tured in different background, weather and camera condi-
tions.

Polyvore [133] Polyvore is a crowd-sourced dataset con-
taining outfits or sets of fashion items that complement each
other. It consists of manually labeled 68K outfits that are
split into 53K, 10K and 5K into training, validation and
testing sets, respectively

Polyvore-disjoint [133] Polyvore-disjoint is a subset of
the Polyvore dataset created by removing outfits that have
common items between training, validation and testing sets.
The dataset is challenging compared to Polyvore dataset and
consists of 32K outfits. During inference, we use only prod-
uct images patches and do not use the metadata associated
with the products.

Fashion IQ [142] The Fashion IQ dataset is a collection
of images and associated metadata designed to facilitate re-
search on natural language-based interactive image retrieval
in the fashion domain. It is the fashion dataset that includes
human-written relative captions that have been annotated
for similar pairs of images, as well as real-world product
descriptions and attribute labels as side information. The
dataset was created to help researchers develop new methods
for retrieving fashion images using natural language queries.

G. Open questions
Learning guarantees for set-to-set matching under the
distribution shift As introduced in Appendix D, there are

a number of studies on generalized error analysis under
distribution shifts for ordinal classification and regression
problems. However, theoretical analysis of set matching
under distributional shifts remains unexplored. Moreover,
even under the i.i.d. assumption, there is little research on
theoretical analysis of set matching [64].

Correlation of performance on SHIFT15M dataset with
performance on other different datasets As introduced
in Section 4, there are many datasets for classification and
regression under distribution shifts. Since SHIFT15M pro-
vides data loaders for ordinary classification and regression
as well as set matching, it is useful to examine the correla-
tion between performance on these tasks and performance
on other data sets.



Figure 15: Additional sample items from 2014.

Figure 16: Additional sample items from 2015.



Figure 17: Additional sample items from 2016.

Figure 18: Additional sample items from 2017.



Figure 19: t-SNE visualization for the SHIFT15M (2015).

Figure 20: t-SNE visualization for the SHIFT15M (2016).



Figure 21: t-SNE visualization for the SHIFT15M (2017).

Figure 22: Plots for Fill-In-The-N-Blank experiments with Cross Attention.



Figure 23: Plots for Fill-In-The-N-Blank experiments with Set Transformer.

Figure 24: Plots for Fill-In-The-N-Blank experiments with BERT.

Figure 25: Plots for Fill-In-The-N-Blank experiments with GNN.



Figure 26: Plots for Fill-In-The-N-Blank experiments with HAP2S.

Figure 27: PCA for the SHIFT15M (2015). The color of each point corresponds to the item category.



Figure 28: PCA for the SHIFT15M (2016). The color of each point corresponds to the item category.

Figure 29: PCA for the SHIFT15M (2017). The color of each point corresponds to the item category.



H. Datasheet for SHIFT15M
In accordance with [41], we provide the datasheet for

SHIFT15M. This datasheet offers an overview of crucial
information about the dataset that can aid users in making
informed decisions regarding its use. It encompasses a com-
prehensive range of details, including but not limited to the
dataset’s creation purpose, sources of data, and data process-
ing methods. Overall, the datasheet provides a vital resource
for those interested in utilizing the SHIFT15M dataset, as
it offers a transparent and comprehensive account of the
dataset’s characteristics and construction.

Motivation The purpose of this section is to emphasize
the importance of transparency and clarity in the process of
dataset creation, particularly with regards to the motivations
behind the creation of the dataset and any potential conflicts
of interest that may arise. Dataset creators are encouraged
to clearly articulate their reasons for creating the dataset,
including the research questions or goals that the dataset is
intended to address.

Composition Dataset creators are advised to review these
questions thoroughly prior to commencing any data collec-
tion, and provide responses after data collection has con-
cluded. The primary purpose of the questions in this section
is to equip dataset consumers with the information necessary
to make informed decisions about utilizing the dataset for
their specific needs. Additionally, some of the questions
have been tailored to obtain information about adherence
to the General Data Protection Regulation (GDPR) of the
European Union or similar regulatory frameworks in other
jurisdictions. Notably, questions specific to datasets involv-
ing individuals have been consolidated towards the end of
the section. It is recommended a broad interpretation of what
constitutes a dataset relating to people. For instance, any
dataset containing text that was produced by individuals can
be considered to relate to people.

Collection Process To ensure potential issues are identi-
fied, dataset creators are advised to review the questions in
this section before initiating data collection and then fur-
nish responses upon completion of collection, similar to the
previous section. Apart from the objectives set out in the
preceding section, the questions in this section are aimed
at extracting information that could assist researchers and
practitioners in producing alternative datasets with compa-
rable attributes. Similarly, inquiries exclusive to datasets
pertaining to individuals are categorized towards the end of
this section.

Preprocessing/cleaning/labeling Before proceeding with
any preprocessing, cleaning, or labeling, it is recommended

that dataset creators review the questions presented in this
section and subsequently provide responses upon completing
these tasks. The purpose of the questions in this section is
to equip dataset consumers with the requisite information
to evaluate whether the "raw" data has been processed in a
manner that aligns with their intended use.

Uses The questions in this section serve to prompt dataset
creators to consider the appropriate and inappropriate uses
of their dataset. By explicitly specifying such tasks, dataset
creators can assist dataset consumers in making informed de-
cisions, minimizing potential hazards or adverse outcomes.

Distribution Dataset creators should provide answers to
these questions prior to distributing the dataset either inter-
nally within the entity on behalf of which the dataset was
created or externally to third parties.

Maintenance As with the questions in the previous sec-
tion, dataset creators should provide answers to these ques-
tions prior to distributing the dataset. The questions in this
section are intended to encourage dataset creators to plan for
dataset maintenance and communicate this plan to dataset
consumers.



Motivation

For what purpose was the dataset created? Was there a specific task in

mind? Was there a specific gap that needed to be filled? Please provide a

description.

This paper addresses the problem of set-to-set matching, which involves
matching two different sets of items based on some criteria, especially in the
case of high-dimensional items like images. Although neural networks have
been applied to solve this problem, most machine learning-based approaches
assume that the training and test data follow the same distribution, which
is not always true in real-world scenarios. To address this limitation, we
introduce SHIFT15M, a dataset that can be used to evaluate set-to-set
matching models when the distribution of data changes between training
and testing. We conduct benchmark experiments that demonstrate the
performance drop of naive methods due to distribution shift. Additionally,
we provide software to handle the SHIFT15M dataset in a simple manner,
with the URL for the software to be made available after publication of this
manuscript. We believe proposed SHIFT15M dataset provide a valuable
resource for evaluating set-to-set matching models under the distribution
shift.

Who created this dataset (e.g., which team, research group) and on be-

half of which entity (e.g., company, institution, organization)?

Anonymized until after the paper is accepted.

Who funded the creation of the dataset? If there is an associated grant,

please provide the name of the grantor and the grant name and number.

Not applicable.

Any other comments?

Composition

What do the instances that comprise the dataset represent (e.g., docu-

ments, photos, people, countries)? Are there multiple types of instances

(e.g., movies, users, and ratings; people and interactions between them;

nodes and edges)? Please provide a description.
The SHIFT15M dataset is an extensive collection of outfits that were

previously shared on a fashion-oriented social networking service. The
service is no longer available, but the dataset continues to be a valuable
resource for researchers studying set-to-set matching problems, particularly
in the context of fashion. The dataset contains a vast array of information
about each outfit, including details about the user who posted it and some
meta-information. Each record in the dataset comprises five different fields,
making it easy to organize and analyze the data.

• set_id: An ID that identifies the outfit that was posted.

• items: Provides information about the items that comprise the posted
outfit and consists of 4 subfields.

– item_id: An ID that identifies an item.

– category_id1: An ID indicating the item category (e.g., outer-
wear, tops, ...).

– category_id2: An ID indicating the item subcategory (e.g.,
T-shirts, blouses, ...).

– price: Price of the item. user: Provides information about the
user who posted the outfit and consists of 2 subfields. An ID
that identifies the user who posted the outfit. A list of brands
that users have voted for as their favorites. The number is an
ID that identifies the brand.

• like_num: the number of times this outfit has been favorited by other
users.

• publish_date: The date the outfit was posted.

How many instances are there in total (of each type, if appropriate)?

The dataset consists of 15,218,721 item images and 2,555,147 outfits which
created by users of our fashion SNS.

Does the dataset contain all possible instances or is it a sample (not

necessarily random) of instances from a larger set? If the dataset is

a sample, then what is the larger set? Is the sample representative of the

larger set (e.g., geographic coverage)? If so, please describe how this rep-

resentativeness was validated/verified. If it is not representative of the larger

set, please describe why not (e.g., to cover a more diverse range of instances,

because instances were withheld or unavailable).
The fashion-oriented social networking service from which we collected
outfits for the SHIFT15M dataset was a rich source of data that allowed
us to obtain insights into the fashion trends and preferences of millions of
users. With approximately 2 million users, the website was a bustling hub
of activity where fashion enthusiasts could share their outfit ideas, provide
feedback to others, and explore the latest styles and trends.

The vast majority of users on the website were women in their 20s and
30s, representing a demographic that is known for their fashion-forward
mindset and interest in new trends. This demographic was particularly
valuable for our research, as it allowed us to obtain a large amount of data
on outfits that were representative of current fashion trends.

Our collection period spanned over a decade, starting on January 1st,
2010 and ending on April 6th, 2020. During this time, we meticulously
gathered outfits consisting of multiple items, each of which was carefully
categorized into a specific category. Our focus was on outfits that contained
four or more items from the main categories, including outerwear, tops,
bottoms, shoes, bags, hats, and accessories. This selection criterion was
chosen with the aim of creating a dataset that would be useful for set-to-set
matching tasks involving fashion items.

What data does each instance consist of? “Raw” data (e.g., unpro-

cessed text or images) or features? In either case, please provide a de-

scription.

Each item consists of 4096-dimensional features extracted via the VGG16
model trained using the ILSVRC2012 dataset.

Is there a label or target associated with each instance? If so, please

provide a description.
Indeed, each instance in the SHIFT15M dataset contains a wealth of

information that can be leveraged for various tasks. Along with the outfit
items, each instance also includes several numerical values such as the
category ID and number of likes. These values provide additional context
that can be used to train models for various set-to-set matching problems.

One of the strengths of the SHIFT15M dataset is its versatility. By
choosing one of these numerical values as the target variable, researchers
can easily switch between several tasks, each with its own unique set of
challenges and opportunities. For example, if the focus is on predicting
outfit popularity, the number of likes can be used as the target variable. On
the other hand, if the goal is to perform set-to-set matching between outfits,
the number of likes can be used as the target variable.

Is any information missing from individual instances? If so, please pro-

vide a description, explaining why this information is missing (e.g., because



it was unavailable). This does not include intentionally removed information,

but might include, e.g., redacted text.
It is important to note that the SHIFT15M dataset only includes items that

belong to the main categories, such as outerwear, tops, bottoms, shoes, bags,
hats, and accessories. This means that items outside of these categories,
such as underwear or background images for collage, are missing from the
dataset.

While this selection criterion may seem limiting, it was chosen to ensure
that the dataset is focused on items that are most commonly used in fashion-
related set-to-set matching tasks. By excluding items outside of the main
categories, we were able to curate a dataset that is more manageable and
less noisy, while still providing a diverse range of fashion items for analysis.

Are relationships between individual instances made explicit (e.g.,

users’ movie ratings, social network links)? If so, please describe how

these relationships are made explicit.

Each instance is assigned the ID of the user who submitted the outfit.

Are there recommended data splits (e.g., training, development/valida-

tion, testing)? If so, please provide a description of these splits, explaining

the rationale behind them.

SHIFT15M is a valuable dataset that simulates various types of dataset
shifts that are commonly observed in real-world applications. The collected
data spans a decade, from 2010 to 2020, and encompasses various shifts
that arise due to factors such as changes in user behavior, fashion trends,
and cultural preferences. To make it easy for researchers to evaluate their
models on the SHIFT15M dataset, we have developed software that allows
them to experiment with different types and sizes of shifts. The software
automates the train/val/test splitting process, making it easier for researchers
to evaluate the performance of their models under various shift scenarios.
With this software, researchers can simulate shifts that arise due to various
factors and assess their models’ robustness to such shifts. By doing so,
they can gain insights into how their models perform in real-world settings
where data distributions are constantly changing.

Are there any errors, sources of noise, or redundancies in the dataset?

If so, please provide a description.

No.

Is the dataset self-contained, or does it link to or otherwise rely on ex-

ternal resources (e.g., websites, tweets, other datasets)? If it links to or

relies on external resources, a) are there guarantees that they will exist, and

remain constant, over time; b) are there official archival versions of the com-

plete dataset (i.e., including the external resources as they existed at the time

the dataset was created); c) are there any restrictions (e.g., licenses, fees) as-

sociated with any of the external resources that might apply to a future user?

Please provide descriptions of all external resources and any restrictions as-

sociated with them, as well as links or other access points, as appropriate.

The dataset is self-contained.

Does the dataset contain data that might be considered confidential

(e.g., data that is protected by legal privilege or by doctor-patient confi-

dentiality, data that includes the content of individuals non-public com-

munications)? If so, please provide a description.

No.

Does the dataset contain data that, if viewed directly, might be offensive,

insulting, threatening, or might otherwise cause anxiety? If so, please

describe why.

No.

Does the dataset relate to people? If not, you may skip the remaining

questions in this section.

Yes. Each instance is a combination of outfits created by an individual and
preferred by that individual.

Does the dataset identify any subpopulations (e.g., by age, gender)? If

so, please describe how these subpopulations are identified and provide a

description of their respective distributions within the dataset.

No.

Is it possible to identify individuals (i.e., one or more natural persons),

either directly or indirectly (i.e., in combination with other data) from the

dataset? If so, please describe how.

It is impossible to identify individuals from the dataset.

Does the dataset contain data that might be considered sensitive in any

way (e.g., data that reveals racial or ethnic origins, sexual orientations,

religious beliefs, political opinions or union memberships, or locations;

financial or health data; biometric or genetic data; forms of government

identification, such as social security numbers; criminal history)? If so,

please provide a description.

No.

Any other comments?

Collection Process

How was the data associated with each instance acquired? Was the

data directly observable (e.g., raw text, movie ratings), reported by subjects

(e.g., survey responses), or indirectly inferred/derived from other data (e.g.,

part-of-speech tags, model-based guesses for age or language)? If data was

reported by subjects or indirectly inferred/derived from other data, was the

data validated/verified? If so, please describe how.

Except for the item attributes, the data was generated by users. Item
attributes (category and price) were collected from e-commerce sites that
sell the item. All data was viewable on the website.

What mechanisms or procedures were used to collect the data (e.g.,

hardware apparatus or sensor, manual human curation, software pro-

gram, software API)? How were these mechanisms or procedures vali-

dated?
The fashion-oriented social networking service that we collected the

SHIFT15M dataset from provided its users with an easy-to-use outfit ed-
itor that allowed them to create and publish their outfits on the platform.
This editor featured a wide range of clothing items, accessories, and other
fashion-related items that users could choose from to create their outfits.
Once a user had selected the items they wanted to include in their outfit, the
editor registered this selection as a new outfit on the platform.

To ensure that this outfit creation function was tested appropriately,
we followed general software development procedures. This involved
conducting thorough testing to ensure that the editor functioned as intended,
with no bugs or glitches that could affect the accuracy or reliability of
the data collected. By following this rigorous testing process, we were



able to gather a high-quality dataset that accurately reflects the fashion
choices made by users on the social networking service during the ten-year
collection period.

If the dataset is a sample from a larger set, what was the sampling strat-

egy (e.g., deterministic, probabilistic with specific sampling probabili-

ties)?

We collected a complete dataset without sampling to create our dataset,
except for data deleted by the user.

Who was involved in the data collection process (e.g., students, crowd-

workers, contractors) and how were they compensated (e.g., how much

were crowdworkers paid)?

Anonymized until after the paper is accepted.

Over what timeframe was the data collected? Does this timeframe

match the creation timeframe of the data associated with the instances

(e.g., recent crawl of old news articles)? If not, please describe the time-

frame in which the data associated with the instances was created.

The dataset was collected in the period of 2010 2020. Each outfit includes
a timestamp that describes when the outfit created.

Were any ethical review processes conducted (e.g., by an institutional

review board)? If so, please provide a description of these review processes,

including the outcomes, as well as a link or other access point to any support-

ing documentation.

No.

Does the dataset relate to people? If not, you may skip the remaining

questions in this section.

Yes. Each instance is a combination of outfits created by an individual and
preferred by that individual.

Did you collect the data from the individuals in question directly, or ob-

tain it via third parties or other sources (e.g., websites)?

Collected directly through the website.

Were the individuals in question notified about the data collection? If

so, please describe (or show with screenshots or other information) how no-

tice was provided, and provide a link or other access point to, or otherwise

reproduce, the exact language of the notification itself.

Notified in the Terms of Service.

Did the individuals in question consent to the collection and use of their

data? If so, please describe (or show with screenshots or other information)

how consent was requested and provided, and provide a link or other access

point to, or otherwise reproduce, the exact language to which the individuals

consented.

The use of the service was deemed as consent.

If consent was obtained, were the consenting individuals provided with

a mechanism to revoke their consent in the future or for certain uses? If

so, please provide a description, as well as a link or other access point to the

mechanism (if appropriate).

It is possible to contact the company that provided the service.

Has an analysis of the potential impact of the dataset and its use on data

subjects (e.g., a data protection impact analysis) been conducted? If so,

please provide a description of this analysis, including the outcomes, as well

as a link or other access point to any supporting documentation.

No, there had been no potential impact analysis conducted.

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., dis-

cretization or bucketing, tokenization, part-of-speech tagging, SIFT fea-

ture extraction, removal of instances, processing of missing values)? If

so, please provide a description. If not, you may skip the remainder of the

questions in this section.

We extracted the CNN features from images and treated them as input
data in our image-based tasks. As a result, our dataset contains the features
but does not include raw photos, making them anonymized. The CNN we
used is an official pre-trained VGG16, and we adopted the outputs of the
’fc6’ layer before applying ReLU as the feature. We exclude the outfits
that contain less than four items. Other than that, we did not remove any
instances in creating our dataset. However, we excluded some data in each
independent task. In detail, please refer to each task description.

Was the “raw” data saved in addition to the preprocessed/cleaned/la-

beled data (e.g., to support unanticipated future uses)? If so, please

provide a link or other access point to the “raw” data.

No.

Is the software used to preprocess/clean/label the instances available?

If so, please provide a link or other access point.

All software are provided on the SHIFT15M repository.

Any other comments?

Uses

Has the dataset been used for any tasks already? If so, please provide a

description.

Benchmarks using this dataset and the specified evaluation protocol are
listed in GitHub page.

Is there a repository that links to any or all papers or systems that use

the dataset? If so, please provide a link or other access point.

All benchmarks that use this dataset will be available at GitHub page.

What (other) tasks could the dataset be used for?
Here, we list candidate tasks for which SHIFT15M can be applied as

follows:

• set-to-set matching;

• regression (e.g., number of likes or sum of prices);

• classification (e.g., category ids or publish years).

Is there anything about the composition of the dataset or the way it

was collected and preprocessed/cleaned/labeled that might impact fu-

ture uses? For example, is there anything that a future user might need to



know to avoid uses that could result in unfair treatment of individuals or groups

(e.g., stereotyping, quality of service issues) or other undesirable harms (e.g.,

financial harms, legal risks) If so, please provide a description. Is there any-

thing a future user could do to mitigate these undesirable harms?

No.

Are there tasks for which the dataset should not be used? If so, please

provide a description.

This dataset is distributed in a way that excluding raw images and anonymiz-
ing the users/brands. Therefore, it requires the dataset users not to recon-
struct raw images from the image features or restore the anonymized parts
in a future task.

Any other comments?

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g.,

company, institution, organization) on behalf of which the dataset was

created? If so, please provide a description.

Yes. The dataset will be distributed to third parties based on the licence.

How will the dataset will be distributed (e.g., tarball on website, API,

GitHub) Does the dataset have a digital object identifier (DOI)?

The dataset will be distributed via a website or the links indicated in our
Github repository. We will add DOI for the SHIFT15M dataset.

When will the dataset be distributed?

The dataset will be first released in August 2021.

Will the dataset be distributed under a copyright or other intellectual

property (IP) license, and/or under applicable terms of use (ToU)? If so,

please describe this license and/or ToU, and provide a link or other access

point to, or otherwise reproduce, any relevant licensing terms or ToU, as well

as any fees associated with these restrictions.

The SHIFT15M dataset will be made available for distribution under the
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-
NC 4.0) license. This means that users are free to share and adapt the
dataset, as long as they provide attribution and do not use it for commer-
cial purposes. For more information about the license, please refer to
the following link: https://creativecommons.org/licenses/
by-nc/4.0/. This license ensures that the dataset can be used by the
academic community for research purposes, and that any derivative works
or publications based on the dataset will be properly attributed.

Have any third parties imposed IP-based or other restrictions on the

data associated with the instances? If so, please describe these restric-

tions, and provide a link or other access point to, or otherwise reproduce, any

relevant licensing terms, as well as any fees associated with these restric-

tions.

There are no fees or restrictions.

Do any export controls or other regulatory restrictions apply to the

dataset or to individual instances? If so, please describe these restric-

tions, and provide a link or other access point to, or otherwise reproduce, any

supporting documentation.

Unknown.

Any other comments?

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Maintenance

Who will be supporting/hosting/maintaining the dataset?

Anonymized until after the paper is accepted.

How can the owner/curator/manager of the dataset be contacted (e.g.,

email address)?

All changes to the dataset will be announced through the GitHub Releases.

Is there an erratum? If so, please provide a link or other access point.

To ensure the accuracy and transparency of the SHIFT15M dataset, any
changes made to the dataset will be immediately announced through the
GitHub Releases page. This will include updates to the dataset’s documenta-
tion, modifications to the dataset’s format or metadata, or any other changes
that may impact the dataset’s use. Additionally, any errors or issues found in
the dataset will be listed in the "Errata" section of the SHIFT15M repository.
This will allow users to stay informed of any updates or issues related to
the dataset and ensure that they are working with the most accurate and
up-to-date version of the data.

Will the dataset be updated (e.g., to correct labeling errors, add new

instances, delete instances)? If so, please describe how often, by whom,

and how updates will be communicated to users (e.g., mailing list, GitHub)?

All changes to the dataset will be announced through the GitHub Releases.

If the dataset relates to people, are there applicable limits on the reten-

tion of the data associated with the instances (e.g., were individuals in

question told that their data would be retained for a fixed period of time

and then deleted)? If so, please describe these limits and explain how they

will be enforced.

No.

Will older versions of the dataset continue to be supported/hosted/main-

tained? If so, please describe how. If not, please describe how its obsoles-

cence will be communicated to users.

They will continue to be supported with all information on SHIFT15M
repository. We also provide the contribution guides for software that sup-
ports the dataset.

If others want to extend/augment/build on/contribute to the dataset, is

there a mechanism for them to do so? If so, please provide a description.

Will these contributions be validated/verified? If so, please describe how. If

not, why not? Is there a process for communicating/distributing these contri-

butions to other users? If so, please provide a description.

Others may do so and should contact the original authors about incorporat-
ing fixes/extensions.

Any other comments?


