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Abstract

In this work, we perform an analysis of the visualisation
methods implemented in ProtoPNet and ProtoTree, two self-
explaining visual classifiers based on prototypes. We show
that such methods do not correctly identify the regions of
interest inside of the images, and therefore do not reflect
the model behaviour, which can create a false sense of bias
in the model. We also demonstrate quantitatively that this
issue can be mitigated by using other saliency methods that
provide more faithful image patches.

1. Introduction

During the last decade, the field of Explainable Al
(XAI) has gained wide-spread recognition among the sci-
entific community [6, 17]. One major avenue of research
in this field consists in developing architectures and train-
ing procedures such that the resulting model should be self-
explaining. In computer vision, such architectures often use
a case-based reasoning mechanism [7,9, 18,20, 21] where
new instances of a problem are solved and explained using
comparisons with visual examples (prototypes) extracted
from the training data. In particular, ProtoPNet [7] and
ProtoTree [18] have shown that self-explaining architec-
tures can reach accuracy levels comparable to more opaque
models on fine-grained recognition tasks [15,33]. However,
both models sometimes produce explanations using image
patches that seem to be focused on elements unrelated to the
object itself (Fig.1a). Importantly, a prototype focusing on
the background might indicate a systemic bias in the model
and seriously hinder the user’s trust in it. However, recent
work [10] indicates that there exists in reality an impreci-
sion in the patch visualisation method implemented in Pro-
toPNet. More generally, imprecise visualisation methods
may suggest model bias where there is none, while some-
times hiding more systemic issues.

Figure 1. Explanations of a ProtoTree when using different vi-
sualisation methods. Due to the imprecision of upsampling when
visualising both the prototype (right) and the part in the test im-
age (left), the user might deduce that the model is comparing tree
branches, when it is actually also taking the bird into account.
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Our contribution: In this work, we perform an analysis
of the visualisation methods implemented in ProtoPNet and
ProtoTree, answering the following research questions: do
these architectures generate faithful explanations reflecting
their decision-making process? do they produce decisions
based on relevant parts of the image? We confirm quantita-
tively the results of [10] on ProtoPNet and show that Pro-
toTree also generates imprecise visual patches. Addition-
ally, using the object segmentation provided in the CUB-
200-2011 dataset, we propose a new relevance metric and
show that in both architectures, such imprecise visualisa-
tions often create a false sense of bias that is largely mit-
igated by the use of more faithful methods. Finally, we
discuss the implications of our findings to other prototype-
based models sharing the same visualisation method.

2. Related work

Prototype-based classifiers first encode images into a
high dimensional feature space (latent space) - generally us-
ing the first layers of a pre-trained convolutional neural net-
work (CNN) as the backbone of the encoder. During train-
ing, these classifiers extract a set of reference feature vectors
and their visual counterparts from the training set, called
part prototypes (for simplicity, we simply use the term pro-
totypes). Prototypes are either discriminative of a particular
class [7,9,31] or shared among multiple classes [18,20,21].
During inference, the similarity between a given prototype



and the test image is computed using the L2-distance (or
cosine distance [31]) between their respective latent repre-
sentations. In the case of ProtoPNet [7], ProtoPShare [21],
ProtoPool [20], Deformable ProtoPNet [9] and TesNet [31],
all similarity scores are then processed through a fully con-
nected layer to produce the prediction. In the case of Pro-
toTree [18], they are used to compute a path across a soft
decision tree where each leaf corresponds to a categorical
distribution among classes.

Note that although our study focuses on ProtoPNet and Pro-
toTree, all the aforementioned methods (ProtoPShare, Pro-
toPool, Deformable ProtoPNet, TesNet) share a common
code base inherited from ProtoPNet and therefore are theo-
retically susceptible to the issue raised in this contribution.
Saliency methods aim at identifying the most important
pixels of an image w.r.t. the output of a given neuron.
Gradient-based approaches [25] compute the partial deriva-
tive of the target neuron output w.r.t. to each input pixel,
with improvements such as Integrated Gradients [29], gra-
dients ® input [23] (with ® denoting the element-wise mul-
tiplication), or SmoothGrads [27]. In particular, Smooth-
Grads “adds noise to remove noise” by averaging gradients
over noisy copies of the input image. For ProtoPNet, [10]
proposes a variant of LRP [5] called Prototype Relevance
Propagation (PRP), implementing a dedicated rule to prop-
agate relevance across the layer in charge of computing
similarity scores. Since Integrated Gradients, LRP—e and
Deep-LIFT [23] are all equivalent to gradient ® input for
CNNs based on RelLU activation [3, 24], in this work we
choose to compare the original part visualisation generated
by ProtoPNet and ProtoTree to visualisations generated us-
ing SmoothGrads ® input and PRP. Note that we exclude
Guided-Backpropagation [28] and its application to GRAD-
CAM [22] due to the results of [1] which raise some con-
cerns regarding the faithfulness of the saliency maps gener-
ated by these methods.

Evaluation metrics: We first focus on the property known
as faithfulness [2] which quantifies the adequacy between
a saliency method and the model behaviour. Faithfulness
can be evaluated by model parameter randomisation [1] or
deletion/insertion methods, which monitor the evolution of
a neuron’s output when the most/least important pixels of
the input image are removed incrementally [19, 30] or in-
dividually [2]. Deletion/insertion metrics check the ability
of a saliency method to correctly sort pixels by importance
w.r.t. to a given neuron’s output, i.e. “removing” the most
salient pixels identified by a faithful saliency method should
result in a strong variation of the neuron’s output.
Secondly, we wish to evaluate the relevance of prototype-
based explanations. [ 16] applies perturbations (e.g. changes
in colour or shape) on images and monitors the evolution of
the similarity score for each prototype. Note that since these
perturbations are applied on the entire image, this method

does not require a precise location of the image patches.

3. Theoretical background

In this work, we consider a classification problem with a
training set Xy,q;n € & X V. Let f be a fully convolutional
neural network (fCNN) processing images in X" and produc-
ing a D-dimensional latent representation of size (H, W).
For x € X, we denote f("*)(z) € RP the vector corre-
sponding to the h-th row and w-th column of f(x).

3.1. ProtoPNet and ProtoTree

Learning prototypes For z € X, ProtoPNet and Pro-
toTree compute their decision (classification) based on
similarities between the latent representation f(z) and a
set of feature vectors (r1,...7,) that are learned dur-
ing training and act as reference points in the latent
space. More precisely, the similarity between r; and
a particular vector f(~")(z) is defined as sgh’w)(x) =
log ((IF) (@) — rill3 + D)/(IF ) (z) — 73 + o))
(ProtoPNet) or s\ (z) = e~ /""" @=rl3 (ProtoTree),
where ||.||2 denotes the L2 distance. s;(z) € R¥*W is
called the similarity map between x and r;. The model de-
cision process d is a function of the aggregation of high
similarity scores s(z) = (max(s1(z)),...max(s,(x))):
weighted sum for ProtoPNet, soft decision tree for Pro-
toTree. During training, the parameters of the feature ex-
tractor f, of the decision function! d, and the reference
points 7; are jointly learned in order to minimize the cross-
entropy loss between the prediction d o s(x) and the label y,
for (z,y) € Xtrain. After training, the reference points r;
are “pushed” toward latent representations of parts of train-
ing images, in a process called prototype projection. More
formally, a prototype P; is a tuple P; = (p;, hi, w;, 1),
computed using the training set X4y, Where

pishi,w; = argmin || ) (2) — 3
xEXtTainvhvw (])
ri = fR0wO (p;)

Thus, prototype projection moves each r; to a nearby point
that is, by construction, obtained from an image p;.

From similarity map to part visualisation. Given anim-
age  and a prototype P;, ProtoPNet generates a visualisa-
tion of the most similar image patch in « by upsampling the
similarity map s;(z) € RT*W to the size of x using cu-
bic interpolation, then cropping the resulting saliency map
to the 95th percentile. ProtoTree retains only the location
of highest similarity in s;(x) before upsampling (setting all
other locations to 0), as shown in Fig. 2. Note that the same

I'The details of the decision function d are not relevant to our work,
which focuses on the method used by ProtoPNet and ProtoTree to build a
saliency map out of the similarity map s; ().



method is also used to visualise the prototype itself by set-
ting z = p;. However, neither approach factors in the size

Figure 2. From a similarity map to a part visualisation. A
saliency method generates a saliency map from the similarity map.
Then, we retain only the most salient pixels through thresholding
and crop the original image to produce a part visualisation.
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of the receptive field” of each neuron in the last layers of a
CNN. Indeed, the value sl(-h’w)(x) may actually depend on
the entire image x rather than a localized region [4].
Finally, during inference, for z € X and for each proto-
type P;, both ProtoPNet and ProtoTree find the vector in
f(z) closest to r;, corresponding to the highest score of the
similarity map s;(«). If this score is above a given thresh-
old, then they show side by side patches of images extracted
from the prototype image p; and x (this looks like that).

3.2. Improving part visualisation

In this paper, we wish to showcase the benefits of us-
ing other saliency methods for generating part visualisation.
Similar to ProtoTree, for x € X and a prototype P;, we first
find the coordinates of the highest similarity score

H;(z), W;(z) = argmaxs( ' )( )

h,w
() () = @O Wi@) P

Si(z) = max s; T)=s;

We generate saliency maps by applying SmoothGrads ®

input or PRP on the output of the neuron sEHi(z)’wi(m)).

2It is actually computed in the code of ProtoPNet, but never put to use.

Then, we obtain a part visualisation by retaining only the
2% of most important pixels from = and cropping the im-
age accordingly (Fig. 2). Again, the same method is applied
in order to extract a part visualisation for each prototype.

3.3. Measuring faithfulness

Similar to [19], Vx € X and VP;, we compare the faith-
fulness of the saliency methods by computing the Area Un-
der the Deletion Curve (AUDC)

Amax Amax

z(x)
a)da = / (HI(I z))(a'; © mq(x))

0 0

da (3)

where m, () is the binary mask obtained after “deleting”
(colouring in black) the a% most salient pixels in z. 7(a)
measures the relative drop in the similarity scores between
the original image = and a perturbed input x ® mg(z)
at the location (H;(x), W;(z)) inside the similarity map
s;. T(a) =~ 1 indicates that these pixels have no impact
on the similarity score (unfaithful saliency method), while
7(a) = 0 indicates that these pixels have a high impact
on the similarity score, thus that the saliency method cor-
rectly identifies relevant pixels w.r.t. to the similarity score
(faithful method). In order to reduce unexpected behaviours
from the CNNs [11], we restrict ourselves to deleting a
small portion of the original image (a4, =2%). Note that
7(a) < 0.2 indicates that the deleted pixels amount to 80%
of the similarity score, thus that the area of the effective re-
ceptive field of f w.r.t. to S;(x) is probably close to a.

4. Experiments

We perform our experiments on two popular datasets for

fine-grained recognition: CUB-200-2011 [33] (CUB) and
Stanford Cars [15] (CARS). For ProtoPNet, we use the im-
ages of the CUB dataset cropped to the object bounding
box (we denote this dataset CUB-c) during training and in-
ference. We primarily use a Resnet50 [12] backbone, pre-
trained on the iNaturalist [14] dataset (CUB) or the Ima-
geNet [8] dataset (CARS), with images of size 224 x 224.
To compare results with a different backbone, we also train
a ProtoPNet on CUB-c using a VGG19 [26] network.
For PRP, we use the code kindly provided by the authors.
For SmoothGrads, we use 10 noisy samples per image and
a noise level of 0.2. In order to provide a clear baseline for
the evaluation of the faithfulness and relevance of saliency
maps, we also implemented a trivial method RandGrads re-
turning a random saliency map drawn from a uniform distri-
bution. For all three methods, we post-process the saliency
map by averaging the gradients at each pixel location across
the RGB channels, taking the absolute value (putting equal
emphasis on positive and negative gradients), and applying
a b x 5 Gaussian filter in order to avoid isolated gradients
due to pooling layers inside of f.



Table 1. Average AUDC of prototypes (left value) and test patches (right value) generated by ProtoPNet and Prototree when using
upsampling, SmoothGrads, PRP and RandGrads. For each architecture/dataset, values in bold indicates the most faithful saliency method.

Model Backbone | Dataset .
Upsampling

PRP SmoothGrads

Method
RandGrads

VGG19 CUB-c

0.41 (£0.12)/0.74 (£ 0.19) 0.39 (£ 0.10)/0.70 (£ 0.19) 0.37 (£ 0.11) / 0.68 (£ 0.20) 0.77 (& 0.18)/0.94 (£ 0.12)

ProtoPNet CUB-c
ResNet50

0.39 (& 0.18)/0.71 (£ 0.28) 0.31 (£ 0.14) / 0.61 (£ 0.28) 0.37 (£ 0.18) / 0.66 (£ 0.29) 0.77 (£ 0.23) / 0.93 (£ 0.18)
CARS | 0.46 (< 0.19)/0.88 (+ 0.20) 0.31 (£ 0.11)/0.68 (& 0.24) 0.34 (£ 0.13)/0.71 (& 0.24) 0.60 (& 0.18) / 0.94 (& 0.14)

ProtoTree ResNet50

CUB 0.98 (£ 0.06) /0.95 (£ 0.16) 0.78 (£ 0.28) / 0.65 (- 0.34) 0.91 (£ 0.22)/0.82 (£ 0.28) 0.99 (£ 0.08) / 0.98 (£ 0.10)
CARS | 0.96 (£0.13)/0.91 (£ 0.21) 0.75 (£ 0.25)/ 0.71 (£ 0.30) 0.88 (£ 0.21)/0.84 (£ 0.25) 0.99 (£ 0.05) / 0.97 (£ 0.12)

Faithfulness of patch visualisation. We measure the
AUDC when visualising both prototypes and patches of
images from the test set during inference: for ProtoTree,
we apply the saliency method only when the prototype is
considered “present” (right branch of each decision node);
for ProtoPNet, we apply the saliency method on the 10
patches of the test image most similar to any prototype of
the inferred class. The AUDC score is approximated by
averaging the similarity ratio 7(a) for deletion areas be-
tween 0% and 2%, with an increment value of 0.1% (Ta-
ble 1). In all cases, the upsampling method used in Pro-
toPNet and ProtoTree leads to a higher AUDC score than
SmoothGrads or PRP. In the particular case of ProtoTree,
it is only marginally better than our random baseline Rand-
Grads. This confirms the imprecision pointed out in [10]
and extends the issue to ProtoTree. Moreover, in general
PRP seems to provide a more faithful saliency maps than
SmoothGrads (lower AUDC). Note that AUDC scores are
fairly similar across methods (except RandGrads) on the
CUB-c dataset, which is probably due to the image crop-
ping that increases the relative area of the bird inside of the
image and decreases the probability to miss the important
pixels. When extending the deletion area to 10% of the im-

Figure 3. Average similarity ratio v. deletion area when using
PRP for visualising prototypes. Best viewed in colour.

1.0+ —— ProtoTree (CARS, Resnet50)
ProtoTree (CUB, Resnet50)
—— ProtoPNet (CARS, Resnet50)
0.8 —— ProtoPNet (CUB-c, Resnet50)
——— ProtoPNet (CUB-c, VGG19)
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age, we note that on average, the drop in similarity ratio

(t(a) < 0.2) occurs below 2% for ProtoPNet prototypes
when using ResNet50, and around 7% for ProtoTree proto-
types or ProtoPNet using VGG19 (Fig. 3). This indicates
that the size of the effective receptive field depends not only
on the choice of backbone (VGG, ResNet50), but also on
the model (ProtoTree, ProtoPNet). For ProtoTree, this may
be due to the fact that the decision tree shares prototypes
among all classes and therefore does not focus on very small
details, contrary to ProtoPNet’. Moreover, this clarifies the
discrepancy in AUDC scores between ProtoPNet and Pro-
toTree visualisations.

Relevance of patch visualisation. To evaluate the rele-
vance of image patches (prototypes or test patches), we
measure their intersection with the object segmentation, as-
suming that such information is available (CUB dataset). If
less than 5% of the image patch intersects the object seg-
mentation, then we consider it irrelevant, as it mostly fo-
cuses on the background. This experiment shows that the

Table 2. Measuring relevance. Percentage of prototypes (left
value) and test patches (right value) with less than 5% of intersec-
tion with the object on the CUB dataset.

Method
Model Backbone .
Upsampling PRP SmoothGrads
VGG19 15.4%123.3% 10.0%/16.6% 11.3%/19.9%
ProtoPNet
ResNet50 2.1% /1 8.8% 1.4% / 8.0% 0.9% / 6.1%
ProtoTree ‘ ResNet50 ‘ 354%/51.9%  0.5%/0.5% 8.7% 1 14.5%

imprecision of the visualisation method used in ProtoPNet
and ProtoTree leads to a false sense of model bias (Table 2).
In particular, when using the upsampling method, 35.4% of
ProtoTree prototypes and 51.9% of the test image patches
seem to be focusing on elements of the background rather
than the bird. However, when using a more faithful saliency
method such as PRP, we notice that only 0.5% of the pro-
totypes or test image patches are actually irrelevant. Note
that this gap between methods is again more limited for Pro-
toPNet with CUB-c, where the upsampling method is less

3This effect is also present when using SmoothGrads and seems uncor-
related to the depth of the prototype inside the tree



likely to “miss” the object entirely. Finally, we also notice
that the percentage of irrelevant prototypes and test image
patches is significantly more important when using VGG19
as a backbone, compared to using Resnet50, which raises
the question of the sensitivity of prototype-based architec-
tures to the underlying backbone architecture.

5. Discussion

Case-based reasoning architectures for image classifica-
tion are undoubtedly a stepping stone towards more inter-
pretable computer vision models, but they are highly de-
pendent on the choice of a backbone and suffer from short-
comings that may hinder their widespread usage. Indeed,
even when such models produce a correct decision for the
right reasons, they may yet fail to explain this decision by
incorrectly locating appropriate parts of the images. This is-
sue is likely not restricted to ProtoPNet or ProtoTree, since
ProtoPShare, ProtoPool, Deformable ProtoPNet and TesNet
share a common code base inherited from ProtoPNet that
includes the upsampling method for patch visualisation. On
the contrary, more faithful saliency methods can help un-
cover biases [10] or - in our experiments - disprove appar-
ent biases of the model. Crucially, proving that the model
is indeed focusing on the object does not imply that the
decision is based on understandable information. Indeed,
the assumption that proximity in the latent space entails
perceptual similarity in the visual space may not always
hold [13, 16]. Thus, we argue that a decision-making pro-
cess based on distance in the latent space is not sufficient to
guarantee interpretability, i.e. that case-based reasoning ar-
chitectures using CNNs for feature extraction are currently
not inherently self-explainable. Consequently, such mod-
els should not be compared according to their classifica-
tion accuracy, but rather using metrics for evaluating var-
ious properties of explanations in a systematic manner (e.g.
sparsity [11]) and, in the case of prototype-based architec-
tures, for quantifying visual similarity [16,32].
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1. Training prototype-based classifiers

In this work, we use the code provided by the authors of ProtoPNet [7] and ProtoTree [ 1 8] in order to train classifiers on the
CUB-200-2011 dataset [33] (CUB) and the StanfordCars dataset [15]. For ProtoPNet, we use the default training parameters
provided by the authors and trained the models during 50 epochs. For ProtoTree, we also use the default parameters and
trained the models during 100 epochs. Table 1 presents the final accuracy of the models used in our experiments.

Table 1. Accuracy of the self-explaining models used in this work. CUB-c denotes the cropped CUB-200-2011 dataset.

Model Backbone | Dataset | Accuracy
VGG19 CUB-c 75.1%
ProtoPNet CUB-c 72.5%
ResNetS0 | cars | 71.4%

CUB 83.1%

ProtoTree ResNet50 CARS 83.2%

2. More prototype visualisation with Smoothgrads and PRP

Fig. 1 illustrates how using more faithful visualisation methods, such as PRP or Smoothgrads, rather than upsampling
can improve the trust that the user can have in the model. In these examples, the upsampling strategy shows image patches
focused on the background and gives a false sense of bias in the model, while PRP and Smoothgrads - which provide more
faithful saliency maps - are focusing on elements of the bird.

3. Area under the Deletion Curve

In this section, we illustrate the evolution of the similarity ratio when incrementally removing the most important pixels
of the image according to the saliency maps proposed by the different visualisation methods under study. As shown in the
example of Fig. 2, removing pixels according to upsampling has little to no effect on the similarity score, suggesting that the
explanation is incorrect. On the contrary, when removing only 1% of the image according to Smoothgrads, the similarity
score drops to roughly 15% of its original value, suggesting that the explanation focuses on actual regions of interest for the
model. The same result is achieved when removing only 0.3% of the image according PRP, indicating an even more precise
explanation. Moreover, reaching a similarity ratio lower than 10% indicates that the explanation method has successfully
identified the most relevant pixels of the image patch and gives an indication on the effective size of the image patch.



Figure 1. More examples of visualization of prototypes from a ProtoTree trained on CUB-200-2011 using upsampling with cubic interpo-
lation (blue), Smoothgrads (red) or PRP (yellow).
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Figure 2. Evolution of the similarity ratio when incrementally removing the most important pixels according to the ProtoPNet/ProtoTree
method (upsampling, in blue), Smoothgrads (red), and PRP (yellow). Best viewed in colour.

4. Distribution of similarity ratio v. deletion area on ProtoTree visualisation

In addition to the results presented in the paper focusing on the average similarity ratio v. deletion area, in this section we
study the distribution of similarity ratios for a given deletion area (here 0.5%, 1%, 1.5% and 2%). As shown in Fig. 3, we
notice a ”sandglass” effect on the distribution of similarity ratios for ProtoTree prototypes: for low deletion areas (< 1%), the
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Figure 3. Distributions of similarity ratios v. percentage of deletion area when visualising prototypes using PRP.
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(b) Using Smoothgrads.

Figure 4. Distributions of similarity ratios v. percentage of deletion area when visualising ProtoTree prototypes

similarity ratio for all prototypes is close to 1. Then, from 1.5% up to 4-5% (Fig.4a), the distribution of similarity ratios slowly
shifts towards 0. This suggests that the drop in similarity does occurs uniformly for all prototypes, but rather in a ”continuous”
manner, i.e. that ProtoTree prototypes have a wider range of size for their corresponding effective receptive fields than
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Figure 5. Distributions of similarity ratios v. percentage of deletion area when visualising test patches during inference.

ProtoPNet prototypes. Moreover, as shown in Fig. 4b, the sandglass effect is also present when using Smoothgrads and when
visualising image patches during inference (Fig. 5). Moreover, as shown in Fig. 6, this effect is seemingly uncorrelated to
the depth of the prototype inside of the decision tree. This suggests that ProtoTree does not necessarily focus on finer - and
smaller - details in the last stages of the decision process.
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Figure 6. Distributions of similarity ratios v. percentage
inference. Results are sorted by depth inside of the decision tree.
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of deletion area when visualising ProtoTree test patches using PRP during
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