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Abstract

Humans apprehend the world through various sensory modalities, yet language
is their predominant communication channel. Machine learning systems need to
draw on the same multimodal richness to have informed discourses with humans
in natural language; this is particularly true for systems specialized in visually-
dense information, such as dialogue, recommendation, and search engines for
clothing. To this end, we train a visual question answering (VQA) system to
answer complex natural language questions about apparel in fashion photoshoot
images. The key to the successful training of our VQA model is the automatic
creation of a visual question-answering dataset with 168 million samples from item
attributes of 207 thousand images using diverse templates. The sample generation
employs a strategy that considers the difficulty of the question-answer pairs to
emphasize challenging concepts. Contrary to the recent trends in using several
datasets for pretraining the visual question answering models, we focused on
keeping the dataset fixed while training various models from scratch to isolate
the improvements from model architecture changes. We see that using the same
transformer for encoding the question and decoding the answer, as in language
models, achieves maximum accuracy, showing that visual language models (VLMs)
make the best visual question answering systems for our dataset. The accuracy
of the best model surpasses the human expert level, even when answering human-
generated questions that are not confined to the template formats. Our approach
for generating a large-scale multimodal domain-specific dataset provides a path for
training specialized models capable of communicating in natural language. The
training of such domain-expert models, e.g., our fashion VLM model, cannot rely
solely on the large-scale general-purpose datasets collected from the web.

1 Introduction

Fashion is about 2% of the world’s GDP and a significant sector of the retail industry. Whenever a
new fashion item like apparel or footwear is launched, the retailer needs to prepare and show rich
information about the product, including pictures, text descriptions, and detailed attribute tags. The
attributes of the fashion products, including color, pattern, texture, material, occasion-to-use, etc.,
require domain experts to label them piece by piece. This labeling process is time-consuming, costly,
subjective, error-prone, and fundamentally imprecise due to the interdependency of the attributes. To



address these issues, we introduce a multi-task multimodal machine learning model to automatically,
consistently, and precisely infer the visual attributes of the fashion items.

Each item is typically labeled with multiple tags that describe different attributes of the item. For
example, an item can be labeled with “shirt”, “red”, “solid pattern”, “blue collar” and “short sleeve”.
An intuitive way of learning such information is to train a multi-label classifier, which outputs the
probability of multiple labels of each input sample. However, such a model cannot encode the
relationship between different attributes. For example, “short sleeve” is a suitable attribute for “shirt”,
but not for “jeans”, and “red” only describes the body part of the shirt, but not the collar. The model
needs to learn attribute and object relationships and adjusts its output accordingly.

We propose designing a Visual Questioning Answer (VQA) framework for fashion items, in which the
model is trained to answer complex natural-language questions, such as “is the person wearing a red
shirt with solid pattern and blue collar?”, given the input image. The VQA task is more challenging
than the simple attribute classifier since it requires a thorough understanding of both the question
and the structure and relationship between various visual attributes in the image. By training such a
model, we convert the manual process of tagging new products with visual attributes into automated
answering of a series of questions with visual intents (auto-labeling). The model also generates
multimodal embeddings of the product images attended to the questions for downstream dialogue,
search, and recommendation systems.

Prior to our work, there exists a large-scale VQA v2 dataset [1], which includes 0.6 million guestion-
answer-image triplets. It has been widely used as the benchmark in recent research on VQA tasks.
However, this general dataset only contains a small number of question-answer-image triplets related
to fashion. In this work, we build a fashion VQA dataset from a diverse apparel product database.
The questions, including both binary and non-binary, are automatically composed by filling question
templates with the given attribute information. The dataset contains 207 thousand images and 168
million question-answer-image triplets. The automatic generation of the VQA dataset from a limited
number of images and attributes allows us to achieve the scale required for training a multimodal
domain expert model.

We leverage a cross-modality fusion model mapping representations from visual and text space to the
same latent feature space and performing answer prediction with classifier modules. Given an image
that contains a fashion item and the corresponding questions regarding its different attributes, the
model predicts the answers to the given questions. We can then use the model to generate the missing
or alternative attribute information based on its answers.

Additionally, given different but similar text descriptions on the same item, we can generate consistent
feature embeddings that enable us to build better online search services. The existing search engines
cannot attend to the relevant visual parts of a fashion item given the query and do not adapt the
attention mask according to the chained adjectives. With this work, we can map the input query to
the learned embeddings space and perform a robust and fuzzy search in that multimodal space. We
can also provide a visual dialogue service, in which the customers can ask consecutive questions
to narrow down the item list according to their apparel preferences. We can also build a fashion
recommendation system in the multimodal embeddings space. The customer-item interaction history
is mapped to this space, and the neighboring items are recommended.

2 Related work

Visual feature learning in VQA: The visual feature vector is often extracted from the input image
using a Convolutional Neural Networks (CNN) as the visual encoder, e.g., VGG [2l], ResNet [3],
or ResNext [4] models. In the early VQA frameworks, grid-based visual features extracted by
ImageNet-pretrained [5] VGG or ResNet models were widely adopted. Since [6]], region-based
visual features extracted using Faster R-CNN [[7]-based object detection model, especially fine-tuned
on Visual Genome [8] dataset, have been dominant [9][1O][11][12]. In [[L3], the authors propose
extracting the grid features from the same layer as the pretrained detector, achieving comparable
performance as the region-based features with higher efficiency. We benchmark these two types of
visual feature extraction methods on our dataset across different VQA models.

Cross-modality fusion models: Cross-modality fusion model is a core component of the VQA
framework. It aligns the features from the visual and language modalities. Initially-proposed VQA



models identify the high-level cross-modal interactions by Bilinear Fusion [14]. MCB [15]], MLB
[L6]] and MUTAN [17] are later introduced to achieve better fusion performance at much lower
computational cost and parameters. Motivated by the remarkable performance of the attention
mechanism in language and vision models [18][19], the attention module becomes the fundamental
block in designing the cross-modality fusion models. DFAF [9]] uses self-attention and co-attention
modules to learn the inter-and intra-connections between the two modalities. MCAN [10] builds the
model with the blocks of self-attention and guided attention. LXMERT [12], VIIBERT [20] adopt a
similar strategy and build a two-stream co-attention-based model. VisualBERT [21]], UNITER [22],
OSCAR [11], OSCAR+ [23] learn the alignment between image and language by pretraining on
multiple image caption datasets with BERT-style [18] visual language models (VLMs).

Fashion datasets: In recent year, many valuable fashion datasets [24][25)[26][27][28][29]
(30013 11[320[33][34] have greatly contributed to clothing item recognition and apparel attribute
understanding. However, most of them suffer from some limitations when considered for training
versatile VQA models. In [33[][26][34]][32], only primary categories in the dataset are labeled. Ad-
ditional garment parts and attributes are annotated in [29][25][27]]. Segmentation masks over each
piece of garment are drawn for the semantic segmentation task in [26][33]][25][30]]. Generally, the
localization of the garment pieces and parts in these types of datasets takes considerable human
annotation labor, and few of the datasets are suitable for conversion to a new dataset for vision
language tasks.

3 Methods

In this section, we describe how we designed and generated a novel VQA dataset for fashion. We
named the new dataset FashionVQA dataset.

3.1 Terminologies

Category: Each clothing item can be labeled with one super-category and several primary categories
or sub-categories.
* Super-categories: “apparel top”, “apparel bottom”, “one-piece clothing”, “shoes”, and
“accessories”.
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* Primary categories: “shirt”, “sweater”, “jacket”, “pants”, “skirt”’, “dress”, “jumpsuit”,
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“boots”, “sneaker”, “gloves”, etc.

CLINNT3 9

* Sub-categories: “t-shirt”, “cardigan”, “blazer jacket”, “pencil skirt”, “sweatpants”, “overall
jumpsuit”, “hiking boots”, etc.

Attributes: “Color”, “pattern”, “fit type”, “closure type”, and “material/fabric” are the general

attributes for all the fashion items. Each apparel type also has its unique attributes. The unique
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attributes for “apparel top”, “apparel bottom”, “one-piece clothing”, and “shoes” are listed below.
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» Apparel top: “torso length type”, “sleeve length type”, “pocket type”, “neckline type”,
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“sleeve style”, “collar type”, “lapel type”, and “cuff type”.
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* Apparel bottom: “pant leg type”, “skirt length type”, “pant leg style”, and “pleat type”.
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* One-piece clothing: “neckline type”, “sleeve length type”, “sleeve style”, “pant leg type”,
“skirt length type”, and “pleat type”.

* Shoes: “height”, “width”, “toe openness”, and “shape of toe”.

Attribute values: Each attribute is composed of a set of attribute values. For example, the set of the
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attribute values of color attribute includes “red”, “black”, “green”,“blue”, “yellow”, etc.

Parts: The parts mentioned in our dataset are typically lined on the fashion item, such as “patches”
and “pockets”.

Location: In our dataset, there exist numerous images with a person wearing multiple fashion items.
Therefore, we use Location to specify the relative location of the primary fashion item in the image,
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such as “on the top”, “on the bottom”, “on the feet”, “over the neck”, or “on the head”.



3.2 Data Collection pipeline

Our data collection pipeline involves four steps: [1] querying fashion items’ unique identity numbers
(image IDs), [2] querying and parsing meta-information, [3] downloading images, and [4] filling
question templates and forming question-answer-image triplets.

Each fashion item comes with a unique identity (ID) number. First, we query all fashion items and
retrieve their IDs. Then, we predefine a data structure that is eligible to query the meta-information
of fashion items from the item database. Feeding the data structure to an open-source data query
API, “graphQL”, we can obtain the meta-information attached to each ID, which contains the primary
image (front-view) URL and the description of the primary fashion item. We can directly download
the primary image from the URL with Python.

The description of the fashion item is not an on-deck dictionary that maps each unique targeted
attribute to its corresponding set of attribute values. For example, “Color” could be described with
different phrases such as “Product Color” or “Color Name”. Parsing from the description is a process
that collects attribute values from various sources and reduces similar attribute terminologies into the
same group. Also, meta-information comes in a very raw manner with many attribute values cross
attributes entangled, e.g., “black/stripes”, or in a vague expression. In this stage, we also need to
clean these attribute values and map them into common terminologies, e.g., map “black/stripes” to
“black” for color and “stripes” for pattern, or “olive night” color to “olive green”.

3.3 Question templates

We adopt a templating mechanism to automatically create question-answer pairs. The question
templates are designed based on a set of fixed rules that meet the English grammar and result in
human-readable sentences. By filling the question templates with specific item attribute, attribute
value, category, and location, we can generate a variety of questions for each image. Answer of each
question can be “Yes/No” for binary questions and multiple choices from the relevant attribute values
for non-binary questions.

Since the images from the FashionVQA dataset are all photoshoot images with a solid background,
the question templates ask only attribute-related questions about the fashion items in the image. For
example, “what is the sleeve length of this shirt on the top?” or “is this a white v-neck sweater?”.
The basic template is structured as “{question type} {this/these} {a/an/} {pair of/pairs of/} {object}
{location}?”. When filling the template to expand into a full sentence, the choices between “is/are”,
“this/these”, “a/an”, “a pair of/pairs of”’, and singular or plural format of category are required to
follow the English grammar and be aligned with the number of targeted fashion item in the image.
For example, if the number of pieces in the image is more than one, we choose “are”, “these”, ** /pairs
of”, and plural format of category. If the fashion item includes pant legs or two pieces like eyeglasses,

we add “pair of / pairs of” in the question templates.

If a person is in an image, and the primary fashion item is not from the super-category of “one-piece
clothing”, we assume there are multiple fashion items in the image. We use “{location}” to specify
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the relative location of the primary fashion item. We use “on the top” for “apparel top”, “on the

bottom” for “apparel bottom”, “on the feet” for “shoes”, “on the head” for “hat”, and “over the neck”
for “scarf”.

The question templates fall into two primary categories based on the answer types: binary and
non-binary templates.
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Binary question templates: Binary question templates typically start with “is this/are these”, “can
you see”, or “is there any {part} on this/these”, followed by the description of the targeted item in
the format of “{location} {a}/{a pair of/}/{} {attribute value 1} {attribute value 2} {category} ”,
whereas attribute value 1 and attribute value 2 are two attribute values from different attributes.
Permuting attribute value 1, attribute value 2, category in different orders yields different question
templates. Conjunction words like “with”, “and”, or “in” can be used in templates when attribute
value 1 or attribute value 2, or both are located after category. The most common question types

used in binary questions are “is/are” and “can”.

Non-binary question templates: Non-binary question templates typically start with question words
like “what” / “why” / “when” / “how” followed by terms of attribute. The formats of the question
type vary from attribute to attribute. For example, the question type can be “what color is” or “what



Question templates Answer Question Questions

types types
“is this a {attrl} {category} with | “yes/no” “is/are” “is this a white shirt with long
{attr2}?” sleeves?”
“on the top a {category} with {attrl} and | “yes/no” “is/are” “on the top a sweater with floral print
in {attr2} design?” and in v neck design?”’
“what {attribute} is this {category} the | “others” “what “what color is this a-line dress the per-
person wearing {location}?” {attribute}” | son wearing on the top?”
“what {attribute} 1s the one {location}?” | “others” “what “what color is the one on the top?”

{attribute}”

“when is a good time to wear this {aftrl} | “others” “when” “when is a good time to wear this yel-
{category}?” low dress?”

Table 1: Question templates and examples in the FashionVQA dataset
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is the color of” for attribute “color”, “what pattern is on” or “what print is on” for attribute “pattern”,
and “how many” or “what number of” for attribute ‘“number of pockets”.

Unlike binary question templates in our current dataset, we do not leverage other attribute values
unrelated to the targeted attribute in filling the non-binary question templates; even the category of
the targeted fashion item is not necessary. Therefore, it is possible to increase the diversity of the
non-binary question templates with additional attribute values or categories. For example, we can
come up with a color question template like “what color is on the top?” or “what color is this shirt
the person wearing on the top?”.

Diversification: The primary question templates are those preserving all the demonstratives, subject
pronouns, and prepositional phrases. By randomly either removing parts of those phrases or replacing
them with alternatives, we can create assorted variant question templates.

In non-binary question templates, the question types for a given attribute come in different fashions,
contributing to diverse non-binary question templates. Additionally, it is reasonable to replace the
specific category information of the targeted item with the combination of pronoun and location
to expand the diversity of question templates. Adding non-relevant attribute values to describing
the fashion item is also an approach to creating new question sentences. To further increase the
robustness of the question templates, we also introduce a small portion of noise into the question
templates, switching between “this/these”, “is/are”, and ““singular/plural”.
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In binary question templates, even elimination of the question type phrases like “is this a”, “are these”,
or “is there” does not cause an obstacle to make the remaining phrase human readable. Therefore,
we truncate a small fraction of the full question sentences by removing phrases of question type to
increase the diversity of the binary questions. When attribute values are placed after the category,
we randomly pick one from different conjunction structures to form different phrases, which will
remarkably increase the diversity of the binary question sentences. For example, for “a shirt with
stripe pattern”, an alternative expression can be “a shirt designed with stripe pattern”, or “a shirt
featured in stripe design”.

Table [T]demonstrates some examples of question sentences generated from question templates.

3.3.1 Balance positive and negative samples for each binary question

Given binary and non-binary question templates and attribute values for a specific image, we can
easily generate non-binary question-(multiple answers)-image triplets and binary question-(positive
answer)-image triplets.

For a balanced VQA dataset, we expect each binary question to come with the same number of
positive and negative samples, i.e., balanced (question, “Yes”, image ID) triplets and (question, “No”,
image ID) triplets. Here, we consider two different strategies for generating the negative samples
of each binary question. One strategy keeps the image fixed and changes the attribute values in the
question; the other one keeps the attribute values fixed and changes the image. Here we further
explain these strategies in detail:

Image-based: For each image, by filling the binary question templates with specific attribute values
and category information provided for this image, we make a positive binary sample. When an



attribute value or category in an existing binary question is changed, if the alteration is not in the list
of attribute values or categories corresponding to the image, we assume this is a negative sample for
the binary question.

Algorithm 1 Attribute-based balancing of the positive and negative samples for binary questions

Input: S: {s;,...} list of all fashion items

Each fashion item s;: {image ID: u;, category: c;, attributes: {ag, ...}, attribute values: {vq,, ...}
d}

Qr: list of binary question templates of all attributes

Output: B: list of binary question-answer-image triplets

Initialization:

for each specific attribute ay, do
U,, < {}: empty set of all image IDs with attribute ay,
Va, < {}: empty set of unique attribute values with attribute ay,

C + {}: empty set of unique categories
Build attribute-value-to-images dictionary:

for each fashion item s; € S do
C «+ C;
for each attribute ay, € s;(attributes) do
Uak — Uy
P.,(image ID set of positive answer of category c;) < u;
for each attribute value v,, € s;(attribute values) do
Var € Vays
Pvak (image ID set of positive answer with attribute value v,, ) < u;

Build attribute-value-to-(positive/negative answer)-images dictionary:

for each attribute value v,, € V,, do
V' = Synonyms(v,, )
for eachv, € (V' NV,,) do
P, =P, UP,,

’Uak ’Uak
for each attribute value v,, € V,, do
Nvak = Uak - Pv,,,k
for each category ¢; € C do
Follow the same strategy to update positive answer image ID set P, and build negative set N,

Expand attribute-value-to-(positive/negative answer)-images dictionary with attributes and cat-
egory combinations:
for each attribute value v,, € V,, do:
for each category ¢; € C' do

Plo,, e;) * positive answer image ID set of the combination of (vq,, ¢;)

N(v,, ,c;) - negative answer image ID set of the combination of (Vay s Ci)
=P, NPk,
(Po,, N Ne;) U (Ny, NN U (Ny, NN,

(vay, sci)
N, (Vay,,ci) =
Create balanced question-(positive/negative answer)-images triplets:

for each category ¢; € C do

for each specific attribute ay, of category c; do
Qr (o) = Qr (binary question templates of attribute axand category ¢;)
for each combination of attribute value v,, € V,, and category ¢; € C' do
Q(U% ;) = Fill QT(akm templates with v,, and c; to generate binary questions
for each binary question U(va,, i) € Q(vak,ci) do
Pick the same number of image IDs from P(vak ;) and N (Vayci)"

B+ (q(vak,ci%yesa Up S P(vak,ci)) U (q(vak,ci)7no7un S N(vak,ci))

Attribute-based: First, we build an attribute-value-to-images dictionary to map each distinct at-
tribute value or category to a set of eligible image IDs. Given a specific attribute value, we collect a
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Fashion items Shirt, Jumpsuit Sweater, Pants Dress Shirt, Skirt
Attributes Closure type; Sleeve length type; Neckline type; Pattern;
Leg length type Neckline type Pattern; Sleeve length type Color
Attribute values Pull on, Pullover, Front Long; Split neck; Letter print;
buckle; Full length V neck Geometric print; Long Light gray
Question/Answer Q: Is the person wearing a Q: What is the sleeve length of |Q: What is the neckline type of this| ~ Q: What color of shirt is she
full-length jumpsuit with front her sweater on the top? dress? wearing on the top?
buckle closure? A: long A: split A: light gray
A: Yes Q: What type of neckline is this | Q: is this a short sleeve geometric | Q: is the person wearing on the
sweater on the top? print dress? top a letter print pullover shirt?
A: V neck A: No A: Yes

Figure 1: Four randomly picked question-answer-image triplets from FashionVQA dataset.

set of positive answer image IDs directly from this attribute-value-to-images dictionary using given
attribute value and its synonyms. The negative answer image IDs are collected from all image IDs
of the same attribute excluding the positive image IDs. More concretely, to maximally reduce the
noise in the positive/negative answer image IDs, we need to verify the relationship among attribute
values as alternative, hierarchical, or exclusive terms. Examples of alternative terminologies are
“sweatpants”, “jogger pants”, and “lounge pants”; examples of hierarchical terminologies are “blue”,
“light blue”, and “sky blue”; and, examples of exclusive terminologies are “light blue” and “dark
blue”. We expect attribute values with similar terminologies (alternatives and parents of hierarchical
terms) to contain the same set of positive samples, so they are considered synonyms. In this manner,
we can build an artribute-value-to-(positive/negative answer)-images dictionary (see Algorithm T)).

Then, we consider all the combinations of assorted attributes with category. For example, ( color,
pattern, category ), { color, category ), { material, neckline type, category ), etc. For each combination,
we further expand the attribute-value-to-(positive/negative answer)-images dictionary by mapping
the combination of one specific attribute value and one specific category (e.g. (red, shirt)) to
its positive/negative answer image ID set. We collect the positive answer image ID set of the
combinations following the formula in Equation [T]and the negative answer image ID set following
the formula in Equation 2}

Pos(< attrl, category >) =Pos(attrl) N Pos(category) ()
Neg(< attrl, category >) =(Pos(attrl) N Neg(category))U
(Neg(attrl) N Pos(category))U (2)
(Neg(attrl) N Neg(category))

whereas, Pos() is the positive answer image ID set and Neg() is the negative answer Image ID set.
With the attribute-value-to-(positive/negative answer)-images dictionary, we can easily generate
different binary questions via filling the question templates with each combination of attribute value
and category in the dictionary. We can pick a fixed number of positive and negative answer image
IDs to guarantee the sample balance for each question. Following the same formula, we can easily
expand the combinations to multiple attribute values and one category.

3.4 Dataset description

Figure[I] shows four randomly picked question-answer-image triplet examples in our dataset. There
are 42 attributes in our dataset, including category, color, pattern, occasion, material, number of, 29
type-related attributes, 5 style-related attributes, and 2 shape-related attributes. The binary questions
in our dataset are composed of three major types: category, category + one attribute, and category +
two attributes with 1, 2, and 6 permutations between category and attribute, respectively, along with
the ascending difficulty level to learn the alignment between a given binary question and an input
image.
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Figure 2: Pipeline of the fashion VQA task.

FashionVQA: FashionVQA dataset includes 207,654 unique photoshoot images with resolution
600 x 600. We use 169,406 images in the train split for training and 38,248 images in the validation
split for evaluation. The train split is composed of 163M question-answer-image triplets and the
validation split includes 5.2M question-answer-image triplets. Since the information in binary
questions is much more complicated than that in the non-binary questions, there are more binary
triplets than non-binary ones in the dataset. In the train split, we have 22M non-binary question-
answer-image triplets covering 33 different question types, and approximately 141M binary question-
answer-image triplets, among which 134M have questions with one category and two attribute values,
6M have questions with one category and one attribute value, and 1M have questions with only one
category or one attribute value. In the validation split, we have 1.2M non-binary question-answer-
image triplets and 4M binary question-answer-image triplets. The answer vocabulary contains 1,545
different classes in total.

mini-FashionVQA: We also create a subset dataset, named mini-FashionVQA, derived from the
FashionVQA dataset. The mini-FashionVQA dataset includes 20M question-answer-image triplets in
the train split (11M from non-binary triplets and 9M from binary triplets) and 2.2M triplets in the
validation split (0.7M from non-binary triplets and 1.5M from binary triplets).

4 Benchmarks

Every benchmark reported on our datasets is implemented via PyTorch[35]-v1.10 on servers with 8
Nvidia 80GB A-100 GPUs, 2 AMD 2.25GHz 7742 CPUs, and 4TB system memory. In the training
stage, we adopted data-parallel multi-GPU training and set the batch size to 2048, and trained for 40
epochs. The Adam[36]] optimizer is used across all the models. The learning rate is set to 0.0001 and
reduced by half at the milestone epochs of 20, 30, and 35.

We benchmark the FashionVQA dataset by training several VQA models to learn the interaction
between images and questions. Figure 2] shows the VQA pipeline adopted in our experiment. Given
the visual embedding of the input image and text embedding of the input question sentence, we
train the model to output the given answer to the question. The dataset is used to train two variants
of the MCAN [10] model and a MUTAN [17] model. One MCAN variant, named MCAN*-v1,
is a modification of the MCAN-small, which includes only two encoder-decoder modules. The
other variant is named MCAN*-VLM, which has a similar structure to MCAN*-v1, but instead of
an answer classifier, it has a token classifier covering all of the question and answer tokens. For
MCAN*-VLM, the answer to each question is tokenized as one token and concatenated with the
question tokens as the language input. The special token ‘SEP’ is inserted between the question and
the answer. Also, ‘EOS’ token is used at the end of the answer. During the training of MCAN*-VLM,
we randomly mask one token and predict the masked token as in the masked language modeling,
similar to BERT [18]. Different from MCAN*-v1 that answer vocabulary is independent of the word
vocabulary of the questions, MCAN™*-VLM maps each answer to one token and expands the original
word vocabulary to a larger one with the answer tokens. Thus, the tokens in the answers and questions
share the same word vocabulary. This allows the MCAN*-VLM to work as a visual language model,
which directly benefits from the overlap in the question tokens of the binary questions and the answer
tokens of the non-binary question.



Input Attention Attention Binary Input Attention Attention Nonbinary
Image Map Overlay Questions/Answers Image Map Overlay Questions/Answers

a
o
Q: the one on the top a dark gray

=
=

with sweetheart neck? Q: what type of strap is this ?
GT: [no] o o GT: [spaghetti, thin]
K ) A: [no] A: [thin, spaghetti, halter]
‘ 4 l 4 ¥ | §
e L
£ a
&
: th the t dark gray ! |
\ & the On:i:: P VE‘,“,OPQ,E\»' N i Q:what is the length of this >
h o GT: [midi, at calf, long]

GT: [yes]
A: [yes

] A: [at calf, midi, long]

rr

Q: is the person wearing the one on

£
the top a pink with scoop } Q: what pattern is on? .
neck? GT: [floral print, botanical print]
K GT: [no] A: [botanical print, floral print,
Bl A:[no) shape print]
l 1 l 4 4 |
- ~
& 2]
g Q: what type of neckline is the
. oi N i
Q: 0:‘ therbctt‘cl: a pink with | the person wearing?
2;1 1gh length GT: [v neck]
1 ar: [yes] A: [v neck, square neck, sweetheart
! i [ves] neck]
| S | ) ! I
- .
a a
= >~
Q: on the bottom a pink with | Q: what is the closure type of this
floor length? ?
s GT: [no] GT: [pullover]
i A: [n0] A: [pullover, tie, front tie]
& | ) ! !

Figure 3: Visualization of attention maps generated by the model trained with FashionVQA dataset.

In the training stage, except MCAN*-VLM, we treat the binary-question prediction and the non-
binary question prediction as two different tasks and output the predicted answers from two different
classifiers. We report top-1 accuracies for both binary and non-binary samples.

Table 2: Benchmarks of MCAN*-v1l, MCAN*-VLM, and MUTAN trained on FashionVQA dataset

Top-1 Acc
Model All Non-binary  Binary
MUTAN 81.38% 61.62% 87.43%
MCAN*-v1 84.42% 64.32% 90.58%
MCAN*-VLM | 84.69% 64.65 % 90.84 %

Table 2] lists the benchmark results of the three aforementioned models on the validation split of
our FashionVQA dataset. The results show that MCAN*-VLM works better than MCAN*-v1 and
MUTAN, indicating that a decoder-only visual language model (VLM) performs better than the
dedicated VQA architectures.

By visualizing the image attention maps generated from an intermediate layer of the model, we can
validate whether the model focuses its attention on the regions mentioned in a question. Figure 3|
visualizes the attention map from two validation samples for a series of binary and non-binary
questions. The three columns of images on each side are the input images, attention maps, and images
overlayed by the attention maps, respectively, followed by the corresponding input questions, ground
truth answers, and predicted answers. When the questions focus on different fashion items of the
same image, the attention map shifts to the targeted region as expected.

4.1 Benchmarks with different VQA models

We also use the mini-FashionVQA to benchmark a larger variety of VQA models including Bottom-
up-top-down (BUTD) [6], MUTAN [17], DFAF [9], MCAN*-v1l, MCAN*-v2, MCAN*-VLM, and
OSCAR [L1]. MCAN*-v2 has the same model structure as MCAN*-v1 except for its intermediate
feed-forward layer with only half the number of channels of MCAN™*-v1. We apply similar visual
embedding, text embedding, and loss function in these models and train them from scratch.



Table [3] lists the results (average of top-1 accuracies for three runs) from different VQA models
with the same region-based visual features as input. The visual features are extracted from Faster-
RCNN with ResNet-101 backbone fine-tuned with VisualGenome. We set the maximum number
of objects extracted from the object-detection model to 25. The feature dimension of each object is
2048. A combination of GLove [37] + GRU[3S8[/LSTM[39] is used for the text embedding in DFAF,
MCAN*-vl, MCAN*-v2, MCAN*-VLM, and BUTD. MUTAN adopts GRU for the text embedding,
of which the parameters are initialized with SkipThoughts [40]. The number of parameters, FLOPs,
and activation counts in all our experiments are calculated only from the cross-modality models,
excluding text embedding and visual embedding components. On the mini-FashionVQA dataset,
MCAN*-VLM achieves the best accuracy for both non-binary question and binary question samples,
with fewer parameters and FLOPs than OSCAR. Also, MCAN*-VLM works better than MCAN™*-v1
on both non-binary questions and binary questions.

Table 3: Performance on different VQA models trained on the mini-FashionVQA dataset with same
region-based visual features

Model Parameters FLOPs Act.Count NIl I;Fgg:é;:;rcy Binary
MUTAN 9.8M 38.5M 156.9K 75.08% 59.14% 81.50%
BUTD 11.5M 61.5M 30.7K 79.26% 63.61% 85.56%
DFAF oM 280M 114.8K 80.55% 62.52% 87.81%
OSCAR 86.7M 6475M  2832.3K  81.21% 64.20% 88.05%
MCAN*-v1 19M 427M 238.9K 81.69% 64.47% 88.61%
MCAN*-v2 14.5M 320M 134.5K 81.08% 64.33% 87.83%

MCAN*-VLM 19M 464M 282.0K  81.80% 64.63 % 88.71%

4.2 Ablation study

Impact of visual embedding extraction schemes: We also benchmark different visual embedding
extraction schemes and see their impact on the performance of VQA tasks for the mini-FashionVQA
dataset. We replace the region-based feature with the grid feature with the same dimension. The
grid-feature (refer to [13]]) model is built with ResNext-101 backbone and fine-tuned with object
detection task on the VisualGenome dataset. The visual feature is extracted from the same layer as
the object detection and pooled into different sizes. To be aligned with the visual input dimension
size from the region-based feature, the spatial dimension of the grid feature is set to 5x5 with the
feature dimension set to 2048. Other than the visual embedding, all of the settings remain the same.

Table 4: Performance with region-based and grid visual features across different VQA models

Model Region-based features (ResNet-101) Grid features (ResNext-101)
All Non-binary Binary All Non-binary  Binary
MUTAN 75.08% 59.14% 81.50% 79.77%(+4.69%) 62.54% 86.70%
BUTD 79.26% 63.61% 85.56% 80.54%(+1.28%) 64.30% 87.08%
DFAF 80.55% 62.52% 87.81% 82.01%(+1.46%) 64.70% 88.97%
MCAN*-v1 81.69% 64.47% 88.61% 83.29%((+1.60%) 65.38% 90.49%
MCAN*-v2 81.08% 64.33% 87.83% 82.98%(+1.90%) 65.17% 90.14%
MCAN*-VLM | 81.80% 64.63% 88.71% 83.41%(+1.61%) 65.52% 90.62%

Table ] shows that the grid-feature-based visual embedding extraction method consistently works
better than the region-based method across all different VQA models by more than 1% when trained
on our dataset. In the other experiments, unless mentioned otherwise, we use grid-feature-based
visual embedding for all the models.

Impact of different backbones for visual embedding: Generally, a better visual backbone will
contribute to better visual embedding. We benchmark three different visual backbones (ResNet-50,
ResNext-101, ResNext-152) for the grid-feature extraction on our dataset for MCAN*-v1, BUTD,
and DFAF. All the visual backbones are pre-trained on VisualGenome [8] dataset for the grid-feature
extraction.
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Table 5: Performances with different visual backbones for grid-feature

Model MCAN"-v1 - BUTD - DFAF -
All Non-binary  Binary All Non-binary  Binary All Non-binary ~ Binary
ResNet-50 | 82.99% 65.25% 90.13% | 80.47% 64.35% 86.96% | 80.81% 63.39% 87.81%
ResNext-101 | 83.29% 65.38% 90.49% | 80.54% 64.30% 87.08% | 82.01% 64.70% 88.97%
ResNext-152 | 83.15% 65.41% 90.29% | 80.50% 64.62% 86.89% | 82.39% 65.17% 89.32%

Table[5]|shows that ResNext-101 constantly works better than ResNet-50 on three different models for
the performance of both non-binary and binary questions; however, the performance improvement
from ResNext-101 to ResNext-152 is inconsistent. Overall, grid-feature with ResNext-101 as the
backbone is the best choice for extracting visual features on our dataset.

Impact of different spatial dimension sizes for grid feature: A larger spatial dimension size after
the pooling operation will typically preserve more visual information. We benchmark MCAN*-
vl with three different spatial dimension sizes (5x5, 7x7, and 9x9) for the grid feature visual
embeddings in Table 6] ResNext-101 is the selected visual backbone.

The results in Table [] show that the best performance among the three is from the smallest spatial
dimension size, 5x5, rather than the largest one. One possible reason is that the background of
the photoshoot images from our dataset includes some trivial information, and the larger spatial
dimension sizes do not add useful information.

Table 6: Performances with different spatial dimension sizes for grid-feature

Model Spatial dimension size NIl ggg:llnﬁacr; Binary
5x5 83.29% 65.38% 90.49%

MCAN*-v1 7T 82.94% 64.19% 90.48%
9x9 82.60% 65.23% 89.59%

Impact of single-task versus multi-task training: Due to the large difference in the answer distri-
bution of non-binary questions and binary questions, we consider using different classifiers for answer
predictions and treating the problem as a multi-task classification. Namely, predicting answers for
two types of questions with either a single classifier or two separate classifiers. This applies to all
models, except the MCAN*-VLM model, where the outputs are generated by a single token classifier,
including both answer and question tokens.

Table 7: Performance with different number of classifiers for non-binary and binary questions

Model Single-task Multi-tasks
All Non-binary  Binary All Non-binary  Binary
MUTAN 79.40% 62.12% 86.36% | 79.77%(+0.37%) 62.54% 86.70%
BUTD 80.32% 63.55% 87.07% | 80.54%(+0.22%) 64.30% 87.08%
DFAF 81.6% 63.85% 88.74% | 82.01%(+0.41%) 64.70% 88.97%
MCAN*-vl | 83.24% 65.36% 90.44% | 83.29%(+0.05%) 65.38% 90.49%

Table [/|demonstrates that the proposed multi-task classification is superior to a single-task classifica-
tion in predicting the answers for the VQA models.

S Comparison to human performance

Human accuracy for FashionVQA dataset: To see how well humans can answer the question in
our dataset, we implemented a user interface that shows one question-image pair from the validation
set at a time. The user interface allows the human annotators to select one of the acceptable answers

LEIT3 CEINT3

among 1,545 answer classes, e.g., “yes”, “no”, “purple”, “unicorn print”, “tailored”, “fly hook and
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loop fastener”, “three quarter length”, etc. We asked the annotators to answer each question to the

)

best of their knowledge without looking up the terms.

We have two types of annotators: experts and non-experts. We trained our expert annotators with at
least ten examples per fashion term in our word vocabulary. Both expert and non-expert annotators
are trained on the VQA task of our dataset. Table [8|shows the accuracies of nine human annotators
compared to the MCAN*-VLM model trained on the FashionVQA dataset.

Table 8: Performances of different human annotators on samples from FashionVQA validation set

Annotator Number of samples Accuracy Accuracy p-value

All  Non-binary Binary All Non-binary  Binary All Non-binary  Binary
Expert 1 728 216 512 63.6% 43.5% 72.1% | 8.5e-30 1.1e-09 7.5e-20
Non-expert 1 | 106 29 77 58.5% 24.1% 71.4% | 1.8e-07 1.4e-05 0.00018
Non-expert2 | 70 18 52 52.9% 22.2% 63.5% | 6.9e-07 0.0003 8.7e-05
Non-expert 3 | 61 17 44 63.9% 29.4% 77.3% | 0.00072 0.0035 0.02
Non-expert4 | 51 14 37 47.1% 14.3% 59.5% | 1.2e-06 8.7e-05 0.00025
Non-expert 5 | 150 44 106 50.7% 22.7% 62.3% 3e-14 2.8e-08 1.3e-08
Non-expert 6 | 211 62 149 52.6% 22.6% 65.1% | 9.5e-18 3.9e-11 4.4e-10
Non-expert 7 | 103 27 76 48.5% 25.9% 56.6% | 3.3e-11 6.2e-05 3.6e-08
Non-expert 8§ | 50 14 36 52.0% 14.3% 66.7% | 1.6e-05 8.7e-05 0.0023

To analyze the statistical significance of the results, we calculated the p-values of the human accuracies
with respect to the validation accuracy of the model using the one-sided t-test. The validation
accuracies of the MCAN*-VLM model are 84.69%, 64.65%, and 90.84% for all, non-binary, and
binary questions, respectively. The model outperforms all of the human annotators, and at a 95%
confidence level, the differences between the model validation accuracy and human accuracies are
statistically significant.

Accuracies for human-generated questions: We also stress-tested the model by measuring its
performance on human-generated questions. We asked an expert annotator, Expert 2, to paraphrase
the questions of 300 random samples (218 binary and 82 non-binary samples) from the validation
set. We used these questions instead of the original questions in the validation set to measure the
accuracies of the MCAN*-VLM model and a human annotator, Expert 1, as shown in Table E}

Table 9: Performances of the MCAN*-VLM model and a human expert on human-generated questions

Accuracy
All  Non-binary  Binary
Human Expert 1  62.3% 30.5%  74.3%
MCAN*-VLM 77.7% 47.6%  89.0%
p-value 1.9¢-05 0.0125 3.4e-05

We performed a one-sided t-test to analyze the statistical significance of the difference between the
human and the model accuracies. At a significance level of 0.05 (a = 0.05), the p-values reject the
null hypothesis of the human accuracy being greater than or equal to the model. Figure ] provides
several examples from this experiment.

Impact on downstream tasks: We performed a side-by-side comparison of the apparel search with
and without FashionVQA. A baseline search engine returns the top 24 items for an apparel search
query. Another variant of the search results is formed by reranking these 24 items with FashionVQA:
we generate a set of binary questions from the search query and use MCAN*-VLM model trained
with FashionVQA to answer these questions for each of the 24 items. The average confidence scores
of the yes and no answers are used as the additional features to rerank the top 24 items.

For a number of randomly-selected search queries with two attribute values and one category, e.g.,
“green crew neck dress”, a human annotator is presented with the original and reranked search result
pages and gets to choose her/his preferred result page. The result pages are randomly located on
the left and right sides of the screen without the annotator knowing which of the two pages presents
the reranked results. Figure [5|shows an example of our side-by-side A/B test for the given random
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FashionVQA question FashionVQA  FashionVQA Expert 1 MCAN*-VLM
paraphrased by Expert2  image answer answer answer

¥
What kn{d of top is Hoodie Jacket Jacket
she wearing?
What collar is the Notched Hooded Notched
collar type?
Is this shoe taupe ==
beige and good for s 4 Yes Yes Yes
fall?
Shirt in gray with v Yes No Yes
neck?
Are these pairs of
above-knee swim No Yes No
trunks?

..

What is the style of Athletic socks Crew socks  Athletic socks
these socks?
Dark gray graphic i
t-shirt for casual \ Yes Yes Yes
occasions? Dy
What is the cuff type
of this shirt? Barrel Rolled Barrel
Pink shift dress? Yes No Yes
Is she wearing a no { ; ]
pattern one piece with Yes Yes Yes
turnover collar?
What type of legs are
these? Taper Taper Jogger

Figure 4: FashionVQA paraphrased and answered by humans and model
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Figure 5: An example of the side-by-side comparison of the search results with and without reranking.
Given a random search query, e.g. “green crew neck dress”, the annotator picks her/his preferred
search results between the left (A) and right (B) result pages.

query. Out of 150 search queries, the human annotator preferred 117 search pages reranked based on
the FashionVQA. Binomial statistical test results in a p-value of 3.2e-12, showing that the human
annotator significantly prefers the search result page reranked using FashionVQA.

Conclusion

In this work, we design a fashion VQA dataset and generate non-binary and binary questions via
diverse templates. The templates allow us to flexibly scale the dataset to the size and complexity
required for training a domain-specific multimodal model. We benchmark this large-scale dataset on
different VQA models and discuss several factors impacting the performance of the VQA task. The
best model is a visual language model trained on the FashionVQA dataset. The model generates the
cross-modality embeddings of the vision and language domains applicable to downstream tasks of
fashion dialogue, search, and recommendation.
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