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Abstract

Human speech perception is intrinsically a multi-modal
task since speech production requires the speaker to move
the lips, producing visual cues in addition to auditory in-
formation. Lip reading consists in visually interpreting the
movements of the lips to understand speech, without the use
of sound. It is an important task since it can either comple-
ment an audio-based speech recognition system or replace
it when sound is not available. We introduce in this paper
a neuromorphic model for lip reading, that uses events pro-
duced by an event-based sensor capturing lips motion as
input, and that classifies short event sequences in word cat-
egories based on a SNN architecture. Experimental results
show that the proposed model successfully leverages var-
ious advantages of neuromorphic approaches such as en-
ergy efficiency and low latency, which are central features
in real-time embedded scenarios. To the best of our knowl-
edge, it is the first proposal of an end-to-end neuromorphic
lip reading model.

1. Introduction
Automatic lip reading is a computer vision task whose

goal is to transcribe spoken words based solely on visual
information. The prospect of systems capable to read lips is
attractive for a variety of real-life applications, like assistive
devices for persons with disabilities, security and surveil-
lance applications, or automatic transcription of video con-
tent.

Traditional lip reading systems often rely on frame-based
cameras to capture lip movements and require extensive
processing to extract relevant information. Moreover, reg-
ular state-of-the-art methods for action recognition tend to
be very computationally expensive and energy-demanding.
Past years have thus seen growing interest surrounding
cost-effective and portable approaches to solve visual tasks
[11, 18]. In this context, research on neuromorphic tech-
nologies has skyrocketed, due to their intrinsic energy effi-
ciency.

Event-based cameras, which capture motion information

in a spatiotemporal fashion, have opened up new possi-
bilities for developing energy-efficient and low-latency ac-
tion recognition systems [32]. Along with this new gener-
ation of sensors, spiking neural networks (SNNs) have be-
come very popular for their time-based processing, simi-
lar to how biological neurons communicate through spikes.
The combination of event cameras and spiking neural net-
works has shown great potential in developing efficient and
low-latency visual processing systems [4, 21], particularly
when traditional cameras and computing methods struggle
to meet the energy-efficiency requirements. In scenarios of
battery-powered embedded devices, these technologies may
prove to be incredibly useful. An end-to-end neuromorphic
lip-reading system could directly benefit the development
of portable assistive devices or surveillance equipment.

In this paper, we propose a neuromorphic model for lip
reading that utilizes events produced by an event-based sen-
sor capturing lip motion. The model classifies short se-
quences of events into word categories using a SNN ar-
chitecture. The proposed model leverages the advantages
of neuromorphic computing, including energy efficiency
and low latency, making it suitable for real-time embed-
ded scenarios. Our work draws inspiration from Tan et
al. [33], who achieved state-of-the-art results with an orig-
inal deep neural network architecture for an automatic lip
reading task: the Multi-grained Spatio-Temporal Features
Perceived (MSTP) network. Experimental results demon-
strate the effectiveness of the proposed model in lip read-
ing, achieving high accuracy in word classification. To the
best of our knowledge, this is the first proposal of an end-
to-end neuromorphic lip reading model. We believe it holds
great potential for applications in human-computer interac-
tion, speech recognition, and assistive technologies for the
hearing-impaired.

2. State of the art
Automatic lip reading: Compared to other visual tasks,

automatic-lip reading deals with especially subtle move-
ments with very precise timing and is very sensitive to noise
and other environmental factors. A model for automatic lip
reading thus needs to excel at extracting both spatial and



temporal information. This makes lip reading a challenging
task amongst other visual recognition problems (like face or
object recognition), and lead to many different approaches
throughout the years.

The first automatic lip reading system was made by [29]
and used image video grayscale thresholding to try to match
the contours of the face, nostrils, and mouth. This approach
was very popular until the end of the 80s when [36] first
applied a statistical classification model in the form of an
early neural network to this problem. Image frames of size
20 × 25 were used and passed to a feed-forward neural
network, and allowed to extract more information than the
previous symbolic method. In later years, hidden Markov
chains were applied by [19] and specifically used motions
produced by the oral cavities region as features. Hidden
Markov chains remained the most popular method through-
out the 2000s, but as deep learning started gaining more
traction in the mid-2010s, new works using artificial neural
networks (ANNs) started being published.

In recent years, deep learning has been applied to au-
tomatic lip reading tasks, with some of the earliest exam-
ples dating back to the mid-2010s, e.g. [23] or [30]. The
use of deep learning for lip reading has grown in popu-
larity due to its ability to automatically learn and extract
features from raw data, such as video frames of a person’s
face and mouth, without the need for manual feature engi-
neering. This makes it well-suited for tasks like lip reading,
where the exact movements of a person’s mouth and lips are
difficult to model and represent in a traditional, rule-based
manner.

As discussed in Chung et al. [6], a big challenge for
progress in the field of Deep Learning for lip reading has
been the lack of suitable datasets. But with the availabil-
ity of large amounts of data and the development of more
powerful computing hardware, the use of deep learning has
been enabled for these tasks. Existing lip reading datasets
can be divided into several categories depending on the type
of recognition object they are designed to capture. Alpha-
bet recognition datasets like RMAV [9] or AV Letters [26]
contain videos of individuals speaking the letters of the al-
phabet. Digit recognition datasets like OuluVS2 [3] and
XM2VTSDB [28] are their equivalent for single digits. The
LRW-1000 [34] dataset, as well as the AVSR [10] datasets,
are examples of word recognition datasets. Finally, the last
category is sentence recognition datasets, such as LRS3-
TED [1], GRID [7], and LSVSR [31]. All of those datasets
were recorded with RGB cameras. The quality and size of
these datasets can vary greatly, with some containing thou-
sands of videos and others containing only a few hundred.

Feng et al. [16] employ a convolutional neural network
(CNNs) for visual feature extraction, then recurrent neural
networks (RNN) to model long-term dependencies and
better understand the context and meaning of the words

being spoken. The combination of CNNs and RNNs is
particularly useful for modeling the spatiotemporal nature
of speech and accurately transcribing words that may span
multiple frames of the video.

Event-based lip reading: Event cameras are a recent
type of vision sensor that operates differently from tradi-
tional cameras [17]. Rather than capturing entire frames
of images at fixed intervals, event cameras produce events,
i.e., time-stamped pixel-level brightness changes, asyn-
chronously and independently. Overall, the unique char-
acteristics of the captured event-based data such as a high
temporal solution, robustness to motion blur, asynchronous
operation, and low power consumption are especially valu-
able for energy-efficient and embedded computer vision
tasks like automatic lip reading. As discussed in [33], the
existing event-based action recognition methods such as
point-cloud-based, graph-based, and fixed-frame-based ap-
proaches are not suitable for the lip reading task, since it
requires the perception of fine-grained spatiotemporal fea-
tures from the event data.

Recently, Tan et al. [33] proposed a novel model
architecture to perform event-based lip reading: the MSTP
network. The performance of the MSTP on this task was
experimentally proven to be superior to the state-of-the-art
event-based action recognition models and video-based
lip reading models. Within the MSTP network, the input
events are consequently converted to low-rate and high-rate
event frames with different temporal bins to preserve the
spatiotemporal information of the event stream better.
These two types of event frames are then fed into a
multi-branch network with message flow modules between
different branches designed to perceive both complete
spatial features and fine temporal features from the event
data. Followed by that, a sequence model decodes the
visual features into words. In their study, SNNs are
mentioned but discarded because of the lack of an efficient
back-propagation algorithm to train them. Hence, SNNs
are yet to be applied to this problem.

Spiking neural networks: SNNs are bio-inspired learn-
ing models that were first popularised in computer science
by Wolfgang Maass [25]. Where regular ANNs are mathe-
matical functions based on highly simplified brain dynam-
ics, SNNs try to mimic the behaviour of biological neurons
by emitting voltage ”spikes” with precise timing. The most
common spiking neuron model used is the Leaky-Integrate-
and-Fire (LIF), which uses a parameter τ to adjust the speed
at which the membrane potential will ”leak” towards the
resting potential. Parametric Leaky-Integrate-and-Fire neu-
rons [15] (PLIF) make an interesting variation of regular
LIF, where the time constant is adjusted during training.
This means that the speed at which the membrane potential



of those neurons will leak is no longer a hand-tuned param-
eter. Their membrane potential evolves following Eq. 1:

V [t] = V [t− 1]− 1

τ
(V [t− 1]− Vreset) +X[t] (1)

with V[t] the membrane potential at time t, Vreset the
resting potential, X[t] the neuron’s input at time t, and τ the
time constant that will be learned.

Gradient descent is impossible with SNNs because of the
non-differentiable spike function of spiking neurons. The
training of those networks is thus notoriously difficult. Un-
til recent years, researchers have mainly been relying ei-
ther on simple learning mechanisms (like STDP) that are
often inefficient for supervised learning, or on the conver-
sion of a regular pre-trained ANN into an SNN. More recent
works however have been very successful in finding tricks
and workarounds to be able to use gradient descent with
SNNs. One of the most popular methods is described by
Neftci et al. [27]: a differentiable surrogate function is used
during training instead of the undifferentiable spike activa-
tion function. Amongst the most prominent ones, we can
cite piecewise quadratic, ATan, and the Gaussian error sur-
rogate function (Erf), shown in Fig. 1.

This surrogate function is an approximation of the spike
function and allows the back-propagation of error through
the network. Gradient descent is thus made possible with
SNNs. This technique allowed deep spiking networks to
equal, and sometimes surpass regular ANNs in recent works
on real-life problems such as object recognition in automo-
tive data [8]. Still, this method does not utilize the full po-
tential of SNNs since it also brings some of the constraints
that regular ANNs have (like the unidirectional flow of in-
formation through the network layers).

With the popularisation of surrogate gradient descent, ef-
forts have been made to provide a spiking equivalent of tem-
poral information extraction methods used in regular ANNs.
Linearly recurrent spiking neurons are regular spiking neu-
rons with a recurrent linear connection that makes their cur-
rent output also depend on their previous one, in a man-
ner similar to vanilla RNN. With a similar method, spiking-
LSTM [24] has been proposed and declined into spiking
Gated Recurrent Units (GRU). In another approach, state-
ful synapses [12] are placed after a spiking layer and pro-
vide additional memory by accumulating input spike cur-
rent, making their output depend on both present spike input
and previous ones. Fig. 2 shows an example of how those
synapses behave given some spikes in the previous layer.

Those synapses can also be seen as leaky integrate neu-
rons that instead of firing spikes, simply output their mem-
brane potential.

In visual applications, SNNs are a perfect match for the
asynchronous chains of events produced by an event-based

(a) Erf

(b) Piecewise quadratic

(c) ATan

Figure 1. Some surrogate activation functions, from the Spiking-
Jelly documentation [13].

Figure 2. Output of the stateful synapse given some input spikes,
from SpikingJelly documentation [13].



camera. The perspective of energy-efficient cameras and
learning models to go with made SNNs very attractive for
embedded systems like drones, or autonomous cars. SNNs
have been successfully used for gesture recognition in nu-
merous studies such as in Amir et al. [2], showing their po-
tential for this type of task. As previously stated, very recent
advances have been made in object recognition with event
data like in the work of Cordone et al. [8]. Whereas SNNs
were only marginally used on very simplistic tasks just a
few years back, they are now able to equal the performances
of regular ANNs on real-life problems.

As of now, SNNs are yet to be applied to automatic lip
reading despite their attractiveness, supported by the argu-
ments listed above. This innovative work is therefore the
first to exploit its advantages for the specific task of lip-
reading on event data.

3. Proposed methodology
As mentioned before, the asynchronous nature of SNN

should make them a perfect match for the event data pro-
duced by event cameras. In the context of surrogate gra-
dient descent though, it becomes necessary to convert our
data to a synchronous form.

3.1. Event data preprocessing

Finding efficient ways to represent event data is a dif-
ficult problem that is, in itself, a subject of prior studies
(e.g. [20]). Since we target the DVS-Lip dataset, we chose
to use a method similar to the one described by [33]. In
their study, the authors converted the asynchronous events
into a 3-dimensional array, i.e. a voxel grid. Each event in
our dataset is represented as an (x, y) position on the sen-
sor, a time (t), and a polarity {-1, 1}. Equations 2 and 3
(reused from [33]) show how we can create a voxel grid of a
specific length T where the polarity of each event is spread
through the two closest spatiotemporal voxels.

t∗k =
T − 1

tN − t1
(tk − t1) (2)

V (t, y, x) =
∑
k

pkmax(0, 1− |t− t∗k|) (3)

where T is the number of frames we want to use (i.e. the
time resolution of our grid), and tx is the timestamp of the
xth event from the original video. With our event data dis-
cretized this way, we get a 3-dimensional grid of shapes
(t, x, y). In [33], Tan et al. use two different values for
T : 30 for the low-rate branch of their network, and 210 for
the high-rate branch. However, the individual performances
of each branch when not combined are very similar (accu-
racy of 69.57% and 69.49% respectively for the low and

high branches). Only when both are combined in a multi-
grained network along with message flow module blocks do
the overall accuracy increases to 72.10%. We thus decided
to experiment using T = 30, since using a higher value
would tremendously slow the training processes for little
improvement.

3.2. Topology exploration

To the best of our knowledge, no prior work uses SNNs
to classify dynamic scenes for lip reading. Moreover, the lit-
erature on dynamic classification with SNNs is scarce. The
closest studies to our work used the DVS-Gesture dataset
introduced by [2] along with reasonably simple topologies
and different variations, like in Yao et al. [35]. The DVS-
Gesture dataset itself being comparatively easy to classify,
we hope to contribute to the area of neuromorphic computer
vision by showing that more difficult problems can be tack-
led with SNNs.

We tested several topologies of different levels of com-
plexity. A good starting point is to simply reuse some
simple topologies proposed in prior work trying to classify
DVS-Gesture, or for other visual tasks such as event-video
reconstruction [37]. We have used the topology of Yao et
al. [35]. Fig. 3 shows two simple SNN topologies that we
used; we will refer to those models as SNN1 and SNN2.

SNN1 is borrowed from [35], who originally designed
this topology to classify DVS-Gesture. SNN2 is inspired
by Zhu et al. [37], where the authors use a spiking encoder-
decoder architecture for event-video reconstruction. SNN2
is the encoder part of their model, where the residual layers
have been replaced by two more convolution layers, yield-
ing a higher accuracy. Batch normalization layers have been
added after each convolution since such layers have been
shown to considerably facilitate the learning process. On
this topic, [8] showed batch normalization layers to be cru-
cial when using complex SNNs, and reported either signif-
icant performance drop, or networks simply not learning
when not using batch normalization.

Along with these simple models, we designed a spiking
equivalent of the low-rate branch of MSTP. Since this model
uses ResNet [22] as the backbone, we first implemented
a spiking ResNet backbone, in a similar way as Fang et
al. [14] did, and then applied the MSTP architecture. The
topology of our spiking MSTP low-rate branch is presented
in Fig. 4. Compared to the previous basic SNNs presented,
there was no need to add batch normalization layers here,
since the base model already feature them. Overall, little
modifications have been made to the original model, and
the resulting spiking low-rate branch MSTP ended up being
very similar to the Spiking Element-Wise ResNet (SEW-
ResNet) presented in [14].

One key difference between our spiking adaptation of
MSTP and the original model lies in the GRU layer em-



Figure 3. Two simple SNN topologies used in this work.

Figure 4. Overall spiking low-rate branch MSTP topology along with the ResBlock.

ployed near the output the architecture. RNNs in gen-
eral, are typically employed when information has to be ex-
tracted from temporal sequences. Their output depends on
both their current input as well as their hidden state. GRU
in particular has been introduced by Chung et al. [5] and al-
lows each neuron to learn how much of the previous infor-
mation needs to be forgotten, and how much of the current
new input should be memorized. Though a spiking LSTM
layer (adaptable into a spiking GRU) has been proposed by
Rezaabad et al. [24], we found it to give very underwhelm-
ing results in our case. Especially when trying to stick to
the original 3 layers of bidirectional GRU used in MSTP,
our network exhibited a very slow and inefficient learning
process, and we ultimately decided to try to find alternatives
for extracting temporal information. In the next section, we
will describe in further details what techniques we tried us-
ing to replace this GRU layer.

3.3. Experiments

Experiments with SNNs were performed on the DVS-
Lip dataset using 30 timesteps (T = 30 in Eq. 2) and were
meant to help us find the most promising spiking topology
before comparing MSTP to our best SNN. We used Para-
metric Leaky-Integrate-and-Fire neurons [15] (PLIF) with
Adam optimizer with a learning rate of 1e−3, and a cosine
annealing scheduler to adjust the learning rate during train-
ing in a manner similar to the work of Cordone et al. [8].
Neurons parameters are presented in Tab. 1 Using these set-
tings, we ran experiments focused on the following 3 points.

Type Initial τ Activation threshold Reset potential
PLIF 2.0 1.0v 0.0v

Table 1. Neurons parameters.



1 – First, we compared the previously introduced
surrogate activation function in a small-scale experiment.
As introduced earlier, surrogate gradient descent requires
choosing an activation function to replace the regular non-
differentiable step function used by spiking neurons. To
select the most promising one, we ran fast test runs on a
sub-section of 10 words of the DVS-Lip dataset using our
smallest network (SNN1) for 50 epochs.

2 – Then, we compared the performances of each of the
presented topologies, using the surrogate function that lead
to the best results during the previous experiment. Even
though we suspected our spiking MSTP branch to perform
the best, we still wanted to try basic models to establish
a spiking baseline. We thus trained each of the presented
topologies for 100 epochs on the full DVS-Lip dataset.

3 – Finally, we conducted an ablation study to adapt the
GRU layer from MSTP in our spiking adaptation. As men-
tioned, using a 3 layers bidirectional spiking GRU adapted
from [24] yields underwhelming results. The point of us-
ing GRU is to help extract temporal information, but other
methods to do this exist. We tested those we previously
introduced: linearly recurrent spiking neurons and stateful
synapses. We also tried to replace the GRU layer with a
simple fully connected spiking layer. Each of those replace-
ments was also tested for 100 epochs.

All experiments are run on a laptop with an Intel Core
i9-12950HX CPU (2.5 GHz x 16), 62,5 GB RAM, with an
NVIDIA RTX A5500 laptop GPU with 16 GB of VRAM.

4. Experimental results
4.1. Topologies Results

We discuss here the experimental results using various
SNNs topologies and hyperparameters for classifying the
DVS-Lip dataset. First, Tab. 2 shows the results of our first
batch of training, which were meant to help us choose a

Models Activation function Accuracy
SNN1 Erf 0.546
SNN1 Piecewise 0.531
SNN1 ATan 0.534

Table 2. SNN1 accuracy on a subset of 10 classes from DVS-
Lip, using different surrogate functions. The classes correspond to
the words: allow, allowed, America, American, benefit, benefits,
billion, called, challenge, and change.

Models Variation Accuracy
SNN1 Base model 0.395
SNN2 Base model 0.514

Spiking MSTP No GRU 0.522

Table 3. SNN results on the entire DVS-Lip dataset.

surrogate activation function to use for the rest of the work.
The choice of surrogate functions can vastly influence

how our networks perform. This preliminary test shows Erf
to perform slightly better than ATan and Piecewise, and we
thus kept using it for the rest of our experiments.
After these preliminary tests, we then tested the 3 topologies
presented earlier to see which one performs the best. Tab. 3
shows their respective performances.

This second batch of experiments shows that the spik-
ing MSTP obtains significantly better results than the other
models (SNN1 and SNN2).

4.2. Ablation study results

At this stage, the spiking MSTP does not use any recur-
rent layer, and the original GRU was simply replaced by
a spiking Fully Connected layer. We have experimented
with possible GRU replacement in order to see if a higher
performance could be gained by using other temporal in-
formation extraction methods, as described in the previous
section. The results of our third batch of experiments, and
the final accuracy for the DVS-Lip Dataset using SNNs are
presented in Tab. 4.

This table shows that significant performance growth can
be gained by using stateful synapses either as a spiking re-
placement for the GRU layer. We also included the accuracy
of the original MSTP published in [33], which is still higher
than our best spiking model. Tab. 5 however, shows the
accuracy and size of MSTP, the low-rate branch of MSTP
only, and the low-rate branch of MSTP without its three-
layer bidirectional GRU.

In this last table, we can observe that even though our
model needs less than 5 times the amount of memory of

Model Model Accuracy
MSTP Original ANN [33] 0.721

Spiking MSTP Simple fc layer 0.522
Spiking MSTP Spiking bi-GRU 0.463
Spiking MSTP Spiking recurrent layer 0.476
Spiking MSTP Stateful synapse 0.602

Table 4. Spiking MSTP results on the entire DVS-Lip dataset,
trying different substitutions for the 3-layer bidirectional GRU in
the classification part.

Model Accuracy Size
MSTP 0.721 241.5MB

MSTP low w/out GRU 0.591 47MB
SNN1 0.395 26.7MB
SNN2 0.514 88.9MB

Spiking MSTP 0.602 47MB

Table 5. Size and accuracy comparison between our models and
the state-of-the-art.



MSTP, it still manages to keep 83% of its accuracy. Further-
more, the main topological difference between our model
and the low-rate branch of MSTP is the absence of the 3 lay-
ers of bidirectional GRU. If removed, the low-rate branch of
MSTP is now the same size as our model but with slightly
lower accuracy. In the end, the spiking nature of our model
could make it an interesting option for embedded systems
where our lower accuracy could still be seen as a good trade-
off for a more energy-efficient model.

5. Conclusion

This paper proposes the first SNN model for event-based
lip reading and presents competitive results with the current
ANN state-of-the-art. We showed how we tested several
topologies with various surrogate functions and improved
our base results with a stateful synapse to extract more tem-
poral information. Our model is amongst the first advanced
deep spiking models applied to such a challenging task and
manages to get promising results while keeping a relatively
small size.

Further experiments to improve the data pre-processing
and the SNN model itself may, in the near future, allow a
state-of-the-art model to be achieved. In the absence of pub-
lished deep and complex SNNs for similar tasks, we hope
to provide a spiking baseline for future work in this area.

We think that improvements can still be made on our
final SNN, especially regarding the way we replaced the
GRU layer from MSTP. Our stateful synapses allowed us
to break the 60% accuracy line, but we still think that most
of the performance gap between MSTP and this model lies
in this replacement. Finding more efficient ways to extract
information from the temporal component of the data may
be a good direction for future work. Furthermore, even
though we believe surrogate gradient descent is the current
best training method for supervised learning with SNNs, the
results can be improved. By forcing gradient descent this
way, we bring a lot of the limitations of regular ANN to
our SNNs, while also using a lot of approximations during
training. We thus hope that other training methods will be
developed in the future, allowing us to tap into the full po-
tential of SNNs.

Although the accuracy of the proposed model is lower
than the current state-of-the-art, we still show that SNNs
can be used for complex video classification tasks, since lip
reading remains very challenging even for humans. More-
over, our work provides valuable insights for future studies
in this area, as we proposed the first SNN model for auto-
matic lip reading. Our work also shows that surrogate gra-
dient descent does provide a worthwhile option for super-
vised training of SNNs, and our final spiking model shows
the potential to have competitive results with those of a reg-
ular deep ANN.
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