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ABSTRACT

Explainable AI (XAI) is slowly becoming a key component for many AI applications. Rule-based
and modified backpropagation XAI approaches however often face challenges when being applied
to modern model architectures including innovative layer building blocks, which is caused by two
reasons. Firstly, the high flexibility of rule-based XAI methods leads to numerous potential pa-
rameterizations. Secondly, many XAI methods break the implementation-invariance axiom because
they struggle with certain model components, e.g., BatchNorm layers. The latter can be addressed
with model canonization, which is the process of re-structuring the model to disregard problematic
components without changing the underlying function. While model canonization is straightfor-
ward for simple architectures (e.g., VGG, ResNet), it can be challenging for more complex and
highly interconnected models (e.g., DenseNet). Moreover, there is only little quantifiable evidence
that model canonization is beneficial for XAI. In this work, we propose canonizations for currently
relevant model blocks applicable to popular deep neural network architectures, including VGG,
ResNet, EfficientNet, DenseNets, as well as Relation Networks. We further suggest a XAI evalua-
tion framework with which we quantify and compare the effects of model canonization for various
XAI methods in image classification tasks on the Pascal VOC and ILSVRC2017 datasets, as well as
for Visual Question Answering using CLEVR-XAI. Moreover, addressing the former issue outlined
above, we demonstrate how our evaluation framework can be applied to perform hyperparameter
search for XAI methods to optimize the quality of explanations.

1 Introduction

In recent years, Machine Learning (ML) has been increasingly applied to high-stakes decision processes with a huge
impact on human lives, such as medical applications [36, 10], credit scoring [46], criminal justice [49], and hiring deci-
sions [9]. Therefore, awareness has been raised for the need of neural networks and their predictions to be transparent
and explainable [14], which makes Explainable AI (XAI) a key component of modern ML systems. Rule-based and
modified backpropagation-based XAI methods, such as DeepLift [37], Layer-wise Relevance Propagation (LRP) [5],
and Excitation Backprop [50], that are among the most prominent XAI approaches due to their high faithfulness and
efficiency, however, struggle when being applied to modern model architectures with innovative building blocks. This
is caused by two problems: Firstly, rule-based XAI methods provide large flexibility thanks to configurable rules which
can be tailored to the model architecture at hand. This comes at the cost of a large number of potential XAI method
parameterizations, particularly for complex model architectures. However, finding optimal parameters is barely re-
searched and often neglected, which can cause these methods to yield suboptimal explanations. Secondly, earlier
works [26] have shown that many XAI methods break implementation invariance, which has been defined as an axiom
for explanations [43]. This is caused by certain layer types for which no explanation rules have been defined yet,
e.g., BatchNorm (BN) layers. To address that issue, model canonization has been suggested, a method that fuses BN
layers into neighboring linear layers without changing the underlying function of the model [20, 15], arguably leading
to improved explanations for simple model architectures (VGG, ResNet) [30]. However, what constitutes a “good”
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explanation is only vaguely defined and many, partly contradicting, metrics for the quality of explanations have been
proposed. Therefore, tuning hyperparameters of XAI methods and measuring the benefits of model canonization for
XAI are non-trivial tasks.

To that end, we propose an evaluation framework, in which we evaluate XAI methods w.r.t their faithfulness, complex-
ity, robustness, localization capabilities, and behavior with regard to randomized logits, following the authors of [17].
We apply our framework to (1) measure the impact of canonization and (2) demonstrate how hyperparameter search
can improve the quality of explanations. Therefore, we first extend the model canonization approach to modern model
architectures with high interconnectivity, e.g., DenseNet variants. We apply our evaluation framework to measure
the benefits of model canonization for various image classification model architectures (VGG, ResNet, EfficientNet,
DenseNet) using the ILSVRC2017 and Pascal VOC 2012 datasets, as well as for Visual Question Answering (VQA)
with Relation Networks using the CLEVR-XAI dataset [4]. We show that generally model canonization is beneficial
for all tested architectures, but depending on which aspect of explanation quality is measured, the impact of model can-
onization differs. Moreover, we demonstrate how our XAI evaluation framework can be leveraged for hyperparameter
search to optimize the explanation quality from different points of view.

2 Related Work

2.1 XAI Methods

XAI methods can broadly be categorized into local and global explanations. While local explainers focus on explaining
the model decisions on specific inputs, global explanation methods aim to explain the model behavior in general, e.g.,
by visualizing learned representations. For image classification tasks, local XAI methods assign relevance scores to
each input unit, expressing how influential that unit (e.g., an input pixel) has been for the inference process. Many
XAI methods are (modified) backpropagation approaches. To compute the importance of features in the detection of a
certain class , they start from the output of the network, backpropagating importance values layer by layer, depending
on the parameters and/or hidden activations of each layer. Saliency maps [39, 6, 29] are generated by computing the
gradient ∂f(x)

∂x , where f(x) is the model’s prediction for an input sample x. This yields a feature map where each
value indicates the model’s sensitivity towards the corresponding feature. Guided Backpropagation [42] also uses
the gradients, but applies the ReLU function to computed gradients in ReLU activation layers in the backpropagation
pass. This filters out the flow of negative information, allowing to focus on the parts of the image where the desired
class is detected. Integrated Gradients [43] accumulates the activation gradients on a straight path in the input space,
starting from a baseline image x′ selected beforehand, to the datapoint of interest. Formally, the attribution to the
ith feature is given by (xi − x′i)

∫ 1

ρ=0
∂f(x+ρ(x′−x))

∂xi
dρ. SmoothGrad [41] aims to reduce the noise in saliency maps

by sampling datapoints in the neighborhood of the original datapoint, and taking the average saliency map. Since
these XAI methods rely only on the gradients of the total function computed by the network, they are implementation
invariant, meaning they produce the same explanations for different implementations of the same function.

LRP [5] operates by redistributing the relevance scores of neurons backwards up to the input features. More precisely,
LRP distributes the activation of the output neuron of interest to the previous layers in a way that preserves relevance
across layers. Several rules have been defined (e.g., LRP-ε, LRP-γ, LRP-αβ), which can be combined in meaningful
configurations according to the types and positions of layers in the neural network. Excitation Backprop [50] is a
backpropagation method that is equivalent to LRP-α1β0 [28], which has a probabilistic interpretation. DeepLIFT [38]
is another rule-based method, where a reference image (e.g., the mean over the training population) is selected in
addition. Using the associated rules, the differences in the activations of neurons on the reference image and the
target image are backpropagated to the input. In addition to backpropagation-based XAI methods there are also other
approaches. Prominent examples are SHAP [25], which uses the game theoretic concept of Shapley values to find the
contribution of each input feature to the model output, and LIME [32], which fits an interpretable model to the original
model output around the given input. Both methods treat the model as a black box, only using outputs for certain
inputs. As such, they are also implementation independent.

2.2 Evaluation of XAI Methods

While various XAI methods have been developed, the quantitative evaluation thereof is often neglected and expla-
nations of XAI methods are often only compared by visually inspecting heatmaps. To address this issue, many XAI
metrics have been introduced in recent years [17, 1]. However, there is no consensus on which metric to use and
moreover, each metric evaluates explanations from different viewpoints, partly with contradictory objectives. Broadly
speaking, XAI metrics can be categorized into five classes: Faithfulness metrics measure whether an explanations
truly represents features used by the model. For instance, Pixel Flipping [5] measures the difference in output scores
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of the correct class, when replacing pixels in descending order of their relevance scores with a baseline value (e.g.,
black pixel or mean pixel). If the score decreases quickly, i.e., after replacing only a few highly relevant pixels, the
explanation is considered as highly faithful. Region Perturbation [34] further generalizes Pixel Flipping by replac-
ing input regions instead of single pixels. Faithfulness correlation [7] replaces a random subset of attribution with a
baseline value and measures the correlation between the sum of attributions in the subset and the difference in model
output. Robustness metrics measure the robustness of explanations towards small changes in the input. Prominent ex-
amples are Max-Sensitivity and Avg-Sensitivity [48], which use Monte Carlo sampling to measure the maximum and
average sensitivity of an explanation for a given XAI method. Localization metrics measure how well an explanation
localizes the object of interest for the underlying task. Consequently, in addition to the input sample and an explanation
function, ground-truth localization annotations are required. Examples for localization metrics are Relevance Rank
Accuracy (RRA) and Relevance Mass Accuracy (RMA) [4]. RRA measures the fraction of high-intensity relevances
within the (binary) ground truth mask as RRA =

|Ptop-K∩GT |
|GT | , where GT is the ground truth, K is the size of the

ground truth mask and Ptop-K is the set of pixels sorted by relevance in decreasing order. Similarly, RMA measures the
fraction of the total relevance mass within the ground truth mask and can be computed as RMA = Rwithin

Rtotal
where Rwithin

is the sum of relevance scores for pixels within the ground truth mask and Rtotal is the sum of all relevance scores.
Complexity metrics measure how concise explanations are. For example, the authors of [11] use the Gini Index of
the total attribution vector to measure it’s sparseness, while [7] propose an entropy-derived measure. Randomization
metrics measure by how much explanations change when randomizing model components. For instance, the random
logit test [40] measures the distance between the original explanation and the explanation with respect to a random
other class.

2.3 Challenges of Rule-Based/Modified Backpropagation Methods

No Implementation Invariance: From a functional perspective, it is desirable for an XAI method to be implementa-
tion invariant, i.e. the explanations for predictions of two different neural networks implementing the same mathemat-
ical function should always be identical [43]. However rule-based and modified backpropagation approaches explain
predictions from a message-passing point of view, which, by design, is affected by the structure of the predictor. This
is impressively demonstrated by Montavon et al. [26], where the authors compute explanations for two different imple-
mentations of the same mathematical function and the relevance scores differ tremendously. Therefore, these methods
violate the implementation invariance axiom, for example because of concatenations of linear operations such as BN
and Convolutional layers. However, this problem can be overcome with model canonization, i.e., re-structuring the
network into a canonical form implementing exactly the same mathematical function.

Parameterization: Rule-based backpropagation approaches are highly flexible and allow to tailor the XAI method
to the underlying model and the task at hand. However, this flexibility comes at the cost of numerous different possible
parameterizations. For instance, the γ-rule in LRP computes relevances Rj of layer j given relevances Rk from the
succeeding layer k as

Rj =
∑
k

aj · (wjk + γw+
jk)∑

j aj · (wjk + γw+
jk)
·Rk , (1)

where aj are the lower-layer activations, wjk are the weights between layers j and k, w+
jk is the positive part of

wjk and γ is a parameter allowing to regulate the impact of positive and negative contributions. Therefore, γ is a
hyperparameter that has to be defined for each layer. Note that the γ-rule becomes equivalent to the α1β0-rule as
γ → ∞, where negative contributions are disregarded. Similarly, for γ = 0, it is equivalent to the ε-rule, where
negative and positive contributions are treated equally. The choice of γ for each layer can highly impact various
measurable aspects of explanation quality.

3 Model Canonization

We assume there is a model f , which, given input data x, implements the function f(x). We further assume that f
contains model components which pose challenges for the implementation of certain XAI methods. Model canoniza-
tion aims to replace f by a model g where g(x) = f(x), but g does not contain the problematic components. We call
g the canonical form of all models implementing the function g(x). In practice, model canonization can be achieved
by restructuring the model and combining several model components, as outlined in the following sections.
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3.1 BatchNorm Layer Canonization

BN layers [21] were introduced to increase the stability of model training by normalizing the gradient flows in neural
networks. Specifically, BN adjusts the mean and standard deviation as follows:

BN(x) = w>BN

( x− µ√
σ + ε

)
+ bBN , (2)

where wBN and bBN are learnable weights and a bias term of the BN layer, µ and σ are the running mean and running
variance and ε is a stabilizer.
However, as discussed in Section 2.3, BN layers have shown to pose challenges for modified backpropagation XAI
methods, such as LRP [20]. To address that problem, model canonization can be applied to remove BN layers without
changing the output of the function. We make use of the fact that during test time the BN operation can be viewed as
a fixed affine transformation. Specifically, we follow previous works [15], which have shown that BN layers can be
fused with neighboring linear layers, including fully connected layers and Convolutional layers, of form w>L x + bL,
where wL is the weight matrix and bL is the bias term. This results in a single linear layer, combining the affine
transformations from the original linear layer and the BN. The exact computation of the new parameters of the linear
transformation depends on the order of model components:

Linear→ BN: Many popular architectures (including VGG [44] and ResNets [16]) apply batch normalization di-
rectly after Convolutional layers. Hence, this model component implements the following function:

f(x) = BN(Linear(x)) (3)

= (
wBN√
σ + ε

wL︸ ︷︷ ︸
wnew

)>x +
wBN√
σ + ε

(bL − µ) + bBN︸ ︷︷ ︸
bnew

(4)

which can be merged into a single linear layer with weight wnew = wBN√
σ+ε

wL and bias bnew = wBN√
σ+ε

(bL − µ) + bBN .
See Section A in the supplementary material for details.

BN→ Linear: Other implementations apply BN right before linear layers (i.e., after the activation function of the
previous layer), which impacts the computation of parameters of the merged linear transformation:

f(x) = Linear(BN(x)) (5)

=
w>LwBN√
σ + ε︸ ︷︷ ︸
wnew

x−w
>
LwBNµ√
σ + ε

+ w>L bBN + bL︸ ︷︷ ︸
bnew

(6)

Again, this component can be fused into a single linear transformation with weight wnew =
w>

LwBN√
σ+ε

and bias

bnew = w>L bBN −
w>

LwBNµ√
σ+ε

+ bL. Note that there are practical challenges when padding is applied, for instance
in a Convolutional layer. In this case, the bias becomes a spatially varying term, which cannot be implemented with
standard Convolutional layers. See Section A in the supplementary material for details.

BN→ ReLU→ Linear: In some architectures, BN layers have to be merged with linear layers with an activation
function (e.g., ReLU) in between. For instance, in DenseNets model components occur in that order. In that case,
model canonization goes beyond merging two affine transformations, because of the non-linear activation function in
between. Therefore, we propose to swap the BN layer and the activation function, which can be achieved by defining
a new activation function, named ReLUthresh which depends on the parameters of the BN layer, such that

ReLU(BN(x)) = BN(ReLUthresh(x)) , (7)

where

ReLUthresh(x) =


x if (wBN > 0 and x > z)

x if (wBN < 0 and x < −z)
z otherwise

(8)

with z = µ − bBN
wBN/

√
σ+ε

. Hence, BN→ReLU→ Linear is first transformed into ThreshReLU→BN→ Linear, then
the BN layer and the linear layer can be merged with Eq. 6.
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Figure 1: Due to the high interconnectivity of model components in DenseNets, it is not straightforward to fuse BN
layers with Convolutional layers from neighboring blocks. Therefore, we suggest to first swap BN layers and ReLU
activation functions using Eq. 7 (see step b)) and then merge the BN parameters into the following Convolutional layer
using Eq. 6 (see step c)).

3.2 Canonization of Popular Architectures

We now demonstrate the canonization of popular neural network architectures. We picked 4 image classification
models (VGG, ResNet, EfficientNet and DenseNet) and one VQA model (Relation Network [35]).

Image Classification Models: Many popular image classification model architectures, such as VGG [44],
ResNet [16] and EfficientNet [45], apply BN directly after linear layers. Therefore, these networks can easily be
canonized using Eq. 4. It gets more complicated, however, if model architectures are more complex with highly inter-
connected building blocks. DenseNets, for example, use skip connections to pass activations from each dense block
to all subsequent blocks, as shown in Fig. 1. Each block applies BN on the concatenated inputs coming from multiple
blocks, followed by ReLU activation and a Convolutional layer (BN → ReLU → Conv). Note that due to the high
interconnectivity, BN layers cannot easily be merged into linear layers from neighboring blocks, because most linear
layers pass their activations to multiple blocks, and vice versa, most blocks receive activations from multiple blocks.
Consequently, the linear transformation implementing the BN function has to be merged with the linear layer following
the ReLU activation within the same block. Therefore, we propose to perform model canonization by first applying
Eq. 7 and then Eq. 6 to join BN layers with following linear layers within the same block, over the ReLU function
between them. This process is visualized in Fig. 1. In addition, we apply Eq. 4 to merge the first BN layer in the initial
layers of the DenseNet architecture, before the dense blocks. Moreover, there is a BN→ReLU→AvgPool2d→Conv
chain in the end of the network, which can also be merged using Eq. 7 and Eq. 6.

VQA Model: In contrast to image classification models, VQA models, e.g., Relation Network [35], require two
paths to encode both, the input image and the input question. Relation Networks use a simple Convolutional neural
network as image encoder. The implementation by the authors of CLEVR-XAI [4] applies BN after the activation
function (Conv → ReLU → BN). Therefore, we merge BN layers with the Convolutional layer from the following
block using Eq. 6. The BN layer of the last block of the image encoder has to be merged with the fully connected
layer of the following module, which, however, receives a concatenation of image encoding and text encoding from
the input question. Therefore, it has to be assured that BN parameters are merged only with the weights operating on
inputs coming from the image encoder (see Section B and Fig. A.1 in the supplementary material for details).

4 Experiments: XAI Evaluation Framework

4.1 Datasets

ILSVRC2017 [33] is a popular benchmark dataset for object recognition tasks with 1.2 million samples categorized
into 1,000 classes, out of which we randomly picked 50 classes for our experiments (see Section E.1 in the supplemen-
tary material). Bounding box annotations are provided for a subset of ILSVRC2017, which we use for localization

5



Optimizing Explanations by Network Canonization and Hyperparameter Search

metrics. Per class, we use up to 640 random samples. Note that ILSVRC2017 faces a center-bias, i.e., most of the
objects to be classified are located in the center of the image. Therefore, naive explainers can assume that models
base their decisions on center pixels. To that end, we include additional experiments using the Pascal VOC 2012
dataset [13] in Section D in the supplementary material.

CLEVR-XAI [4] builds upon the CLEVR dataset [22], which is an artificial VQA dataset. It contains 10,000 images
showing objects with varying characteristics regarding shape, size, color and material. Moreover, there are simple and
complex questions that need to be answered. The task is framed as a classification task, in which, given an image
and a question, the model has to predict the correct response out of 28 possible answers. In total, there are approx.
40,000 simple questions, asking for certain characteristics of single objects. In addition, there are 100,000 complex
questions, which require the understanding of relationships between multiple objects. CLEVR-XAI further comes
with ground-truth explanations, encoded as binary masks locating the objects that are required in order to answer the
question. Simple questions come with two binary masks, which are GT Single Object, localizing the object affected
by the question, and GT All Objects, localizing all objects in the image. For complex questions there are four binary
masks, including GT Union localizing all objects that are required to answer the question (we refer to [4] for details
on the other masks).

4.2 Models

For our experiments with ILSVRC2017, we analyze VGG-16 [44], ResNet-18 [16], EfficientNet-B0 [45] and
DenseNet-121 [19]. We use pre-trained models provided in the PyTorch model zoo [31]. We use a Relation Net-
work [35] for our experiments with CLEVR-XAI.

4.3 XAI Methods and Implementation Details

We analyze rule-based and modified backpropagation based XAI methods , namely Excitation Backprop (EB) and
LRP. Note that other backpropagation-based methods, such as Saliency, Smoothgrad, Integrated Gradients and Guided
Backprop are not impacted by model canonization [30] and are therefore not analyzed in this experiment. For each
method, we compute explanations for both, the original and the canonized model. We use zennit1 [2] as toolbox
to compute explanations. For ILSVRC2017 with LRP, we analyze two pre-defined composites, i.e., mappings from
layer type to LRP rule which have been established in literature [27], namely EpsilonPlus (ε+) and Alpha2-Beta1
(α2β1), see Tab. A.1 in the supplementary material for details. For Relation Networks, we use a custom composite
(LRP-Custom) following [4], in which we apply the α1β0 rule to all linear layers and the box-rule [27] to the input
layer. Note that ResNets, EfficientNets, and DenseNets leverage skip connections, which require the application of
an additional canonizer in zennit to explicitly make them visible to the XAI method. Furthermore, we apply the
signal-takes-it-all rule [3] to address the gate functions in the Squeeze-and-Excitation modules [18] in EfficientNets.
In order to convert 3-dimensional relevance scores per voxel (channel × height × width) into 2-dimensional scores
per pixel (height × width), we simply sum the relevances on the channel axis for ILSVRC2017 experiments. For
CLEVR-XAI experiments we follow the authors from [4] and use pos-l2-norm-sq (Rpool =

∑C
i=1max(0, Ri)

2)
as pooling function, where C = 3 is the number of channels. Results for the alternative pooling function max-
norm (Rpool = max(|R1|, R2, ..., RC)) are provided in the supplementary material. Moreover, before computing the
metrics, we normalize the relevances by dividing all values by the square root of the second moment to bound their
variance for numerical stability when comparing heatmaps.

4.4 XAI Metrics

In our experiments, we quantitatively measure the impact of canonization of the selected model architectures with
various metrics, probing the quality of explanations from different viewpoints. We use the quantus toolbox2 [17]
to compute the following metrics: We measure Faithfulness using Region Perturbation with blurring as baseline
function. We compute the Area over Perturbation Curve (AoPC) [34] to measure the faithfulness in a single number
as AoPC = 1

L+1

(∑L
k=0 f(x

(0)) − f(x(k))
)

, where x is the input sample, k is the perturbation step and L is the
total number of perturbations. The AoPC is averaged over all input samples. Localization quality is measured using
RRA and RMA. As ground truth location we use bounding box annotations provided for ILSVRC2017, and binary
segmentation masks for CLEVR-XAI. For the latter, we use GT Unique for simple questions and GT Union for
complex questions. Moreover, we use the average sensitivity to measure Robustness, sparseness for Complexity and

1https://github.com/chr5tphr/zennit
2https://github.com/understandable-machine-intelligence-lab/quantus
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Table 1: XAI evaluation results with and without model canonization for VGG-16, ResNet-18, EfficientNet-B0 and
DenseNet-121 using the ILSVRC2017 dataset. We measure the quality of explanations using the metrics Sparseness
(Complexity), Region Perturbation (Faithfulness), RRA and RMA (Localization), Avg. Sensitivity (Robustness) and
Random Logit Test (Randomization). Arrows indicate whether high (↑) or low (↓) are better. Best results are shown
in bold.

↑ Complexity ↑ Faithfulness ↑ Local. (RRA) ↑ Local. (RMA) ↓ Robustness ↓ Random.
Model canonized no yes no yes no yes no yes no yes no yes

VGG-16
EB 0.57 0.59 0.35 0.36 0.70 0.71 0.68 0.70 0.22 0.18 1.00 1.00
LRP-α2β1 0.70 0.84 0.38 0.39 0.63 0.67 0.65 0.77 0.31 0.34 0.59 0.66
LRP-ε+ 0.51 0.62 0.36 0.39 0.69 0.71 0.64 0.71 0.19 0.21 0.57 0.54

ResNet-18
EB 0.55 0.57 0.29 0.29 0.68 0.69 0.66 0.67 0.16 0.14 0.97 0.97
LRP-α2β1 0.67 0.76 0.32 0.32 0.65 0.67 0.69 0.75 0.21 0.26 0.65 0.61
LRP-ε+ 0.51 0.58 0.30 0.30 0.69 0.70 0.65 0.69 0.14 0.15 0.70 0.70

EfficientNet-B0
EB 0.85 0.70 0.24 0.27 0.73 0.67 0.79 0.72 0.42 0.33 0.99 1.00
LRP-α2β1 0.75 0.77 0.29 0.20 0.72 0.65 0.79 0.73 0.48 0.49 0.57 0.51
LRP-ε+ 0.50 0.73 0.28 0.30 0.75 0.75 0.69 0.79 0.12 0.21 0.61 0.65

DenseNet-121
EB 0.66 0.62 0.15 0.31 0.58 0.72 0.53 0.73 0.57 0.17 0.75 0.89
LRP-α2β1 0.82 0.81 0.25 0.33 0.64 0.71 0.68 0.81 0.65 0.28 0.40 0.44
LRP-ε+ 0.67 0.66 0.26 0.33 0.70 0.74 0.71 0.77 0.63 0.19 0.39 0.48

run the logit test as Randomization metric. While for robustness and randomization low scores are desirable, for the
other metrics higher scores are better.

Table 2: XAI evaluation results for Relation Network with and without model canonization using the CLEVR-XAI
dataset for simple and complex questions using pos-l2-norm-sq-pooling. Arrows indicate whether high (↑) or low (↓)
are better. Best results are shown in bold.

↑ Complexity ↑ Faithfulness ↑ Local. (RRA) ↑ Local. (RMA) ↓ Robustness ↓ Random.
Questions canonized no yes no yes no yes no yes no yes no yes

Simple EB 0.99 0.97 0.50 0.51 0.64 0.61 0.76 0.70 1.37 1.39 1.00 1.0
LRP-Custom [4] 0.95 0.98 0.52 0.52 0.70 0.70 0.75 0.83 1.33 1.35 0.99 1.0

Complex EB 0.99 0.97 0.44 0.45 0.66 0.62 0.82 0.77 1.36 1.35 1.00 0.99
LRP-Custom [4] 0.94 0.97 0.45 0.46 0.54 0.63 0.79 0.86 1.33 1.34 0.98 0.99

4.5 Canonization Results

The XAI evaluation results for the ILSVRC2017 dataset comparing models with and without canonization using the
metrics described above are shown in Tab. 1. It can be seen that for most models and metrics the XAI methods yield
better explanations for canonized models, especially for complexity, faithfulness, and localization metrics. However,
there are some exceptions. While all other models yield less complex explanations when using model canoniza-
tion, DenseNet explanations show the opposite behavior. This is due to the fact that many explanation heatmaps for
DenseNets focus on small pixel groups (see Fig. A.7 in supplementary material) that, however, do not truly represent
the model’s behavior, as low faithfulness scores without canonization indicate. The localization metrics tend to be bet-
ter for canonized models, except for EfficientNet-B0 with the α2β1-composite for LRP, which, however, also yields
a poor performance in terms of faithfulness. Hence, the α2β1-composite itself appears to be a suboptimal parame-
terization for EfficientNets, which demonstrates the importance of the choice of hyperparameters for rule-based XAI
methods. Note that randomization scores tend to increase for canonized models, i.e., the canonized model leads to
explanations that are less dependent on the target class. This is due to the fact that the explanations are more focused
on the object to classify (see improvements for localization metrics in Tab. 1) and therefore are more similar when
computed for different target classes. Hence, randomization metrics have to be interpreted with caution [8]. Results
for additional models and XAI evaluation metrics are shown in the supplementary material in Tables A.9-A.15.

In Tab. 2 we show results for our XAI evaluation using the CLEVR-XAI dataset. For LRP-Custom, model canonization
yields explanations that are either better than those of the original model or approximately on par with them for both
simple and complex questions, in particular for localization metrics. Results with max-norm-pooling are shown in the
supplementary material in Tab. A.16.
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Figure 2: Results Grid Search for VGG-13: We group the layers into low-level (Conv 1-3), mid-level (Conv 4-7)
and high-level (Conv 8-10) Convolutions, as well as fully connected layers in the classification head (Classifier). We
evaluate different parameterizations for the γ-rule, where we define different values for γ per group and measure
the quality of explanations both with and without model canonization w.r.t localization, faithfulness, complexity,
randomization and robustness metrics.

Figure 3: Attribution heatmaps (with canonization) for best and worst γ-parameters according to the grid search. γ1 is
for low-level features (Conv 1-4), γ2 is for mid-level features (Conv 5-10), γ3 is for high-level features (Conv 10-13),
γ4 is for layers in the classification head.

4.6 XAI Hyperparameter Tuning

For our experiments in Section 4.5 we used pre-defined LRP composites established in literature [27, 23]. However,
as suggested by different results for evaluated composites, these parameters differently impact the quality of expla-
nations w.r.t the chosen metric. To that end, we run another experiment that uses our XAI evaluation framework for
hyperparameter search. Specifically, we focus on the LRP-γ-rule, which uses the parameter γ to regulate the effect
of positive and negative contributions (see Sec. 2.3), ranging from treating both equally (γ = 0) to neglecting neg-
ative contributions (γ → ∞). Further, the flexibility of the LRP framework allows us to define XAI methods with
varying focus on positive and negative contributions depending on the position of the layer in the network. We use
a VGG-13 model with BN and define 4 groups of network layers, which are low-level (Conv 1-3), mid-level (Conv
4-7), and high-level (Conv 8-10) layers, as well as fully-connected layers in the classification head. We define one
γ-parameter per group with γ ∈ {0, 0.1, 0.25, 0.5, 1, 10}, and run a grid search for all possible combinations with and
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without model canonization, i.e., 2 · 64 = 2592 γ-configurations. Note that in theory, we could also evaluate different
sub-canonizations, where we only canonize certain parts of the model. This, however, further increases the degrees
of freedom. Further note that more advanced multi-metric-objective hyperparameter optimization approaches can be
employed. However, we decided to go forward with simple grid search, because our goal is to highlight the impor-
tance of the choice of XAI hyperparameters and the impact on various evaluation metrics. We evaluate the resulting
explanations with the metrics described in section 4.4 and show the results in Fig. 2. Specifically, each line represents
the score per metric with γ for a certain group of layers kept constant, averaged over all γ-parameterizations for other
layer groups. It can be seen that the impact of the choice of γ depends on the position of the layer in the network
and, in addition, differs by the metric of choice. For instance, the robustness of the explanations is mainly impacted
by the γ-value in low-level layers (Conv 1-3), while it has no impact for the other layers. In contrast, randomization
is mostly impacted by the choice of γ for fully connected layers in the classification head. Interestingly, canonization
has a large impact on the optimal choice of γ for low-level layers when measuring the faithfulness of the resulting
explanations. In Fig. 3 we show attribution heatmaps for three samples using different γ-configurations, employing the
best and worst parameterization according to the metrics faithfulness, localization and complexity. Each metric favors
another parametrization, leading to different attribution heatmaps. High γ-values in low-level layers (γ1) appear to be
favorable for all metrics, i.e., more focus on positive contributions on those layers. This leads to attribution heatmaps
with less noise, which is beneficial w.r.t faithfulness, localization and complexity.

5 Conclusions

In this work, we proposed an evaluation framework for XAI methods which can be leveraged to optimize the quality
of explanations based on a variety of XAI metrics. Specifically, we demonstrated the application of our framework to
measure the impact of model canonization towards various aspects of explanation quality. Therefore, we extended the
model canonization approach to state-of-the-art model architectures, including EfficientNets and DenseNets. Despite
not always being beneficial w.r.t. all examined architectures, model canonization provides an extra option when adopt-
ing XAI methods to the task at hand. Moreover, we applied our evaluation framework for hyperparameter optimization
for XAI methods and demonstrated the impact of parameters w.r.t different XAI metrics. While we have evaluated our
methods for LRP, it is also applicable to other configurable XAI methods, such as DeepLift. Future work will focus on
the canonization of additional relevant model architectures, e.g., Vision Transformer [12]. In addition, optimizing the
hyperparameter search is an promising research direction, e.g., with random search, evolutionary algorithms, or other
approaches to reduce the search space. Moreover, the framework can be applied with other optimization objectives,
e.g., to find LRP configurations that mimic other, more expensive XAI methods, e.g., SHAP.
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[28] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and understanding deep neural
networks. Digital Signal Processing, 73:1–15, 2018. 2

[29] Niels JS Morch, Ulrik Kjems, Lars Kai Hansen, Claus Svarer, Ian Law, Benny Lautrup, Steve Strother, and Kelly Rehm. Visu-
alization of neural networks using saliency maps. In Proceedings of ICNN’95-International Conference on Neural Networks,
volume 4, pages 2085–2090. IEEE, 1995. 2

[30] Franz Motzkus, Leander Weber, and Sebastian Lapuschkin. Measurably stronger explanation reliability via model canoniza-
tion. In 2022 IEEE International Conference on Image Processing (ICIP), pages 516–520, 2022. 1, 6

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, and others. Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019. 6

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
pages 1135–1144, 2016. 2

10



Optimizing Explanations by Network Canonization and Hyperparameter Search

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. 5
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Appendix A Canonization Details

Linear→ BN: In Eqs. (A.1) - (A.5), we show more detailed steps required to fuse Linear→ BN components into a
single affine transformation, as outlined in Eq. (4) in the main paper:

f(x) = BN(Linear(x)) (A.1)

= BN(w>L x + bL) (A.2)

= wBN

(w>L x + bL − µ√
σ + ε

)
+ bBN (A.3)

=
wBN√
σ + ε

(w>L x + bL − µ) + bBN (A.4)

= (
wBN√
σ + ε

wL︸ ︷︷ ︸
wnew

)>x +
wBN√
σ + ε

(bL − µ) + bBN︸ ︷︷ ︸
bnew

(A.5)

BN→ Linear: In Eqs. (A.6) - (A.9), we show more detailed steps required to fuse BN→ Linear component chains
into a single affine transformation, as outlined in Eq. (6) in the main paper:

f(x) = Linear(BN(x)) (A.6)

= w>L

(
wBN

( x− µ√
σ + ε

)
+ bBN

)
+ bL (A.7)

= w>L

(wBNx− wBNµ√
σ + ε

+ bBN

)
+ bL (A.8)

=
w>LwBN√
σ + ε︸ ︷︷ ︸
wnew

x−w
>
LwBNµ√
σ + ε

+ w>L bBN + bL︸ ︷︷ ︸
bnew

(A.9)

Padding Issue in BN → Linear Canonization: If the linear layer is a Convolutional layer with constant valued
padding, the bias of the linear layer after canonization can no longer be shown as a scalar:

f(x) = Conv(Pad(BN(x))) (A.10)

= Conv(Pad(
wBN√
σ + ε

x− wBNµ√
µ+ ε

+ bBN )) (A.11)

= Conv(
wBN√
σ + ε

Pad(x) + Pad(− wBNµ√
σ + ε

+ bBN )) (A.12)

= wL ∗
( wBN√

σ + ε
Pad(x) + Pad(− wBNµ√

σ + ε
+ bBN )

)
+ bL (A.13)

=
(
w>L

wBN√
σ + ε

)
∗ Pad(x)

+wL ∗ Pad(− wBNµ√
σ + ε

+ bBN ) + bL
(A.14)

=
(
w>L

wBN√
σ + ε

)
︸ ︷︷ ︸

wnew

∗ Pad(x)

+ Conv(Pad(− wBNµ√
σ + ε

+ bBN ))︸ ︷︷ ︸
bnew

(A.15)

In the equations above, ∗ stands for convolution. The new bias term is a full feature map, as opposed to a scalar as in
linear layers without padding. The feature map does not depend on input x and is computed by putting a feature map
(of the same size as x) with all features equal to −wBNµ√

σ+ε
+ bBN through the original linear layer. Notice that if the

padding value is nonzero, then the padding value of the canonized layer must be scaled by
√
σ+ε
wBN
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We now give a simple example to help illustrate the problem and the proposed solution. Specifically, we set BN
parameters µ = 0, σ = 1, ε = 0, wBN = 1, bBN = 1. Furthermore we define a single Convolutional filter with zero

padding of width 1, wL =

[
1 1
1 1

]
and no bias, bL = 0. Finally, we choose to show the case of a simple 3 × 3 input

feature map

x =

[
1 2 3
2 3 4
3 4 5

]
(A.16)

Pad(BN(x)) =


0 0 0 0 0
0 2 3 4 0
0 3 4 5 0
0 4 5 6 0
0 0 0 0 0

 (A.17)

wL ∗ Pad(BN(x)) =

2 5 7 4
5 12 16 9
7 16 20 11
4 9 11 6

 (A.18)

=

1 3 5 3
3 8 12 7
5 12 16 9
3 7 9 5

+

1 2 2 1
2 4 4 2
2 4 4 2
1 2 2 1

 (A.19)

= wnew ∗ Pad(x) + wL ∗ Pad(BNBias) + bL (A.20)

where and BNBias =

[
1 1 1
1 1 1
1 1 1

]
is the feature map composed of values equal to −wBNµ√

σ+ε
+ bBN

Appendix B Canonization of Relation Networks

Architecture: Relation Networks [35] are the state-of-the-art model architecture for the CLEVR dataset. It uses
two separate encoders for image and text input. For the image, a simple convolutional neural network is used with 4
blocks, each containing a Convolutional layer, followed by a ReLU activation function and a BN layer. The text input
is processed by a LSTM. The pixels from the feature map from the last Convolutional block from the image encoder
are pair-wise concatenated along with their coordinates and the text encoding. This representation is then passed to
a 4-layer fully connected network, summed up and then processed by a 3-layer fully connected network with ReLU
activation.

Canonization: Relation Networks, as implemented by the authors of [4], use BN layers at the end of each block
not directly after Convolutional layers. Therefore, we suggest to merge the BN layers with the Convolutional layers
at the beginning of the following block. The BN layer of the last block of the image encoder can be merged into the
following fully connected layer. However, attention as to be paid to make sure only weights operating on activations
coming from the image encoder are updated, as outlined below. The proposed canonization of Relation Networks is
visualized in Fig. A.1

Challenge: In relation networks, the last BN layer of the image encoder has to be merged into a linear layer of the
succeeding block, which takes as input a concatenation of image pairs, text and indices. Therefore, only the weights
responsible for the activations coming from the image encoder have to be updated.

Incoming Activations:

x = concat

180︷ ︸︸ ︷[
[x1]︸︷︷︸
24

, [coord1]︸ ︷︷ ︸
2

, [x2]︸︷︷︸
24

, [coord2]︸ ︷︷ ︸
2

, [question]︸ ︷︷ ︸
128

]
(A.21)

Only x1 and x2 pass the BN layer, i.e., indices 0 : 24 and 26 : 50 have to be updated. Here, the indexing i : j signifies
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the elements with indices from i to j−1, where the first element is indexed with 0. In order to update only the relevant
part of the weights of the linear layer wL, we have to split them into:

wL = concat
[
[w0:24
L ]︸ ︷︷ ︸
x1

, [w24:26
L ]︸ ︷︷ ︸

coord1

, [w26:50
L ]︸ ︷︷ ︸
x2

, [w50:52
L ]︸ ︷︷ ︸

coord2

, [w52:180
L ]︸ ︷︷ ︸
text

]
(A.22)

Using Eq. (A.9), each relevant weight part can than be updated as follows:

w0:24
Lnew

=
w0:24
L
>
wBN√

σ + ε
(A.23)

w26:50
Lnew

=
w26:50
L

>
wBN√

σ + ε
(A.24)

This gives a new weight matrix:

wLnew = concat
[
[w0:24
Lnew

]︸ ︷︷ ︸
x1

, [w24:26
L ]︸ ︷︷ ︸

coord1

, [w26:50
Lnew

]︸ ︷︷ ︸
x2

, [w50:52
L ]︸ ︷︷ ︸

coord2

, [w52:180
L ]︸ ︷︷ ︸
text

]
(A.25)

Similarly, the new bias can be calculated as:
bLnew = w0:24

L blinBN + w26:50
L blinBN + bC (A.26)

with blinBN = bBN − wBN ·µ√
σ+ε

Figure A.1: Canonization of Relation Network. (Left): Part from the original Relation Network. (Right): Suggested
canonization for the corresponding part of Relation Networks. BN layers are merged into the Convolutional layer at
the beginning of the following block. The BN layer of the last block is merged into the following fully connected
layer. However, only weights operating upon activations coming from the image encoder are updated, as outlined in
Eq. (A.25).

Appendix C Composites

The composites, i.e., pre-defined layer-to-rule assignments as suggested in the literature, that we used in the paper, are
described in Tab. A.1.

Appendix D Pascal VOC 2012 Experiments

D.1 Dataset Description

Pascal Visual Object Classes (VOC) 2012 dataset has images from 20 categories, including 5717 training samples
and 5823 validation samples with bounding box annotations, along with a private test set. From those, 1464 training
samples and 1449 validation samples are annotated with binary segmentation masks. As opposed to ILSVRC2017,
the images are much more diverse in composition. Many images contain multiple instances of several categories. The
dataset does not suffer from the center-bias mentioned for ILSVRC2017. In the experiments, we use the validation
samples with segmentation masks. Due to the robustness of models to input perturbations, the faithfulness correlation
scores are very low, even entirely zero for some models. In order to obtain more meaningful results, we report
faithfulness correlation scores with bigger perturbations compared to the ILSVRC2017 experiments.
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Table A.1: Details for composites used in our experiments.

Composite Layer Type Rule

LRP-ε+ Convolutional α1β0-rule
Fully Connected ε-rule

LRP-α2β1 Convolutional α2β1-rule
Fully Connected ε-rule

LRP-Custom (RN)
First Convolutional box-rule
Other Convolutionals α1β0-rule
Fully Connected α1β0-rule

D.2 Models

We evaluate explanations on VGG-16, ResNet-18, ResNet-50, EfficientNet-B0, EfficientNet-B4, DenseNet-121 and
DenseNet-161. We fine tune models using the full training set, using pre-trained models from the PyTorch model zoo.
We use stochastic gradient descent as the learning algorithm, with a cosine annealing learning rate scheduler [24]. We
use sum of binary cross entropy losses as the loss, and train the networks until convergence. We opted to use a smaller
learning rate for pretrained parameters.

D.3 Results

The results are shown in Tables A.2 - A.8. The results suggest that canonization increases performance in the lo-
calization metrics and partially for faithfulness metrics. For the robustness metrics, canonization helps for Excitation
Backpropagation. However, it makes robustness scores improve by a bigger margin for all methods for DenseNet mod-
els. Similar to the results for ILSVRC2017, DenseNet models seem to be affected negatively in their complexity scores
when canonized. For other model architectures, complexity measures are also uniformly improved by canonization.

Table A.2: Results for Pascal VOC XAI evaluation with VGG-16. Arrows indicate whether high (↑) or low (↓) are
better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.59 0.60 0.04 0.04 0.21 0.22 0.33 0.34 0.40 0.41 1.00 1.00 0.24 0.20 0.26 0.21
LRP-α2β1 0.75 0.86 0.04 0.03 0.27 0.27 0.38 0.44 0.40 0.41 0.53 0.64 0.53 0.53 0.80 0.78
LRP-ε+ 0.59 0.68 0.05 0.05 0.25 0.26 0.36 0.40 0.46 0.47 0.49 0.49 0.51 0.51 0.80 0.78

Table A.3: Results for Pascal VOC XAI evaluation with ResNet-18. Arrows indicate whether high (↑) or low (↓) are
better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.53 0.57 0.03 0.04 0.22 0.23 0.31 0.33 0.40 0.41 0.96 0.97 0.17 0.15 0.19 0.16
LRP-α2β1 0.70 0.77 0.03 0.03 0.23 0.23 0.34 0.39 0.36 0.39 0.65 0.64 0.48 0.48 0.77 0.77
LRP-ε+ 0.56 0.63 0.03 0.03 0.22 0.22 0.31 0.34 0.39 0.41 0.68 0.68 0.46 0.45 0.77 0.76

Appendix E ILSVRC2017 Experiments

E.1 Classes

In our experiments we considered the following 50 classes that were picked randomly:

“Bernese mountain dog”, “Christmas stocking”, “Gila monster”, “Shetland sheepdog”, “Windsor tie”, “amphib-
ian”, “ant”, “bubble”, “cassette”, “cicada”, “collie”, “crossword puzzle”, “dalmatian”, “eft”, “file”, “flute”,
“goldfish”, “gorilla”, “gown”, “grasshopper”, “green snake”, “gyromitra”, “hammer”, “hen of the woods”, “in-
digo bunting”, “kimono”, “magnetic compass”, “mongoose”, “mountain tent”, “otterhound”, “palace”, “patio”,
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Table A.4: Results for Pascal VOC XAI evaluation with ResNet-50. Arrows indicate whether high (↑) or low (↓) are
better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.55 0.63 0.04 0.04 0.20 0.23 0.30 0.35 0.38 0.42 0.96 0.93 0.20 0.17 0.21 0.18
LRP-α2β1 0.73 0.81 0.03 0.03 0.24 0.24 0.38 0.41 0.39 0.39 0.60 0.62 0.48 0.49 0.74 0.73
LRP-ε+ 0.60 0.69 0.04 0.04 0.24 0.25 0.35 0.39 0.44 0.44 0.60 0.57 0.46 0.46 0.75 0.74

Table A.5: Results for Pascal VOC XAI evaluation with EfficientNet-B0. Arrows indicate whether high (↑) or low (↓)
are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.55 0.69 0.01 0.02 0.13 0.18 0.26 0.37 0.30 0.41 1.00 0.99 0.43 0.39 0.50 0.43
LRP-α2β1 0.73 0.76 0.00 0.00 0.18 0.11 0.37 0.34 0.39 0.34 0.63 0.51 0.58 0.58 0.80 0.79
LRP-ε+ 0.51 0.72 0.02 0.02 0.17 0.19 0.30 0.39 0.41 0.43 0.59 0.67 0.46 0.49 0.77 0.77

“pencil sharpener”, “platypus”, “pomegranate”, “pool table”, “redshank”, “refrigerator”, “rhinoceros beetle”,
“screw”, “screwdriver”, “shoe shop”, “shopping basket”, “stage”, “standard poodle”, “stethoscope”, “toaster”,
“tree frog”, “vase”, “wolf spider”.

E.2 Additional Results

In Tables A.9 - A.15 we show additional results for our experiments with the ILSVRC2017 dataset. Specifically,
in addition to the architectures evaluated in the main paper, we present results for ResNet50, EfficientNet-B4 and
DenseNet-161. Moreover, we include results for Faithfulness Correlation [7] and Max Sensitivity [48].

Appendix F Additional CLEVR-XAI Results

In Table A.16, we show additional results for our CLEVR-XAI experiments. Specifically, in additional to pos-l2-
norm-sq pooling, we also present results for max-norm pooling.

Appendix G Attribution Heatmaps

In Figures A.2 - A.8 we show attribution heatmaps for three samples using various XAI methods, both with and without
model canonization using the ILSVRC2017 dataset for different model architectures. Similarly, in Figures A.9 - A.10
we show attribution heatmaps for different XAI methods with and without canonization for Relation Networks using
pos-l2-norm-sq pooling and max-norm pooling.
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Table A.6: Results for Pascal VOC XAI evaluation with EfficientNet-B4. Arrows indicate whether high (↑) or low (↓)
are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.68 0.77 0.0 0.0 0.14 0.13 0.33 0.36 0.37 0.37 0.97 1.00 0.32 0.36 0.37 0.43
LRP-α2β1 0.71 0.75 0.0 0.0 0.12 0.08 0.27 0.32 0.31 0.33 0.46 0.42 0.62 0.61 0.93 0.91
LRP-ε+ 0.54 0.77 0.0 0.0 0.15 0.16 0.28 0.40 0.36 0.42 0.51 0.57 0.51 0.51 0.88 0.85

Table A.7: Results for Pascal VOC XAI evaluation with DenseNet-121. Arrows indicate whether high (↑) or low (↓)
are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.63 0.59 0.02 0.04 0.11 0.25 0.25 0.37 0.28 0.48 0.98 0.75 0.60 0.20 1.07 0.22
LRP-ε+ 0.70 0.63 0.02 0.04 0.18 0.24 0.34 0.36 0.39 0.44 0.35 0.44 0.63 0.50 1.08 0.77
LRP-α2β1 0.83 0.73 0.01 0.03 0.16 0.24 0.31 0.39 0.32 0.41 0.38 0.36 0.64 0.51 1.11 0.76

Table A.8: Results for Pascal VOC XAI evaluation with DenseNet-161. Arrows indicate whether high (↑) or low (↓)
are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.80 0.58 0.01 0.05 0.05 0.23 0.11 0.35 0.17 0.47 0.99 0.77 0.57 0.19 0.84 0.21
LRP-ε+ 0.67 0.63 0.02 0.05 0.17 0.22 0.34 0.36 0.40 0.44 0.32 0.49 0.62 0.48 1.06 0.74
LRP-α2β1 0.82 0.74 0.01 0.03 0.16 0.21 0.31 0.39 0.33 0.41 0.52 0.45 0.64 0.50 1.13 0.74

Table A.9: Results for ILSVRC2017 XAI evaluation with VGG-16. Arrows indicate whether high (↑) or low (↓) are
better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.57 0.59 0.06 0.06 0.35 0.36 0.68 0.70 0.70 0.71 1.00 1.00 0.22 0.18 0.23 0.20
LRP-α2β1 0.70 0.84 0.05 0.03 0.38 0.39 0.65 0.77 0.63 0.67 0.59 0.66 0.31 0.34 0.34 0.37
LRP-ε+ 0.51 0.62 0.09 0.08 0.36 0.39 0.64 0.71 0.69 0.71 0.57 0.54 0.19 0.21 0.21 0.24

Table A.10: Results for ILSVRC2017 XAI evaluation with ResNet-18. Arrows indicate whether high (↑) or low (↓)
are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.55 0.57 0.03 0.04 0.29 0.29 0.66 0.67 0.68 0.69 0.97 0.97 0.16 0.14 0.18 0.15
LRP-α2β1 0.67 0.76 0.04 0.03 0.32 0.32 0.69 0.75 0.65 0.67 0.65 0.61 0.21 0.26 0.22 0.28
LRP-ε+ 0.51 0.58 0.04 0.04 0.30 0.30 0.65 0.69 0.69 0.70 0.70 0.70 0.14 0.15 0.15 0.16

Table A.11: Results for ILSVRC2017 XAI evaluation with ResNet-50. Arrows indicate whether high (↑) or low (↓)
are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.72 0.64 0.02 0.04 0.24 0.36 0.65 0.71 0.66 0.69 0.95 0.93 0.36 0.17 0.42 0.18
LRP-α2β1 0.71 0.81 0.04 0.01 0.37 0.37 0.72 0.77 0.66 0.67 0.59 0.61 0.25 0.30 0.27 0.33
LRP-ε+ 0.57 0.67 0.05 0.04 0.37 0.37 0.70 0.74 0.72 0.71 0.61 0.60 0.15 0.18 0.16 0.19
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Table A.12: Results for ILSVRC2017 XAI evaluation with EfficientNet-B0. Arrows indicate whether high (↑) or low
(↓) are better. Best results are shown in bold. We analyzed the low faithfulness correlation scores and found that the
model was very robust towards input perturbation, with output values remaining unaffected.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.85 0.70 0.00 0.0 0.24 0.27 0.79 0.72 0.73 0.67 0.99 1.00 0.42 0.33 0.48 0.37
LRP-α2β1 0.75 0.77 0.00 0.0 0.29 0.20 0.79 0.73 0.72 0.65 0.57 0.51 0.48 0.49 0.52 0.54
LRP-ε+ 0.50 0.73 0.01 0.0 0.28 0.30 0.69 0.79 0.75 0.75 0.61 0.65 0.12 0.21 0.13 0.23

Table A.13: Results for ILSVRC2017 XAI evaluation with EfficientNet-B4. Arrows indicate whether high (↑) or low
(↓) are better. Best results are shown in bold. We analyzed the low faithfulness correlation scores and found that the
model was very robust towards input perturbation, with output values remaining unaffected.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.84 0.77 0.0 0.0 0.20 0.19 0.64 0.69 0.68 0.66 0.90 1.0 0.30 0.35 0.33 0.40
LRP-α2β1 0.77 0.79 0.0 0.0 0.15 0.13 0.53 0.67 0.61 0.64 0.43 0.4 0.61 0.53 0.68 0.59
LRP-ε+ 0.56 0.77 0.0 0.0 0.13 0.24 0.56 0.76 0.62 0.70 0.54 0.5 0.14 0.23 0.15 0.26

Table A.14: Results for ILSVRC2017 XAI evaluation with DenseNet-121. Arrows indicate whether high (↑) or low
(↓) are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.66 0.62 0.01 0.03 0.15 0.31 0.53 0.73 0.58 0.72 0.75 0.89 0.57 0.17 1.05 0.19
LRP-α2β1 0.82 0.81 0.01 0.02 0.25 0.33 0.68 0.81 0.64 0.71 0.40 0.44 0.65 0.28 1.30 0.31
LRP-ε+ 0.67 0.66 0.01 0.03 0.26 0.33 0.71 0.77 0.70 0.74 0.39 0.48 0.63 0.19 1.23 0.21

Table A.15: Results for ILSVRC2017 XAI evaluation with DenseNet-161. Arrows indicate whether high (↑) or low
(↓) are better. Best results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.86 0.61 0.00 0.03 0.05 0.30 0.25 0.71 0.46 0.71 0.86 0.90 0.56 0.17 0.80 0.18
LRP-α2β1 0.81 0.82 0.01 0.01 0.25 0.32 0.67 0.82 0.65 0.71 0.34 0.45 0.65 0.29 1.29 0.33
LRP-ε+ 0.64 0.66 0.02 0.03 0.25 0.32 0.70 0.76 0.70 0.74 0.36 0.47 0.62 0.18 1.19 0.19

Table A.16: Results for CLEVR-XAI with Relation Network using max-norm pooling. Arrows indicate whether high
(↑) or low (↓) are better. Best results are shown in bold.

↑ Complexity ↑ Faithfulness ↑ Local. (RRA) ↑ Local. (RMA) ↓ Robustness ↓ Random.
Questions canonized no yes no yes no yes no yes no yes no yes

Simple EB 0.92 0.79 0.50 0.50 0.66 0.63 0.56 0.38 1.34 1.29 1.00 1.00
LRP-Custom 0.69 0.82 0.52 0.52 0.71 0.71 0.34 0.46 1.19 1.24 0.99 0.99

Complex EB 0.91 0.81 0.45 0.44 0.67 0.64 0.74 0.60 1.31 1.22 0.99 0.99
LRP-Custom 0.70 0.82 0.45 0.45 0.55 0.64 0.48 0.63 1.16 1.20 0.98 0.99
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Figure A.2: Attribution heatmaps with different XAI methods for VGG-16 model on ILSVRC2017 dataset.
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Figure A.3: Attribution heatmaps with different XAI methods for ResNet-18 model on ILSVRC2017 dataset.
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Figure A.4: Attribution heatmaps with different XAI methods for ResNet-50 model on ILSVRC2017 dataset. The
checkerboard pattern is due to the downsampling shortcuts in the network. We refer the reader to [47] for details.
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Figure A.5: Attribution heatmaps with different XAI methods for EfficientNet-B0 model on ILSVRC2017 dataset.
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Figure A.6: Attribution heatmaps with different XAI methods for EfficientNet-B4 model on ILSVRC2017 dataset.
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Figure A.7: Attribution heatmaps with different XAI methods for Densenet-121 model on ILSVRC2017 dataset.
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Figure A.8: Attribution heatmaps with different XAI methods for Densenet-161 model on ILSVRC2017 dataset.
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Figure A.9: Attribution heatmaps for Relation Network on CLEVR-XAI dataset using pos-l2-norm-sq pooling.
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Figure A.10: Attribution heatmaps for Relation Network on CLEVR-XAI dataset using max-norm pooling.
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