
Vision Transformers with Mixed-Resolution Tokenization

Tomer Ronen
Tel Aviv University

tomer.ronen34@gmail.com

Omer Levy
Tel Aviv University

Avram Golbert
Google Research*

Abstract

Vision Transformer models process input images by di-
viding them into a spatially regular grid of equal-size
patches. Conversely, Transformers were originally intro-
duced over natural language sequences, where each token
represents a subword – a chunk of raw data of arbitrary
size. In this work, we apply this approach to Vision Trans-
formers by introducing a novel image tokenization scheme,
replacing the standard uniform grid with a mixed-resolution
sequence of tokens, where each token represents a patch of
arbitrary size. Using the Quadtree algorithm and a novel
saliency scorer, we construct a patch mosaic where low-
saliency areas of the image are processed in low resolution,
routing more of the model’s capacity to important image
regions. Using the same architecture as vanilla ViTs, our
Quadformer models achieve substantial accuracy gains on
image classification when controlling for the computational
budget. Code and models are publicly available at https:
//github.com/TomerRonen34/mixed-resolution-vit.

1. Introduction
Transformer [42] models are designed to process sequen-

tial input data. Vision Transformer (ViT) [7] models process
input images that naturally have two spatial dimensions,
requiring a spatially-aware tokenization scheme to convert
them into sequences. The vast majority of Vision Trans-
formers convert the input image into a two-dimensional
grid of token vectors, before flattening it to create a one-
dimensional sequence. Specifically, most methods use uni-
form patch tokenization, splitting the image into a spatially
regular grid of equal-size patches.

In natural language processing, input tokenization looks
entirely different. Almost all modern neural networks for
text processing use subword tokenization, where each token
represents a substring of arbitrary character length [17, 36].
In this work, we apply this approach to ViTs by introducing
a novel image tokenization scheme, replacing the standard
uniform grid with a mixed-resolution sequence of tokens,
where each token represents a patch of arbitrary size.

Figure 1. The Quadformer. We split the image into a mixed-
resolution patch mosaic according to a saliency scorer, and employ
a standard Transformer architecture with 2D position embeddings.

Previous works tried to incorporate multi-resolution pro-
cessing into Vision Transformers by building feature pyra-
mids inspired by the structure of CNNs [11, 44], using
multi-resolution attention [38, 49], or merging intermediate
token representations from across the entire image without
preserving spatial locality [2, 31]. In contrast, our work is
the first to use mixed-resolution tokenization, directly split-
ting the input image into a patch mosaic processed by a stan-
dard Transformer model (see Figure 1).

Instead of using a spatially regular patch grid, we con-
struct a patch mosaic where low-saliency areas of the im-
age are processed in low resolution, routing more of the
model’s capacity to important areas. Practically, we use the
Quadtree algorithm [23] to recursively split the image into
patches of different sizes, incorporating a saliency scorer
that chooses which areas of the image to split by their esti-
mated importance. We use 2D position embeddings to rep-
resent the location of each patch.
*The author was affiliated with Alibaba Group during parts of the research.
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We evaluate our method, dubbed Quadformer, on the
ImageNet-1k [33] classification dataset, and compare our
mixed-resolution models to vanilla ViT models that use the
same architecture. While vanilla ViT models utilize uni-
form grid tokenizations with a single patch size (in our case,
the standard 162 pixels), our mixed-resolution tokenization
uses 3 patch sizes (642, 322 and 162 pixels), allowing our
Quadformer models to process important image regions in
high resolution even when using a small number of patches.
Using a novel saliency scorer based on neural representa-
tions, we consistently beat the accuracy of vanilla ViTs by
up to 0.88 absolute percentage points when controlling for
the number of patches or GMACs. Despite not using ded-
icated tools for accelerated inference, we also show gains
when controlling for inference speed, beating vanilla ViT
models by up to 0.42 absolute percentage points.

2. Background and related work
Efficient Vision Transformers. Many efficient architec-
tures were proposed for improving the speed-accuracy
tradeoff of Vision Transformers, mostly by using attention
layers with linear time complexity [1, 18, 41], dropping a
subset of patches [25,30,50], or merging intermediate token
representations from the entire image [2, 31]. Our method
offers orthogonal improvements as we decrease the num-
ber of patches via tokenization, maintaining global attention
over the entire image while using spatially-local tokens.

Vision Transformers with spatially uniform grids.
Standard Vision Transformer models process input images
by dividing them into a regular grid of equal size patches.
Even in the case of pyramid vision transformers [18, 44],
which gradually compress the spatial dimension of the fea-
ture map as the network progresses, vectors in the same fea-
ture map always represent input areas of the same size. This
is a classical design choice used extensively with CNNs, as
it fits the constraints of convolution layers, that must op-
erate on a spatially-regular grid. However, the layers that
form the Transformer model, namely self-attention layers
and fully connected layers, have no such limitations. Trans-
former models can process any set of input vectors that
have some defined positional relationship, and are naturally
suited to handling inputs of different scales. For example,
Transformer language models process input tokens that rep-
resent subwords of very different lengths – the BERT [6]
vocabulary has tokens in lengths ranging from 1 character
(“a”, “b”) to 18 characters (“telecommunications”).

Existing methods for image tokenization. Not all Vi-
sion Transformers use the standard uniform grid tokeniza-
tion scheme. Some methods use CNN backbones to create
representations from input images, using the activation vol-

Figure 2. Tokenizations obtained using our saliency-based
Quadtree. For clearer visualization, we upsample patches back
to their original size after the tokenizer resizes them to a fixed rep-
resentation size. Notice how high-saliency regions are represented
in high resolution while background regions are blurry.

umes as tokens [11,47]. Another class of Vision Transform-
ers designed for image generation uses vector-quantization
networks to learn a codebook of discrete tokens, also us-
ing a uniform two-dimensional grid [8, 29]. Few methods
forgo spatial tokenization altogether and employ a tech-
nique called token learning, where each token aggregates
information from the entire image [34].

Quadtrees. Quadtrees are data structures that recursively
split a two-dimensional space into a tree of quadrants,
where each internal node has exactly four children. Each
node in the tree represents a specific spatial area defined by
an axis-aligned rectangle or square. Leaf nodes store the
information contained in the area they represent. Quadtrees
were originally developed for fast retrieval of 2D points [9].
They were quickly adapted for image analysis [13], and
later for image compression [23].

Quadtrees and neural networks. Few successful at-
tempts have been made to integrate the Quadtree algorithm
with neural networks. To the best of our knowledge, our
work is the first to use Quadtree representations of RGB
images as inputs to a neural net.

Jewsbury et al. [15] use Quadtrees to divide large pathol-
ogy images into smaller subimages, with each subimage
individually processed by a standard CNN. Many works
on 3D shape analysis [32, 39, 43] use specialized CNN ar-
chitectures to process Octrees [24], the 3D equivalent of
Quadtrees. Jayaraman et al. [14] use Quadtrees with sparse
CNNs to process simple black-and-white sketches, avoiding
computation in blank areas of the image. Chitta et al. [3]
use Quadtrees with a sparse CNN decoder to predict hierar-
chical segmentation maps, avoiding excessive computation
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Figure 3. The effect of different patch scorers on Quadtree tokenization. Better saliency estimator → higher resolution in important areas.
The pixel-blur scorer is often used for image compression, as it focuses on high-frequency details. Our feature-based scorer estimates patch
saliency using neural representations. The oracle scorer uses the Grad-CAM saliency estimation algorithm.

in large image regions that share the same class. Tang et
al. [38] propose an efficient attention implementation for
ViTs, where each query vector in a spatially uniform grid
attends to a Quadtree of key-value vectors. Ke et al. [16]
use Quadtrees for efficient refinement of instance segmen-
tation masks, focusing computation in incoherent regions.
They employ a Transformer model over a Quadtree of fea-
ture vectors extracted from a CNN feature pyramid.

3. Method
3.1. ViTs with mixed-resolution tokenization

We define a mixed-resolution patch mosaic to be a di-
vision of an image into a set of non-overlapping patches of
different sizes, such that the entire area of the image is cov-
ered (see examples in Figure 1, Figure 2, Figure 3). With
small adaptions to the way ViT models represent image
patches, we convert mixed-resolution patch mosaics into to-
ken sequences that can be processed by a standard Trans-
former model. These adaptations deal with 2 aspects of the
tokens: patch embedding and position embedding.
Patch embedding: each patch in the mosaic is resized to a
fixed representation size (e.g. 162 pixels), then flattened and
passed through a shared fully connected layer. Notice that
all patches are represented by tokens of equal dimension,
regardless of the area they cover in the image.
Position embedding: the learned 1-dimensional position
embeddings common in vanilla ViTs lose meaning when
the patches are not part of a regular grid. Instead, we use
2-dimensional position embeddings. We embed the x and
y positions separately, then concatenate them to create the
final position embedding, as suggested by Dosovitskiy et
al. [7] We use the (x, y) position of the center of the patch
inside a grid determined by the smallest patch size.

Input:
Image im ∈ Rh×w×3 ,
desired number of patches L ∈ N ,
patch edge sizes smin, smax ∈ N ,
saliency scorer score : patch→ R+

Output:
The set of chosen patches Pchosen

Algorithm:
Pchosen ← slice im into a uniform grid with patch size smax

while |Pchosen| < L do
Psplittable ← {p | p ∈ Pchosen & size(p) ≥ 2smin}
psplit ← argmaxp∈Psplittable

score(p)

children(psplit)← divide psplit into 4 quadrants
Pchosen ← children(psplit) ∪ Pchosen \ {psplit}

end
Return Pchosen

Algorithm 1: The saliency-based Quadtree. We iteratively
choose the “most important” image region as ranked by a
saliency scorer and split it into 4 quadrants. In practice, we run
the algorithm on a batch of images for improved speed, taking
only 19µ-secs per image for the splitting logic. Patch scoring
is also batched, taking 19–157µ-secs per image depending on
the scorer. See subsection 4.2 and Table 1 for more details.

3.2. Saliency-based Quadtrees

Quadtrees for RGB images. Quadtrees are data struc-
tures that recursively split a two-dimensional space into a
tree of quadrants, where each internal node has exactly four
children. Each node in the tree represents a specific spa-
tial area defined by an axis-aligned rectangle or square. In
Quadtrees that represent RGB images, each leaf contains a
compressed representation of an image patch, often a copy
of that patch downsampled to some predetermined size.
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Figure 4. Patch saliency maps created by different scorers for an
image labeled “African Elephant”.

Typically, Quadtrees for RGB images are constructed
by a top-down algorithm (Algorithm 1), which iteratively
chooses the “most important” image patch as ranked by a
scoring function and splits it into 4 patches, effectively us-
ing 4 times more pixels to represent the selected image re-
gion. We call this scoring function a “patch scorer”.

We use the Quadtree algorithm as a tokenizer, splitting
images into mixed-resolution patch mosaics which we then
feed into a standard Transformer model. We experiment
with several patch scorers (Figure 3): the pixel-blur scorer
commonly used for Quadtree image compression, a novel
feature-based scorer that estimates saliency using neural
representations, and a Grad-CAM oracle scorer which uti-
lizes a label-aware saliency method and gives a loose upper
bound on the scoring quality we can hope to achieve.

Pixel-blur scorer. In image compression applications,
Quadtree patch scoring often relies on the MSE between
an image patch and a compressed representation of that
patch [23], such as a blurry version of the patch obtained
by downsampling it to the Quadtree representation size and
upsampling back to the original size. This score estimates
the pixel-level information loss caused by decreasing the
resolution of the patch. Let p be an image patch:

pblur = upsample
(
downsample(p)

)
scorePixelBlur(p) = MSE

(
p, pblur

) (1)

The pixel blur scorer assigns high importance to areas of
the image with a lot of high-frequency content, since calcu-
lating the difference between a patch and its blurry counter-
part is equivalent to running a high-pass filter. While high-
frequency content may be a good importance measure for
image compression, it is a poor measure of object saliency,
as natural images often have detailed backgrounds or tex-
tures that are insignificant when trying to identify the ob-
jects in the image. To address this misalignment between
the patch scorer objective and the model objective, we pro-
pose a different scorer based on semantic representations.

Figure 5. Feature-based patch scorer. The MSE between a patch
representation and its blurry counterpart estimates the semantic
information loss from decreasing the resolution of the patch.

Feature-based scorer. Computer vision neural networks
are often used to extract semantically meaningful feature
vectors. Both Vision Transformers and CNNs create con-
textualized embeddings of image regions: ViTs have an ex-
plicit mapping between feature vectors to image patches,
and CNNs create a spatially-aware convolutional activation
volume for the entire image wherein each feature vector can
be mapped implicitly to a corresponding image region.

Using these neural representations, we introduce
scoreFeat, a patch scorer that estimates the semantic in-
formation loss from decreasing the resolution of an im-
age patch by comparing its original representation to its
representation in a blurred image (Figure 5). Intuitively,
this score estimates how much semantic information is lost
when we downsample the patch from its original size to the
Quadtree representation size. For example, if the Quadtree
representation size is 162 pixels, the features of a 642 patch
in full resolution are compared to the features of this patch
when the image is blurred by a factor of 64

16 = 4.

Formally, let im ∈ Rhim×wim×3 and blur(im, x) be an
RGB image and its corresponding blurred image obtained
by downsampling the image by a factor of x and upsam-
pling it back to the original size. We extract a feature map
feat(im) ∈ RH×W×d by running a feature extractor NN
on the image im. Given an image patch p of size sp×sp, we
slice the region in feat(im) which corresponds to p’s loca-
tion in the image: feat(im)[p] ∈ R

sp
him

H× sp
wim

W×d. We
use feat(im)[p] as a semantic representation of p, a tech-
nique very similar to RoI pooling [10]. Given the Quadtree
representation size srep ∈ N, we use these notations to
define scoreFeat:

imblur = blur
(
im,

sp
srep

)
scoreFeat(p) = MSE

(
feat(imblur)[p], feat(im)[p]

)
(2)
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Grad-CAM oracle scorer. Grad-CAM [35] is a method
for creating visual explanations of predictions made by a
variety of computer vision models. For classification nets,
given an image and a target class, Grad-CAM produces a
pixel-level saliency map where the weight attributed to each
pixel represents its importance in classifying the image to
the given target class. Using average pooling, we turn this
saliency map into patch scores suitable for the saliency-
based Quadtree algorithm (Figure 4). To estimate a loose
upper bound on the accuracy we can hope to achieve with
Quadformer models, we use specific oracle Quadformers,
which we train and evaluate with the high-quality saliency
scores produced by a Grad-CAM patch scorer that is aware
of the actual ground-truth label of the input images.

4. Experiments

4.1. Dataset and evaluation metrics

We conduct experiments on ImageNet-1K [33] and re-
port the top-1 accuracy trade-off with respect to several cost
indicators, as suggested by Dehghani et al. [5] To evaluate
model efficiency, we report the number of patches/tokens
in the input to the Transformer model, the number of giga
multiply–accumulate operations (GMACs) per image as es-
timated by fvcore [48], and the throughput (ims/sec) and
runtime (µ-secs/im) on a single GeForce RTX 3090 GPU,
measured with timm [46] with batch size 512 in mixed pre-
cision. We do not use parameter count as a cost indicator
since our Quadformer models use the exact same architec-
tures as our vanilla ViT models: ViT-Small (22M params),
ViT-Base (86M params) and ViT-Large (307M params).
Some Quadformer models use a neural net for saliency esti-
mation, but since it only has 342K parameters (see §4.2) its
impact on the parameter count is negligible.

4.2. Implementation details

Base models. All our base models use image size 2562,
patch size 162, and 2D sinusoidal position embeddings.
For our two main ViT architectures — ViT-Base and ViT-
Large — we start by taking the weights released by the
original authors [7], which are pretrained on ImageNet-21K
and fine-tuned on ImageNet-1K. These pretrained models
use learned 1D position embeddings, image size 2242, and
patch size 162. We adapt them to 2D sinusoidal posi-
tion embeddings and image size 2562 by fine-tuning on
ImageNet-1K with base learning rate 1e-4 for 70 epochs
(for ViT-Base) or 20 epochs (for ViT-Large). For each ar-
chitecture, we choose the checkpoint that achieved the high-
est validation accuracy. For ViT-Small, we train the DeiT-S
architecture [40] from scratch on ImageNet-1K with base
learning rate 2e-3 for 310 epochs.

Fine-tuning. We use the base models to initialize the
weights of all our fine-tuned models, as we have seen much
faster conversion times compared to training from scratch.
We use the same base models to initialize both vanilla Vi-
sion Transformers and Quadformer models, as Quadform-
ers share the exact same architecture with vanilla ViTs and
do not introduce any extra parameters, except those used in
the tokenizer.

Our Quadformer models use mixed-resolution tokeniza-
tions with patch sizes 642, 322 and 162 pixels, all down-
sampled to a patch representation size of 162 pixels. We
fix the image size to 2562 pixels and control the number of
patches by setting the number of splits done by the Quadtree
algorithm. Our vanilla ViT models use patch size 162. We
control the number of patches by setting the image size to
(16

√
#Patches)2 pixels. We report detailed hyperparam-

eters in the supplementary material.

Patch scorers. For our feature-based patch scorer, we use
a ShuffleNetV2×0.5 [21] model trained on ImageNet-1K
as the feature extractor. We truncate it just before the fully
connected classification layer, which results in a ×32 down-
scaling ratio. This feature extraction backbone has only
342K parameters, which adds little overhead and makes
it practical for real-world inference purposes. For Quad-
former models that use ViT-Base or ViT-Small, we perform
the scoring on a ×0.75 downsampled image (with 1922 pix-
els) and then upsample the saliency map by the same ratio,
since the increased speed compensates for the lower fidelity
and results in a better speed-accuracy tradeoff.

For Grad-CAM oracle saliency estimation we use a
RegNetY-32GF [28] model with 145M parameters, learned
via transfer learning by end-to-end fine-tuning the original
SWAG [37] weights on ImageNet-1K data. Weights for
ShuffleNetV2×0.5 and RegNetY-32GF are taken from the
torchvision library [22].

Quadtree. We build our own PyTorch [26] implementa-
tion of the Quadtree algorithm (Algorithm 1), using z-order
curves for efficient tree construction [45]. Patch scores are
computed for an entire batch of input images over all pos-
sible spatial locations. Since we use a top-down algorithm,
the only valid candidates are subdivisions of the initial patch
grid, resulting in a total of 80 splittable patches for images
of size 2562 pixels. All our patch scorers employ image-
wide computation followed by grid-based scoring, making
them particularly suitable for this kind of batched compu-
tation. The argmax operation used for iterative splitting
is also batched, as well as the image slicing and resizing
required to create token representations, making the entire
implementation very GPU-friendly.
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Figure 6. Accuracy vs compute for vanilla ViT and Quadformer
models with different saliency scorers. Every point represents a
model fine-tuned with a specific number of patches. We expect
the performance of Quadformer and vanilla models to converge as
#Patches approaches full resolution (256 patches). Throughput is
measured on a single GeForce RTX 3090 GPU in mixed precision.

4.3. Main results

Using a feature-based scorer (§3.2), our Quadformer
models consistently beat the accuracy of vanilla Vision
Transformers by up to 0.79 (for ViT-Base) or 0.88 (for
ViT-Large) absolute percentage points when controlling for
the number of patches or GMACs, while using the exact
same architecture (see Figure 6). Despite not using ded-
icated tools for accelerated inference, we also show gains
when controlling for inference speed, beating vanilla ViT
models for almost all values of #Patches by up to 0.42
(for ViT-Base) or 0.4 (for ViT-Large) absolute percentage
points. The traditional pixel-based scorer used for im-
age compression fairs much worse than our feature-based
scorer, demonstrating the superiority of semantic meaning
over surface details. Full results are provided in the supple-
mentary material.

4.4. Inference-time compute-accuracy tradeoff

Both Quadformers and vanilla Vision Transformers can
be trained with a certain number of patches and operate on
inputs with a different number of patches, providing a way
to control the compute-accuracy tradeoff of a single model
during inference time. With Quadformers, we use a dif-
ferent number of Quadtree splits to produce tokenizations
of different lengths, allowing high granularity as every split
increases the number of patches by 3 – the split patch is re-
placed with its 4 children patches. With vanilla ViTs, we
change the image size to a different multiple of the patch
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Figure 7. Inference-time compute-accuracy tradeoff for Quad-
former models with a feature-based scorer and vanilla ViTs. “Re-
trained” lines show models that are retrained for each value of
#Patches. “Single” lines show a single model (trained with 100
patches) evaluated with different #Patches. Quadformers are less
sensitive to out-of-distribution input lengths, providing a better
inference-time compute-accuracy tradeoff with a single model.

size, thus changing the total number of patches. When us-
ing vanilla ViTs with different image sizes, we scale the 2D
patch positions to fit the range seen during training time, as
we have seen better results when the inference-time position
embeddings closely resemble those seen while training.

Figure 7 compares the inference-time compute-accuracy
tradeoff of a single Quadformer model with a feature-based
scorer and a single vanilla ViT model to versions of these
models specifically trained for each number of patches.
Quadformers are less sensitive to out-of-distribution input
lengths, showing a lower accuracy drop with respect to their
retrained counterparts, and providing a better inference-
time compute-accuracy tradeoff with a single model.

4.5. Small Quadformers

Small Transformers pose an interesting challenge. On
the one hand, weak models have the most to gain from
high-quality saliency estimation, since they lack the ca-
pacity required to compensate for low-resolution images or
mediocre patch selection. Quadformer-Small beats the ac-
curacy of vanilla ViT-Small by up to 1.98 absolute percent-
age points when controlling for the number of patches, and
by up to 1.54 points when controlling for GMACs. On the
other hand, small Transformers are so fast that the runtime
of the feature-based scorer is too costly compared to the
total runtime (Figure 10) making it inefficient in terms of
runtime-accuracy tradeoff, even compared to the weak, yet
speedy, pixel-blur scorer (Figure 8).

Future work may find faster high-quality saliency es-
timators that would enable small Vision Transformers to
use mixed-resolution tokenization efficiently. We note that
many previous works dealing with efficient Vision Trans-
formers [1, 18, 25, 41] do not report results for models that
are as fast as ViT-Small, perhaps encountering similar is-
sues with speeding up such fast models.
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Figure 8. Accuracy vs compute for vanilla ViT-Small and
Quadformer-Small models with different saliency scorers. Small
Transformers pose an interesting challenge, being so fast that any
tokenization overhead is significant.
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Figure 9. Quadformers with a Grad-CAM oracle scorer greatly
surpass vanilla ViT models, suggesting there is considerable re-
dundancy in standard ViT tokenization.

5. Analysis

5.1. Oracle Quadformers

To obtain a loose upper bound on the potential per-
formance of ViTs with mixed-resolution tokenization, we
train Quadformer models with a Grad-CAM oracle saliency
scorer that has access to the true image label (§3.2). Our or-
acle models greatly surpass the performance of vanilla ViT
models with the same number of patches – in some cases
by about 4 absolute percentage points (Figure 9). Oracle
Quadformers with 64 patches even beat vanilla ViTs with
196 patches despite using ×3 less patches, suggesting there
is considerable redundancy in standard ViT tokenization.

5.2. Runtime breakdown

The Transformer model and the saliency-based Quadtree
tokenizer have very different runtime-to-GMACs ratios due
to the different operations they use, with the tokenizer using
a tiny number of GMACs compared to its runtime (Table 1).
Therefore, we find that measuring actual runtime instead
of settling for GMACs as the sole cost indicator is espe-
cially important when comparing our Quadformer models
to vanilla ViT models.
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Figure 10. Quadformer forward pass runtime breakdown with a
feature-based patch scorer. The fraction of time spent on tokeniza-
tion changes drastically as the model and input length increase in
size, from 44% for ViT-Small with 64 patches to 4% for ViT-Large
with 196 patches.

Component µ-secs GMACs µ−secs
GMAC

Quadtree 19 0.0008 23,750

Pixel-Blur 19 0.0024 7917
Patch Scorer Feature-Based 2562 157 0.166 945

Feature-Based 1922 101 0.094 1074

ViT-Small 64 patches 154 1.44 107
Transformer ViT-Base 121 patches 821 10.8 76

ViT-Large 196 patches 3774 61.8 61

Table 1. Forward pass cost breakdown. Measuring actual run-
time is especially important for comparison between Quadformers
and vanilla ViTs since different components have very different
runtime-to-GMACs ratios.

The feature-based scorer requires 3 forward passes with
a truncated ShuffleNetV2×0.5, composed mainly of group
convolutions, depthwise convolutions, BatchNorms, and a
channel-shuffle operation that has no GMAC cost but has a
non-negligible time cost.

The Quadtree algorithm itself is very fast, though it has
an especially high runtime-to-GMACs ratio, as it mostly
requires indexing and reshaping operations that have no
GMAC cost. Even though different numbers of patches re-
quire different numbers of splits, the bulk of the Quadtree
runtime is spent preparing the input to the splitting phase
and processing its output, making the Quadtree cost almost
constant with respect to the number of patches.

The Transformer model is composed mainly of Attention
layers, fully-connected layers and LayerNorms. Its runtime
and GMAC cost depend heavily on the number of patches
and the size of the model.

Notice that the fraction of time taken by patch scoring
and Quadtree calculation becomes less and less significant
as the model and input length increase in size (Figure 10),
ranging from 44% for our lightest configuration to 4% for
our heaviest.
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Similarity to Oracle
Rank Correlation Coefficient Feature-Based Pixel-Blur % ScoreFeat better

Kendall’s τ 0.51 0.31 81%

Spearman 0.52 0.26 81%

Table 2. Average rank correlation between the patch rankings
induced by the Grad-CAM oracle scorer and different realistic
patch scorers, computed over the ImageNet-1K validation set.
“% ScoreFeat better” measures how frequently the oracle ranking
is closer to the feature-based scorer than to the pixel-blur scorer.

5.3. Patch scorer quality

The main way in which we assess the quality of differ-
ent patch scorers is by measuring their effect on the down-
stream task, ImageNet-1K classification. Alternatively, we
can measure scoring quality more directly by comparing the
patch ranking induced by a Grad-CAM oracle scorer to the
rankings induced by different realistic patch scorers (Fig-
ure 4). The oracle scorer is aware of the true image label,
and uses the Grad-CAM algorithm which was built with the
express purpose of saliency estimation, making it a good
golden standard for patch ranking, as reflected in the high
accuracy of oracle-based Quadformers (Figure 9).

For each image in the ImageNet-1K validation dataset,
we calculate rank correlation coefficients between the or-
acle scores and the scores computed by the feature-based
and pixel-blur patch scorers. We use rank correlations since
the actual score values do not affect the Quadtree algorithm,
only the relative ranking (see the argmax operation in Al-
gorithm 1). In Table 2 we report average rank correlation
values and the fraction of images in the dataset for which
the feature-based scorer was a better estimator of the oracle
than the pixel-blur scorer, demonstrating the superiority of
semantic representations over surface details.

5.4. Quadtree composition

Quadtree composition changes with the number of splits.
As the iterative splitting process progresses, large patches
are split into medium patches, which are in turn split into
small patches. While the exact frequency of different patch
sizes depends on the image content, we can get a sense of
the resolution distribution by constructing Quadtrees over
the entire ImageNet-1K validation set and measuring the av-
erage percentage of image area covered by each patch size
(Figure 11). Note that the average resolution distribution
depends on the ratio #Patches

max(#Patches) and is almost invariant
to the image size, which can help choose appropriate val-
ues for #Patches for different datasets, depending on the
fraction of key information we expect the images to contain.
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Figure 11. Quadtree composition changes with the number of
splits. We measure the percentage of image area covered by each
patch size to get a sense of the resolution distribution inside the
image. The left plot shows the progression for our main image
size. The right plot shows that this progression is almost invariant
to the image size.

6. Conclusion
We have presented a novel tokenization scheme for Vi-

sion Transformers, replacing the standard uniform patch
grid with a mixed-resolution sequence of tokens, where
each token represents a patch of arbitrary size. We inte-
grated the Quadtree algorithm with a novel feature-based
saliency scorer to create mixed-resolution patch mosaics,
making this work the first to use the Quadtree representa-
tions of RGB images as inputs for a neural network.

Through experiments in image classification, we have
shown the capacity of standard Vision Transformer models
to adapt to mixed-resolution tokenization via fine-tuning.
Our Quadformer models achieve substantial accuracy gains
compared to vanilla ViTs when controlling for the num-
ber of patches or GMACs. Although we do not use ded-
icated tools for accelerated inference, Quadformers also
show gains when controlling for inference speed.

We believe that future work could successfully apply
mixed-resolution ViTs to other computer vision tasks, es-
pecially those that involve large images with heterogeneous
information densities, including tasks with dense outputs
such as image generation and segmentation.
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Supplementary Material

A. Full results

We report ImageNet-1k top-1 accuracy and various cost
indicators for every model configuration that appears in the
figures of the main text (see Table A1, Table A2, Table A3).
Throughput is measured on a single GeForce RTX 3090
GPU in mixed precision.

B. More implementation details

Hyperparameters. We train all of our models using the
timm library [46] with the following hyperparameters:
learning rate warmup for 5 epochs, learning rate cooldown
for 10 epochs, cosine learning rate scheduler [19], weight
decay 0.025, DropPath [12] rate 0.1, AdamW [20] opti-
mizer with epsilon 1e-8, AutoAugment [4] image augmen-
tations with configuration rand-m9-mstd0.5-inc1,
mixup [52] alpha 0.8, cutmix [51] alpha 1.0, label smooth-
ing 0.1. Unless otherwise specified, we use base learning
rate 5e-5.

We fine-tune ViT-Small models for 130 epochs with
batch size 1024, ViT-Base models for 60 epochs with batch
size 400, and ViT-Large models for 20 epochs with batch
size 192. For evaluation, we use exponential moving aver-
age (EMA) [27] with decay 0.99996. We use the default
values in timm for all other hyperparameters.

ViT-Small
Method #Patches GMACs

Throughput Runtime ImageNet-1k
ims/sec µ-secs/im Top-1 Acc.

Vanilla ViT

64 1.44 6489 154 74.55
81 1.83 5208 192 76.36
100 2.28 4212 237 77.55
121 2.78 3460 289 78.26
169 3.94 2315 432 79.84
196 4.62 1975 506 80.28

Quadformer
Feature-based scorer

64 1.54 3611 277 76.53
79 1.88 3204 312 77.53
100 2.37 2766 362 78.64
121 2.87 2419 413 79.35
169 4.04 1792 558 80.43
196 4.71 1576 635 80.84

Quadformer
Pixel-blur scorer

64 1.45 5150 194 74.97
79 1.79 4362 229 76.27
100 2.28 3590 279 77.47
121 2.78 3022 331 78.58
169 3.95 2104 475 80.01
196 4.62 1813 552 80.4

Table A1. Full results - ViT Small.

ViT-Base
Method #Patches GMACs

Throughput Runtime ImageNet-1k
ims/sec µ-secs/im Top-1 Acc.

Vanilla ViT

64 5.6 2676 374 80.78
81 7.2 2155 464 81.73
100 8.8 1739 575 82.31
121 10.7 1429 700 82.71
169 15.1 966 1035 83.74
196 17.6 823 1215 84.07

Quadformer
Feature-based scorer

64 5.7 2019 495 81.52
79 7.1 1732 577 82.34
100 8.9 1435 697 83.05
121 10.8 1218 821 83.50
169 15.2 864 1157 84.23
196 17.7 750 1333 84.38

Quadformer
Pixel-blur scorer

64 5.7 2424 413 80.78
79 7.0 2021 495 81.68
100 8.8 1630 613 82.57
121 10.7 1354 739 83.06
169 15.1 931 1074 83.87
196 17.6 800 1250 84.23

Quadformer
Oracle scorer

64 — — — 84.76
79 — — — 85.19
100 — — — 85.40
121 — — — 85.67
169 — — — 85.40
196 — — — 85.25

Table A2. Full results - ViT Base.

ViT-Large
Method #Patches GMACs

Throughput Runtime ImageNet-1k
ims/sec µ-secs/im Top-1 Acc.

Vanilla ViT

64 19.9 900 1111 82.00
81 25.2 720 1389 83.02
100 31.1 580 1724 83.86
121 37.7 478 2092 84.46
169 53.0 323 3096 85.42
196 61.7 277 3610 85.74

Quadformer
Feature-based scorer

64 20.1 777 1287 82.88
79 24.7 649 1541 83.67
100 31.3 527 1898 84.41
121 37.9 440 2273 85.03
169 53.1 306 3268 85.65
196 61.8 265 3774 85.79

Quadformer
Pixel-blur scorer

64 19.9 869 1151 81.66
79 24.6 712 1404 82.69
100 31.1 568 1761 83.61
121 37.7 470 2128 84.3
169 53.0 320 3125 85.22
196 61.7 275 3636 85.56

Quadformer
Oracle scorer

64 — — — 85.89
79 — — — 86.33
100 — — — 86.5
121 — — — 86.7
169 — — — 86.52
196 — — — 86.54

Table A3. Full results - ViT-Large.
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