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Abstract

Polyp segmentation is a crucial step towards
computer-aided diagnosis of colorectal cancer. However,
most of the polyp segmentation methods require pixel-
wise annotated datasets. Annotated datasets are tedious
and time-consuming to produce, especially for physi-
cians who must dedicate their time to their patients.
We tackle this issue by proposing a novel framework
that can be trained using only weakly annotated images
along with exploiting unlabeled images. To this end,
we propose three ideas to address this problem, more
specifically our contributions are: 1) a novel sparse fore-
ground loss that suppresses false positives and improves
weakly-supervised training, 2) a batch-wise weighted con-
sistency loss utilizing predicted segmentation maps from
identical networks trained using different initialization
during semi-supervised training, 3) a deformable trans-
former encoder neck for feature enhancement by fusing
information across levels and flexible spatial locations.

Extensive experimental results demonstrate the mer-
its of our ideas on five challenging datasets outper-
forming some state-of-the-art fully supervised models.
Also, our framework can be utilized to fine-tune models
trained on natural image segmentation datasets dras-
tically improving their performance for polyp segmen-
tation and impressively demonstrating superior perfor-
mance to fully supervised fine-tuning.

1. Introduction

Automated medical image segmentation has at-
tracted interest in recent years due to its potential
to significantly reduce the workload of physicians by
being used as a supporting tool for a physician’s diag-
nosis. Due to the rapid development of deep learning
[15], the current state-of-the-art image segmentation
methods utilize deep learning techniques and medical
image segmentation has been no exception.

*These authors contributed equally to this work.
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Figure 1: Visualization of weak annotations. (a) RGB
image of the training data. (b) Original ground truth.
(c) Foreground and background. (d) Our weak anno-
tations. (e) RGB image of the testing data. (f) Cor-
responding ground truth. (g) Predicted map of fully
supervised training manner. (h) Predicted map of our
methods.

However, one of the bottlenecks of deep learning tech-
niques is their reliance on large, well-annotated datasets.
Annotating datasets for image segmentation is particu-
larly time-consuming since pixel-wise annotations must
be provided which requires significant manual labour.
While in standard image segmentation anyone can an-
notate a dataset, in medical images, annotations must
be provided by expert physicians that are trained to
detect lesions in these images. This is a significant limi-
tation for automated medical image segmentation since
physicians do not have time to dedicate to annotating
images.

To address this issue and save physicians’ valuable
time we propose a novel framework for medical image
segmentation. Our framework can be trained using only
weakly annotated images and unlabeled images. These
weak annotations include only information regarding
where the foreground and background pixels are located.

Specifically, we leverage our framework on polyp
segmentation, which aims at detecting and segment-
ing polyps for the early diagnosis of colorectal cancer.
Current research [11, 40, 13] still relies on complete
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polyp annotations to achieve accurate detection per-
formance. Under this circumstance, we relabel the
training dataset with weak annotations by simply draw-
ing sketches. Only around 1.9% of the total pixels of
all images in the whole dataset are labeled. The anno-
tations simply need to indicate the foreground (polyp
region) and the background (non-polyp region), making
this annotation strategy very efficient for physicians to
use without sacrificing a lot of time. Our weak anno-
tations can be seen in Figure 1(c) and (d) annotating
the polyp region and the non-polyp region with two
simple lines in direct contrast to the original ground
truth segmentation maps that require pixel-wise careful
annotation.

Our proposed framework consists of a two-stage train-
ing regime. In the first stage, a model is trained using
a weakly-supervised training paradigm while in the sec-
ond stage we train the model using a semi-supervised
learning paradigm. Also, as part of our framework, we
propose a novel architectural component that is used
for feature enhancement.

During the weakly-supervised training stage, we pro-
pose a novel weakly-supervised loss function that ad-
dresses a key limitation of weakly-supervised training
techniques, that of numerous false positives [45, 42].
Since weak annotations contain only a fraction of the
polyp region, training models by partial cross-entropy
loss [35] could cause a large number of false positives as
shown in Figure 2(c). A previous work [45] attempted
to address the problem of false positives using an aux-
iliary edge detection network supervising the model
to align image edges with the predicted segmentation
map boundaries. However, this method complicates the
training process and relies on auxiliary networks. To ad-
dress this problem in a simple way, we propose a novel
sparse foreground loss function that suppresses false
positives and refines the rough predicted segmentation
maps (Figure 2(d)).

In addition, because of the weakly-supervised train-
ing, inconsistent segmentation maps can be generated
by two identical models trained the same way (Figure
7(b) and (c)). To exploit the prior knowledge of the
predicted map, we propose a batch-wise weighted con-
sistency loss to utilize two predicted segmentation maps
during semi-supervised training.

Lastly in order to improve the accuracy performance
even further, we propose a Deformable Transformer
Encoder Neck (DTEN) which leverages a multi-scale
deformable self-attention encoder along with a novel
progressive compensation sequence for feature enhance-
ment. The merit of each of our ideas can be visual-
ized from Figure 2 (c)-(f), each idea improves consis-
tently the performance. We name our novel framework

(a) (b) (c) (d) (e) (f)

Figure 2: Visual comparison of ablation study. (a)
RGB image. (b) Original ground truth (c) backbone.
(d) +sparse foreground loss. (e) +semi with weighted
consistency loss. (f) +DTEN.

Weakly- and Semi-supervised Deformable Segmentation
network, in short, WS-DefSegNet.

To summarize, the contributions of our work are the
following:

• We are the first, to the best of our knowledge, to
propose a weakly- and semi-supervised training
framework for efficient polyp segmentation. To
this end, we propose a novel sparse foreground loss
and a batch-wise weighted consistency loss.

• We propose DTEN, a novel progressive multi-scale
architecture with a self-attention mechanism for
feature enhancement that significantly improves
the performance of WS-DefSegNet.

• We created the first, to the best of our knowledge,
weakly annotated polyp segmentation dataset W-
Polyp. We are planning on making it publicly
available as a way to promote research in this di-
rection.

• We provide extensive experimental results show-
ing the merits of WS-DefSegNet. Also, we show
the transferability of our framework by adapting
models that were trained on completely different
datasets and different tasks.

2. Related Work

Medical Image Segmentation Medical image seg-
mentation aims at identifying lesion areas which indicate
potential diseases in the human tissue. Deep learning
methods have achieved compelling performance due
to a fully supervised training paradigm. U-net [31]
designs a U-shape architecture built on fully convolu-
tional networks to capture context features and gradu-
ally segment biomedical images with precise localization.
Analogously, CE-net [16] proposes an encoder-decoder
structure with a dense atrous convolution block for med-
ical segmentation and [22] inherits the U-net framework
and proposes a non-local context-guided mechanism to

2



capture long-range pixel-wise dependencies in features
for tumor segmentation.

More specifically for polyp segmentation, Pranet [11]
proposes a recurrent reverse attention module to mine
boundary cues and a parallel partial decoder. Other
approaches [46, 19, 13] have also been proposed with
the overwhelming majority focusing on fully supervised
training. In contrast, our framework only uses weak an-
notations and outperforms some of the aforementioned
methods.

Weakly-supervised Segmentation To avoid te-
diously labeling pixel-wise annotations, image segmenta-
tion is encouraged through the use of inexpensive labels,
formulating the weakly-supervised training paradigm
using image-level labels and weak labels. Ahn [2] pro-
poses an IRNet to estimate rough areas of individual
instances and detect boundaries with image-level class
labels. Chen [9] explicitly explores object boundaries
through coarse localization and proposes a BENet to
further excavate more object boundaries. Zhang [45]
leverages scribble annotations by relabeling an existing
salient object detection dataset and further adopting
an auxiliary edge detection task to explicitly provide
edge supervision on the final output. Yu [42] designs
a local coherence loss to improve boundary localiza-
tion and a structure consistency loss to further enhance
the model’s generalization ability. However, the afore-
mentioned methods use auxiliary networks and focus
on excavating edge information, while in our work we
propose an effective weakly-supervised loss function for
polyp segmentation.

Semi-supervised Learning Semi-supervised learn-
ing addresses the research question of exploiting un-
labeled data together with labeled data to improve
the performance of a model. A line of research at-
tracting attention in recent years is that of consistency
regularization, where the main idea is to enforce sim-
ilar predictions between two cases, either two differ-
ent augmentations of the same image or the same im-
age but predictions made from two different networks
[20, 32, 37]. Pseudo-labeling unlabeled data and using
them in the training process is another promising di-
rection, for example, [21] uses the current network to
assign pseudo-labels to the unlabeled data while [17]
uses label propagation to exploit the underlying mani-
fold structure of the data to assign pseudo-labels. Other
influential works such as MixMatch [5] and ReMixMatch
[4] incorporate many ideas together, such as using data
augmentation consistency, applying mixUp regulariza-
tion [44] and distribution alignment [6]. For further

information regarding semi-supervised learning, we re-
fer the reader to [8].

Semi-supervised learning is utilized successfully for
segmentation tasks. The authors of [43] exploit strong
augmentations effectively by designing a distribution-
specific batch normalization since previous attempts
failed due to the large distribution disparity caused
by strong augmentations. Other data augmentation
based methods [30, 12, 26] focus on cutting and pasting
annotated objects from images to new backgrounds.

Focusing on polyp segmentation, Wu [40] employs
two collaborative segmentation networks for semi-
supervised polyp segmentation and two discriminators
to minimize the impact of the imbalance problem be-
tween labeled and unlabeled data. However, in contrast
to our work they use a fully annotated subset of polyps
while we only use weak annotations.

Vision Transformers in Medical Image Segmen-
tation Vision transformers have been extensively ap-
plied to medical image segmentation owing to their
capability to incorporate global features while main-
taining high resolution. They can be used to estab-
lish effective backbones to improve lesion segmentation.
[27] stacks four Patcher blocks with vision transformer
blocks as the core. [23] encodes input image patches
with multiple Swin transformer encoders [25] in paral-
lel with the traditional CNN-based backbone. Besides,
transformers are used for feature fusion out of the back-
bone. [41] combines multi-modality features with the
assistance of multiple transformer encoders and a sin-
gle decoder for MRI brain image segmentation. [39]
fuses the patch- and image-level features with three
transformer encoders for retinal vessel segmentation.
[36] appends six transformer encoder-decoders after the
CNN backbone for lesion segmentation. To achieve effi-
cient and accurate segmentation, we take the advantage
of the multi-scale deformable transformer [47] and only
use a single transformer encoder to maximize inference
speed.

3. Efficient Polyp Segmentation

3.1. W-Polyp Dataset

As stated in section 1, we create the first weakly
annotated dataset for polyp segmentation comprising
of weakly annotated and unlabeled images named W-
Polyp. W-Polyp is created by labeling the existing
training data of [11] which contains 1,450 images. We
randomly selected and weakly annotated 750 images
with simple sketches, including lines, scribbles and cir-
cles. Annotating an image in this way only takes 2
seconds. Additionally, unlike other weakly annotated
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datasets, the other 700 images are left unlabeled, maxi-
mizing labeling efficiency and enlarging the sparsity of
the whole training data. Therefore, only around 1.9%
of pixels are labeled as foreground and background as
shown in Figure 3.
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Figure 3: The histogram of the number of images versus
the percentage of labeled pixels.
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Figure 4: The training procedure of our WS-DefSegNet.
We first train the teacher network using a weakly-
supervised paradigm as explained in 3.2.3. We train the
final student network using a semi-supervised paradigm
as explained in 3.2.4. GT denotes the original ground
truth map. Our WS-DefSegNet generates a satisfying
segmentation map compared to the GT .

3.2. Method

3.2.1 Overview of WS-DefSegNet

We propose the complete framework named WS-
DefSegNet for efficient polyp segmentation. Our frame-
work consists of two-training stages (Figure 4) and a
network architecture (Figure 5). The first training stage

consists of a weakly-supervised training regime lever-
aging weakly annotated images while the second stage
consists of a semi-supervised training regime leveraging
both weakly annotated and unlabeled images. Regard-
ing our network architecture, we propose a novel module,
DETN, that uses deformable transformers for feature
enhancement.

3.2.2 Problem Formulation

We define the set of all images in our W-Polyp dataset
as X. The subset of weakly-annotated images is defined
as Xl with their corresponding ground truth maps as Yl
and the subset of unlabeled data as Xu, where Xl ∈ X,
Xu ∈ X and Xl ∩ Xu = ∅. For every batch B, the
labeled ground truth including foreground and back-
ground information is defined as Bl, while Bfl denotes
only foreground annotations. We denote our model Mθ

where θ is the set of learnable parameters. ŷi is the
predicted segmentation map of the i-th image xi ∈ X,
ŷi := Mθ(xi). During the semi-supervised training
stage, we use a teacher and a student model. We de-
note the teacher model as M t

θ and the student model
as Ms

θ .

3.2.3 Weakly-supervised Training

We define the partial cross-entropy loss utilized in [45]
as follows:

Lp(ŷi, yi) =
1

|B|
∑
yi∈Bl

(yilogŷi+(1−yi)log(1− ŷi)) (1)

where yi denotes the corresponding ground truth map
with weak sketch annotations. Note that for all of the
loss functions used in this work we average all per-pixel
losses image-wise but omit this information from the
equations to simplify our notation.

In order to mitigate the issue of false positives as
described in section 1, we propose a novel loss function
that utilizes only the foreground pixels to supervise the
model defined as:

Lf (ŷi, y
f
i ) =

1

|B|
∑

yfi ∈B
f
l

(yfi logŷi + (1− yfi )log(1− ŷi))

(2)

where yfi indicates a ground truth map with only fore-
ground annotations. Then the total loss for weakly-
supervised learning can be defined as:

Lweak(ŷi, yi, y
f
i ) = Lp(ŷi, yi) + α · Lf (ŷi, y

f
i ) (3)
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Figure 5: The network architecture of our WS-DefSegNet. It utilizes the proposed Deformable Transformer Encoder
Neck (DTEN) to enhance raw features produced by the last stage of the Res2net [14]. Enhanced features are passed
to a vanilla segmentation head. The additional branch in the dashed box only exists in the training stage.

where α is the weight of the sparse foreground loss. It is
worth noting that α should be set appropriately. This is
because small α makes the predicted segmentation map
ŷi contain many false positives, while large α forces
the model to focus on the extremely sparse foreground
pixels, leading to more false negatives. In this paper, it
is set to 0.5, for further information please refer to the
supplementary material.

3.2.4 Semi-supervised Training

We propose a teacher-student learning paradigm and
train the teacher model as described in 3.2.3. Using the
teacher model, M t

θ we assign pseudo-labels for every
xi ∈ X defined as:

ŷti = M t
θ(xi) (4)

In order to utilize the prior knowledge of the teacher
model, M t

θ, for training the student model, Ms
θ , we

propose a batch-wise weighted consistency loss for semi-
supervised learning:

Lc(ŷ
s
i , ŷ

t
i) =

1

|B|
∑
i∈B
|ŷsi − ŷti | (5)

where ŷsi refers to the predicted map of the student
model such that ŷsi := Ms

θ (xi). For weakly labeled
data, the model mainly depends on weakly-supervised
learning, and the pseudo labels ŷti can be treated as
a regularization term in semi-supervised training. In
other words, for every batch B, if there are labeled data
in B, namely Xl ∈ B, the training loss is dominated by
the Lweak. Otherwise, the training loss only depends
on the weighted consistency loss Lc. The total loss for
semi-supervised training is defined as follows:

Lsemi(ŷ
s
i , yi, y

f
i ) =

{
Lweak(ŷsi , yi, y

f
i ) + β1 · Lc(ŷsi , ŷti)

β2 · Lc(ŷsi , ŷti)
(6)

Notably, the hyper-parameters β1 and β2 in equation
6 are set to 0.1 and 0.5 respectively in this paper. For
further information regarding β1 and β2 please refer to
the supplementary material. Thus, the model is able to
refine the final predicted map by considering the prior
knowledge of the first rough predicted map. The overall
training procedure is illustrated in Figure 4.

CGCGCG

m1 m2 m3

Deformable 
encoder

Ref points

BI

o ml

Conv
PReLU

Feature add

CG Conv + GroupNorm

Embedding

o1
o2

o3

Feature add
Feature add
Feature add

Deformable Transformer 
Encoder Neck (DTEN)

mf

Figure 6: The detailed structure of the Deformable
Transformer Encoder Neck (DTEN) as described in
3.2.5.
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3.2.5 Deformable Transformer Encoder Neck

We propose the deformable transformer encoder neck
that is used after the Res2net [14] and before the seg-
mentation head. A detailed description of our network
architecture is illustrated in Figure 5. Its purpose is
to fuse features across multiple levels and features at
learned locations so that our WS-DefSegNet produces
the most accurate results possible.

Deformable Transformer Encoder Neck
(DTEN) The structure of DTEN is illustrated
in Figure 6. Multi-scale feature maps ml(l = 1, 2, 3)
with resolutions Hl ×Wl are passed to a convolutional
layer to have the same number of channels and then
are normalized to have an equal contribution. Then the
feature maps are flattened and concatenated to form
the input feature mf . The input feature along with
the pre-generated reference points and the embedding
statistics [47] are passed to the deformable encoder.
The encoder outputs multi-scale enhanced feature maps
ol with resolutions the same as ml. For simplicity
and sufficient details, only o3 which contains the finest
features is utilized in the subsequent stacked Feature
Add (FA) blocks.

Deformable Encoder The deformable encoder [47]
enriches the input mainly by the deformable attention
mechanism. It sums the selected features at learned
sampling locations across multi-scales with learned at-
tention weights. The detailed architecture of the en-
coder can be found in the supplementary material. The
output of the encoder is then reshaped into the original
resolutions, forming the enhanced multi-scale feature
maps ol as shown in Figure 6 for subsequent progressive
feature compensation.

Feature Add (FA) Block The purpose of the FA
block is to compensate the input feature map with
enhanced features. The structure of a FA block is
shown in Figure 6. It takes the enhanced feature map o
and the original feature map ml as inputs. The original
feature map is embedded via a convolution layer and
the PReLU. The enhanced map is interpolated to the
same resolution as the original feature map. Three
FA blocks are stacked to complement progressively the
input features with the enhanced features by element-
wise addition to output a more expressive feature map.

4. Experiments

4.1. Setup

Datasets and Evaluation Metrics We conduct ex-
periments on five widely used polyp datasets, namely
CVC-ColonDB [34], ETIS [33], Kvasir [18], CVC-T [38]
and CVC-ClinicDB [3]. Kvasir contains 1,000 polyp
images and CVC-ClinicDB contains 612 images from
31 colonoscopy clips. The composited training images
come from these two datasets and the rest of them are
used for testing. The other three testing datasets are
totally unseen with challenging scenarios. We follow
[11, 40] and employ two commonly used metrics, namely
mean Dice (mDice) and mean IoU (mIoU), to evaluate
the model performance for polyp segmentation.

Implementation Details Our model is imple-
mented using Pytorch Toolbox [28] and trained on a
GTX TITAN X GPU with a mini-batch size of 4. We
adopt a 0.0005 weight decay for the Stochastic Gradient
Descent (SGD) with a momentum of 0.9. For fair com-
parisons, both training and testing images are resized
to 352× 352, which is the same as the previous polyp
segmentation methods.

4.2. Ablation Study

We conduct extensive experiments to analyze the
merits of our proposed framework, WS-DefSegNet. Ta-
ble 1 ablates our framework and shows that each com-
ponent, namely Lweak, Lc, and DTEN, boosts the seg-
mentation performance compared to training only using
Lp [35].

4.2.1 Sparse Foreground Loss

As discussed in section 1, training a model using only
the partial loss Lp causes a lot of false positives. Our
proposed sparse foreground loss Lf addresses this prob-
lem as it is shown in Figure 2. Compared to Figure 2(c),
Figure 2(d) shows more accurate segmentation maps,
which are more similar to the ground truth with fewer
false positives. The benefit of our sparse foreground
loss is also reflected in the overall performance as shown
in Table 1, providing gains of up to 42.2% and 48.4%
in terms of mDice and mIOU respectively on CVC-300.

Additionally, in contrast to the previous work [45],
which uses edge information and an auxiliary network to
refine the segmentation maps, we do not use any extra
information and networks. We simply use our sparse
foreground loss to obtain more accurate segmentation
maps and aid the model to localize objects.

In order to further demonstrate the effectiveness
of our method, we conduct experiments on S-DUTS
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Table 1: Ablation study with mDice and mIoU on five challenging datasets: ColorDB, ETIS, Kvasir, CVC-300
and ClinicDB. Upper part: the network is trained through our weak annotations. †: denotes models trained using
fully-supervised training through regular dense annotations. The best results are in bold.

Method
ColorDB ETIS Kvasir CVC-300 ClinicDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Lp 0.327 0.263 0.218 0.168 0.555 0.488 0.240 0.174 0.479 0.448
Lweak 0.539 0.503 0.442 0.415 0.700 0.668 0.662 0.658 0.740 0.708

Lweak + Lc 0.604 0.544 0.501 0.442 0.730 0.677 0.729 0.678 0.771 0.718
Lweak + DTEN 0.609 0.538 0.541 0.472 0.728 0.665 0.754 0.702 0.772 0.707

Lweak +DTEN+ Lc 0.667 0.588 0.596 0.517 0.768 0.709 0.795 0.728 0.807 0.746

Backbone† 0.688 0.612 0.646 0.568 0.851 0.796 0.856 0.785 0.833 0.768
+DTEN† 0.723 0.640 0.664 0.583 0.862 0.805 0.861 0.805 0.854 0.791

Table 2: We substitute the edge loss in [45] with the pro-
posed sparse foreground loss and apply the same SOD
training and testing settings as [45] on three SOD eval-
uation metrics, namely F-measure [1] (F), E-measure
[10] (E) and mean absolute error (M).

Metric Edge Lf

E
C

S
S

D F 0.862 0.854
E 0.913 0.907
M 0.063 0.063

(a) (b) (c) (d) (e) (f)

Figure 7: Difference between predictions of the two
identical backbones with the same training settings and
different semi-supervised methods. (a) Ground truth.
(b) Predicted segmentation map of the first model. (c)
Predicted segmentation map of the second model. (d)
Only pseudo labels for semi-training. (e) Lsemi without
β for semi-training. (f) Ours.

dataset [45] and substitute the edge loss in weakly
Salient Object Detection (SOD) [45] with our sparse
foreground loss as shown in Table 2. The results in-
dicate that the proposed method can be exploited on
other weakly-supervised tasks and can achieve similar
performance.

4.2.2 Batch-wise Weighted Consistency Loss

We add the proposed batch-wise weighted consistency
loss Lc to the baseline Lweak in Table 1 for the semi-
supervised training. The experimental results show that

this method can increase the segmentation accuracy on
both mDice and mIoU across all testing datasets. It
can also be observed in Figure 2(e) that Lc eliminates
the false positive pixels next to the polyp, and also
improves the predicted segmentation maps compared
with Figure 2(d).

We show the superiority of the proposed weighted
consistency loss in Table 3. Apparently, without the aid
of weights β1 and β2, Lweak contributes minor improve-
ment compared to only training on pseudo labels during
semi-supervised training. Our weighted consistency loss
addresses the inconsistent issue caused by weak super-
vision (Figure 7(b) and (c)) by taking full advantage
of the two predicted maps for semi-supervised train-
ing. When compared to using only pseudo-labels or
using Lsemi without weights β1 and β2, it can be seen
from Figure 7(d), (e) and (f) our proposed solution pro-
vides a more accurate segmentation map with refined
boundaries. Both Table 3 and Figure 7 demonstrate
the effectiveness of our proposed method.

4.2.3 DTEN

To investigate whether the proposed DTEN benefits
polyp segmentation, we compare the results with and
without DTEN under different training regimes as
shown in Table 1. Regarding the weakly- and semi-
supervised training part, DTEN provides significant per-
formance increase under all metrics and on all datasets
when compared to using only our proposed loss func-
tions. In the fully supervised training section, applying
DTEN on top of the Res2net also enhances the perfor-
mance. These results indicate the effectiveness of the
proposed structure and demonstrate the importance of
enhancing features for accurate segmentation.
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Table 3: Comparisons with different semi-supervised learning methods on five challenging datasets. Lweak refers to
using the model after the weakly-supervised training without any semi-supervised training.

Method
ColorDB ETIS Kvasir CVC-300 ClinicDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Lweak 0.539 0.503 0.442 0.415 0.700 0.668 0.662 0.658 0.740 0.708

Lc 0.553 0.508 0.477 0.431 0.713 0.665 0.704 0.678 0.740 0.693
Lweak + Lc(unweighted) 0.559 0.513 0.483 0.439 0.716 0.668 0.702 0.667 0.748 0.701
Lweak + Lc(weighted) 0.604 0.544 0.501 0.442 0.730 0.677 0.729 0.678 0.771 0.718

Table 4: Evaluation results of different methods on five datasets.*uses semi-supevised training. Ours: denotes our
method that is trained using weakly- and semi-supervised training.

Method Average
ColorDB ETIS Kvasir CVC-300 ClinicDB

Labeled Pixels mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

U-Net(MICCAI’15)[31] 13.4% 0.512 0.444 0.398 0.335 0.818 0.746 0.710 0.627 0.823 0.755
U-Net++(TMI’19)[46] 13.4% 0.483 0.410 0.401 0.344 0.821 0.743 0.707 0.624 0.794 0.729

ResUNet++(ISM’19)[19] 13.4% - - - - 0.813 0.793 - - 0.796 0.796
SFA(MICCAI’19)[13] 13.4% 0.469 0.347 0.297 0.217 0.723 0.611 0.467 0.329 0.700 0.607

PraNet(MICCAI’20)[11] 13.4% 0.709 0.640 0.628 0.567 0.898 0.840 0.871 0.797 0.899 0.849
CAL(ICCV’21)*[40] 4.0% - - - - 0.810 0.716 - - 0.893 0.826

Ours 1.9% 0.667 0.588 0.596 0.517 0.768 0.709 0.795 0.728 0.807 0.746

4.3. Comparison with the state-of-the-arts

To further validate our proposed framework, we com-
pare it with other state-of-the-art methods, namely,
U-Net [31], U-Net++ [46], ResUNet++ [19], SFA [13],
PraNet [11] and CAL [40] on five challenging polyp
testing datasets. We directly report the results pro-
vided by each work. It should be noted that we are
the only ones using weakly annotated images. Our
results show that we can compete and even surpass
methods that were trained in a fully supervised way as
seen in Table 4. Also, we obtain competitive results
compared to [40] which is the only other method that
uses semi-supervised training. However, in contrast to
our framework, [40] uses pixel-wise annotated images
while we only use weakly-annotated images. Also, our
method uses less than half of the averaged labeled pixels
that [40] uses.

It is also worth noting that other state-of-the-art
methods [31, 46, 19, 13, 40] may suffer from overfitting
issues because they only obtain high performance on
Kvasir and ClinicDB. Compared to them, ours achieves
satisfactory performance on all five testing datasets.
The results in Table 4 demonstrate the superior gener-
alization ability of our framework.

4.4. Transfer Learning on Other Networks

In order to investigate the transferability of our
method, we leverage our framework to adapt other
networks that were trained on different tasks. First of

all, we use two pre-trained SOD detectors, the RGB-
trained Poolnet [24] and the RGB-D trained A2dele
[29], and show that we can fine-tune them successfully
using our novel loss functions Lweak and Lc as shown
in Table 5. The baseline results show how each method
performs without any adaptation. Impressively, simply
fine-tuning both A2dele and Poolnet using our proposed
loss functions outperforms fine-tuning in a fully super-
vised way. These results highlight the transfer learning
ability of our framework and its potential to be used
for different networks. Similarly to Table 1, it can be
seen that each of our proposed loss functions provides
a significant performance increase.

Furthermore, the generality of our method can be
seen (Table 6) beyond convolutional-based backbones.
Using our framework we fine-tune a transformer-based
backbone, DiNO [7], and a convolutional-based segmen-
tation head surpassing the performance of other fully
supervised polyp segmentation methods.

5. Conclusion

In this paper, we propose a novel framework WS-
DefSegNet for weakly- and semi-supervised polyp seg-
mentation. We create a weakly annotated polyp dataset
(W-Polyp) by simply drawing sketches. This annotating
method provides an efficient way for physicians to avoid
manual labour.

We propose a sparse foreground loss that suppresses
false positives. Furthermore, we propose a batch-wise
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Table 5: Fine-tuning results with mDice and mIoU on five challenging datasets for different state-of-the-art
approaches. †: denotes models trained using fully supervised training through regular dense annotations. The best
results are in bold.

Method
ColorDB ETIS Kvasir CVC-300 ClinicDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Poolnet(pretrained)[24] 0.159 0.103 0.086 0.057 0.455 0.361 0.135 0.084 0.240 0.171
Poolnet† 0.439 0.403 0.330 0.327 0.774 0.743 0.543 0.528 0.629 0.622

Ours(Lweak) 0.576 0.508 0.426 0.383 0.743 0.682 0.722 0.649 0.763 0.701
Ours(Lweak + Lc) 0.583 0.508 0.459 0.415 0.776 0.708 0.755 0.676 0.782 0.721

A2dele(pretrained)[29] 0.219 0.153 0.225 0.161 0.470 0.352 0.359 0.271 0.287 0.195
A2dele† 0.450 0.461 0.378 0.406 0.706 0.713 0.666 0.718 0.588 0.633

Ours(Lweak) 0.487 0.500 0.413 0.440 0.610 0.605 0.660 0.702 0.579 0.601
Ours(Lweak + Lc) 0.509 0.511 0.449 0.457 0.662 0.645 0.695 0.728 0.623 0.636

Table 6: Quantitative results with mDice and mIoU on
DiNO.

Method
ColorDB ClinicDB

mDice mIoU mDice mIoU

DiNO+Lweak 0.577 0.489 0.756 0.670
DiNO+Lweak + Lc 0.623 0.527 0.821 0.747

weighted consistency loss to exploit two inconsistent
segmentation maps caused by weak supervision during
semi-supervised training. Also, we design a deformable
transformer encoder neck (DTEN) as a way to enhance
features before the segmentation head further improving
performance.

Extensive experiments are conducted on five chal-
lenging datasets to demonstrate that each proposed
component improves the segmentation accuracy and
that our framework can even surpass the performance
of some state-of-the-art methods trained in a fully su-
pervised way.
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Supplementary material

A. Deformable transformer encoder

The deformable encoder [47] enriches the input
mainly by the Deformable Attention (DA) module and
the Feed-Forward Network (FFN). The detailed archi-
tecture can be seen in Figure 8. The DA module sums
the selected features at deformable sampling locations
across multi-scales with learned attention weights. The
ourput of this module is passed through the FFN.

Suppose the encoder takes as inputs the flattened
feature map mf ∈ RC×Nin(C: number of channels,
Nin =

∑
lHlWl), positional and level embedding infor-

mation E ∈ RC×Nin and reference points P ∈ RNin×2.
The output of the deformable attention layer is formu-
lated as:

ODA = f(Os) (7)

where f is the linear layer and Os is the weighted
summation:

Os =
∑
l,p

W nhlpV nh(P n + ∆P nhlp) −→ [C,Nin] (8)

where n, h, l and p index the pixel in the flattened
feature map, attention head, feature level and sampling
point respectively. The rightarrow −→ represents reshap-
ing to the dimensions in the brackets. The value feature
V , the predicted sampling offsets ∆P and attention
weights W are defined as:

V = f(m −→ [Nin, Nh, C/Nh]) (9)

∆P = f(Q) −→ [Nin, Nh, Nl, Np, 2] (10)

W = Softmax(f(Q) −→ [Nin, Nh, NlNp])

−→ [Nin, Nh, Nl, Np]
(11)

where the query feature Q is the element-wise addition:

Q = m + E (12)

It should be noted that W is normalized in the last
dimension to provide weights that sum up to 1. The
encoder finally outputs O ∈ RC×Nin as:

O = FFN(LN(Dropout(ODA) + m)) (13)

where FFN and LN are short for Feed-Forward Net-
work and Layer Normalization layer respectively.

B. Dataset explanations

To acquire the weak annotations of polyps, we man-
ually annotate the simple sketches with the help of the
PaintTool SAI, which is a painting tool for drawing.

Embeddingmf
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Query

Input
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Figure 8: The detailed structure of a single encoder in
deformable vision transformers. The encoder enables
the aggregation of useful features at learned locations
with learnt significance across levels.

Annotators are asked to relabel the dataset according
to their first impressions without a fixed drawing style.
These simple sketches only cost 2 seconds to label an
image.

More visualizations of our annotated dataset can be
seen in Figure 9. Column 1 shows the original image,
column 2 shows the original ground truth segmentation
map, column 3 shows only the foreground annotation,
and column 4 shows both the background and fore-
ground annotations. Only the annotations shown in
the last 2 columns were used in training our model.

C. Visualizations

Figure 10 shows qualitative results between our
method and other state-of-the-art methods. It should
be noted that all the other methods shown were trained
in a fully supervised way. Impressively, in some cases
such as in rows 1, 2 and 3, the fully supervised methods
completely fail while our method manages to recover
the main polyp part. In order to provide fair visualiza-
tions and avoid cherry-picking we also provided more
cases where other methods such as PraNet [11] perform
better such as rows 4, 5 and 7. However, our method
still outperforms all other fully supervised methods be-
yond Pranet in these qualitative visualizations. In other
words, visual maps in Figure 10 demonstrate that the
proposed method has a better generalization ability that
can achieve satisfactory detection results in different
scenarios.

Lastly Figures 11, 12, 13, and 14 show more quali-
tative examples ablating our method in a similar way
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Table 7: Comparisons with different α in weakly-supervised training.

α
ColorDB ETIS Kvasir CVC-300 ClinicDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

0 0.327 0.263 0.218 0.168 0.555 0.488 0.240 0.174 0.479 0.448
0.5 0.539 0.503 0.442 0.415 0.700 0.668 0.662 0.658 0.740 0.708
1 0.124 0.089 0.064 0.026 0.209 0.133 0.060 0.029 0.126 0.082

Table 8: Comparisons with different combinations of β1 and β2 in semi-supervised training. ’Baseline’ represents
the performance of the model trained only with Lweak using equation 3.

(β1, β2) ColorDB ETIS Kvasir CVC-300 ClinicDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Baseline 0.539 0.503 0.442 0.415 0.700 0.668 0.662 0.658 0.740 0.708
(0.5, 0.5) 0.559 0.513 0.483 0.439 0.716 0.668 0.702 0.667 0.748 0.701
(0.3, 0.5) 0.579 0.527 0.497 0.444 0.718 0.668 0.722 0.692 0.760 0.716
(0.1, 0.5) 0.604 0.544 0.501 0.442 0.730 0.677 0.729 0.678 0.771 0.718
(0.0, 0.5) 0.582 0.511 0.424 0.359 0.759 0.690 0.648 0.585 0.756 0.690

to Figure 2. Column 1 shows the original RGB im-
age, column 2 shows the prediction when trained only
with Lp, column 3 shows the predictions when trained
with sparse foreground loss, column 4 shows the pre-
dictions when trained with Lsemi, column 5 shows the
predictions when trained using DTEN and column 6
shows the original ground truth segmentation maps.
It is evident that each proposed idea of our method
provides performance improvement evident from these
visualizations.

D. Hyperparameter optimization

In order to find proper α (equation 3), β1 and β2
(equation 6) for our training regime, we carried out
hyperparameter optimization. We investigated the per-
formance of our regime on five polyp datasets with
different hyperparameter settings as presented in Ta-
bles 7 and 8. Results show that the most accurate
segmentation is achieved on all datasets with α = 0.5.
For (β1, β2), the combination of (0.1, 0.5) produces the
best results on three out of the five datasets. To gener-
alize the regime, we use the aforementioned settings for
most robust and accurate segmentation.
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Figure 9: Training samples.
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Figure 10: Comparisons with other state of the art methods.
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Figure 11: ClinicDB

Figure 12: ETIS

16



Figure 13: Kavsir

Figure 14: ColorDB
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Table 9: Notations lookup table.

Notation Description

X Whole dataset
Xl Weakly-annotated subset
Yl Weakly-annotated subset’s ground truth
Xu Unlabeled subset
θ Learnable parameters
Mθ Model
M t
θ Teacher model

Ms
θ Student model

xi The ith image from X
ŷi Predicted segmentation map of xi
yi Ground truth map of xi
yfi The ground truth map of xi with only the foreground annotation
Lp Partial cross-entropy loss
Lf Sparse foreground loss
Lweak Total loss for weakly-supervised learning
α Weight of the foreground loss
ŷti , ŷ

s
i The prediction of the teacher and student models with input xi

B Batch
Bl The batch of labeled samples

Bfl The batch of foreground annotations
Lsemi Total loss for semi-supervised learning in each B
β1, β2 Weights of Lc in Lsemi
m Feature map output by the last stage of the backbone
l Index of the feature level
n Index of the pixel in mf

h Index of the attention head
p Index of the sampling point
ml Feature map at l-th level
Hl, Wl Height and width of ml

Wl Width of ml

mf Feature map after concatenation and flatten
ol Output feature map by the encoder at l-th level
C Number of channels
Nin Number of pixels in mf

Nh Number of attention heads
Nl Number of levels
Np Number of sampling points
R Real number
P Reference points
E Position and level embedding information
O Output of the encoder
f Linear layer
W Attention weights
V Value tensor
∆P Sampling offsets
Q Query tensor
−→ [d1, d2] Reshape to dimension d1 × d2
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