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Abstract

Meeting online is becoming the new normal. Creating
an immersive experience for online meetings is a neces-
sity towards more diverse and seamless environments. Effi-
cient photorealistic rendering of human 3D dynamics is the
core of immersive meetings. Current popular applications
achieve real-time conferencing but fall short in delivering
photorealistic human dynamics, either due to limited 2D
space or the use of avatars that lack realistic interactions
between participants. Recent advances in neural render-
ing, such as the Neural Radiance Field (NeRF), offer the
potential for greater realism in metaverse meetings. How-
ever, the slow rendering speed of NeRF poses challenges for
real-time conferencing. We envision a pipeline for a future
extended reality metaverse conferencing system that lever-
ages monocular video acquisition and free-viewpoint syn-
thesis to enhance data and hardware efficiency. Towards an
immersive conferencing experience, we explore an accel-
erated NeRF-based free-viewpoint synthesis algorithm for
rendering photorealistic human dynamics more efficiently.
We show that our algorithm achieves comparable render-
ing quality while performing training and inference 44.5%
and 213% faster than state-of-the-art methods, respectively.
Our exploration provides a design basis for constructing
metaverse conferencing systems that can handle complex
application scenarios, including dynamic scene relighting
with customized themes and multi-user conferencing that
harmonizes real-world people into an extended world.

1. Introduction

Meeting online is becoming the new normal. Typical
scenarios include video conferencing, teamwork, and so-
cializing when people are separated. Creating an immersive
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experience for online meetings could revolutionize indus-
tries such as business, education, and entertainment by en-
abling more efficient meetings, facilitating remote learning,
and providing more diverse, capable, and pleasing environ-
ments. Currently, the most popular conferencing systems,
such as Zoom, Teams, and Gather, offer a delightful audio
and visual experience in 2D spaces. However, they do not or
only weakly incorporate human dynamics from real world
into 3D virtual space. Horizon by Meta creates a 3D virtual
world, but it only animates real humans as half-body avatars
in pre-assigned positions. These systems have limited real-
ism, losing the realistic interaction between people and thus
impoverishing the meeting experience.

In realizing an immersive experience, a metaverse con-
ferencing system needs to fulfil efficient photorealistic ren-
dering based on free-viewpoint synthesis using acquired hu-
man full-body motion. Previous free-viewpoint rendering
systems rely on acquiring motion videos from a group of
densely arranged cameras [0, 7], or depth cameras [3, 4].
Recent advances allow the use of sparse multi-view video
acquisition [26]. However, these systems all require expen-
sive setup and maintenance, reducing the efficiency and the
accessibility to many applications. A single-camera video
acquisition is ideal for a system that benefits from enhanced
efficiency and increased accessibility.

In terms of rendering human dynamics, previous digi-
tal human research enables the rendering of avatars which
simulate the human body language as in modeled artifi-
cial characters [12]. Avatars are fun to use but they do
not reveal the realistic appearance of human beings and
thus are less engaging in online meeting scenarios. The
introduction of NeRF brings new outlooks in synthesizing
photorealistic novel views. It catalyzes a wave of human
neural rendering methods that deliver high fidelity results
[9,15,24,26,32,33]. However, one drawback of NeRF is its
slow training and rendering speed. Several works focus on
accelerating NeRF [5, 13, 14,21,27,35]. However, little ef-



fort has been done for accelerating human neural rendering.
In this work, we envision a pipeline for extended real-
ity conferencing and explore a more efficient human dy-
namic rendering algorithm based on NeRF. Our envisioned
pipeline allows increased efficiency in data, hardware, and
rendering, benefiting from a single-view video acquisition
protocol and accelerated free-viewpoint synthesis. Specif-
ically, our human dynamic rendering algorithm achieves
comparable rendering quality while performing training and
inference 44.5% and 213% faster than state-of-the-art meth-
ods, respectively. Our exploration provides insights for
building future metaverse conferencing systems that offer
immersive and real-time photorealistic experience.

2. Background

The core of our envisioned metaverse conferencing
pipeline is NeRF-based free-viewpoint rendering of human
dynamics. We review related background in this section.

2.1. Neural Radiance Field

Neural Radiance Field attracts tremendous attention in
the fields of computer graphics, vision, and multimedia
since its first introduction in 2020 by [19]. NeRF represents
a scene from a set of multi-view images as a radiance field,
and renders novel views of the scene from the radiance field.
The view synthesis of NeRF obtains nearly more-than-ever
photorealistic quality while the theory behind is rather sim-
ple given by Eq. (1): input a 5D coordinate (including a 3D
location x and 2D viewing direction d) into a MLP Fg and
output a volume density o and view-dependent RGB color
c at the corresponding location.
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NeRF uses volume rendering to produce novel view im-
ages from output color ¢ and density o. Based on classical
volume rendering principles, the vanilla NeRF [19] com-
posites color C(r) of camera ray r(¢) = o + ¢d via Eq. (2):

C(r) = / "To(t)ee@).d)dt @)

where T'(t) is the accumulated transmittance along the ray
from ¢, to ¢ given by T'(t) = exp(— f:ﬂ o(r(s) ds)). With
quadrature rule and stratified sampling approach [19], C(r)
can be numerically estimated as

N
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where d; = t; 1 — t; is the distance between adjacent sam-
ples, and T; = exp(— Z;;ll 06;). The vanilla NeRF [19]
minimizes the loss, which is defined as the total squared
error between the rendered and true pixel colors.

To optimize the neural network Fg for better fitting,
the vanilla NeRF [19] uses positional encoding to project
the 5D input to a higher dimensional space before pass-
ing into the MLP. To increase the rendering efficiency, the
vanilla NeRF [19] proposes a hierarchical volume sampling
method by implementing a coarse network and a fine net-
work, where the former informs the latter to obtain sam-
pling points of higher importance. These optimization
strategies are adopted in later extended works of NeRF.

Due to its high-quality performance while being simple
and extendable, the use of NeRF as a core algorithm has
been widely explored in a variety of scene representation

and rendering tasks, such as pose estimation [24,26,29,32],
lighting [1,2,37], scene labeling and understanding [30,39],
and scene composition [23,34].

2.2. NeRF for human

Human is composed of a rigid skeleton and soft tissues.
Human motion can be very articulated and causes the defor-
mation of human body, thus imposing challenges in human
reconstruction, animation, and rendering tasks. Previous
human free-viewpoint rendering systems rely on a group
of densely-spaced cameras [0, 7]. Recent works attempt
to realize free-viewpoint rendering with reduced hardware
complexity, such as using videos acquired by sparse multi-
view [26] or even monocular camera systems [9,29,32].

NeRF stimulates the development of a wave of NeRF-
based human animation and rendering methods. Neural
Body [26] achieves free-viewpoint synthesis from a sparse
multi-view video by leveraging the arts from the NeRF
model, a Skinned Multi-Person Linear (SMPL) model [ 18],
and a latent variable model [16]. By learning a set of latent
codes anchored to a deformable mesh from SMPL, Neural
Body generates novel views of the human subject at differ-
ent poses. On top of Neural Body, Neural Human Performer
[1 1] enhances the rendering quality of unseen identities and
poses by developing a temporal transformer and a multi-
view transformer, which aggregate corresponding features
across video frames and multiple views. Similar to Neural
Body, Neural Actor [15] learns a deformable radiance field
with SMPL, while it uses 2D texture maps defined on the
body model as the latent codes, which improves the synthe-
sis of pose-dependent dynamic appearance. H-NeRF [33]
proposes to co-learn a radiance field and a signed distance
function for rendering and temporally reconstructing dy-
namic human, conditioned on a geometric prior obtained
from an implicit articulated human body model imGHUM.
Animatable NeRF [24] introduces a per-frame neural blend
weight field to be combined with NeRF, while using human
priors from SMPL to regularize the learned blend weight.
These methods achieve relatively high-quality performance,
but they are primarily intended for multi-view video input.

Compared to multi-view videos, acquiring monocular



videos are more efficient and more accessible for broader
applications of free-viewpoint rendering. However, ren-
dering from monocular videos is dramatically more chal-
lenging because ill-posed problems are prone to arise due
to self-occlusion and inherent depth ambiguity. A-NeRF
[29] addresses the ill-posed problem by overparameterizing
NeRF with skeleton-relative encoding, where its demon-
stration shows the potential for rendering very articulated
motion. HumanNeRF [32] considers human motion as a
combination of skeleton rigid motion and non-rigid motion
that are learned via separate neural networks. HumanNeRF
also learns a pose correction network to assist the refine-
ment of the motion field, finally producing high-fidelity ren-
dering results in both a benchmark dataset and in-the-wild
videos. NeuMan [9] proposes to learn a human NeRF and a
scene NeRF separately, opening up more opportunities for
composition and editing of human dynamic scenes.

The advance of NeRF-based human models promotes
the development of dynamic human articulation, anima-
tion, and free-viewpoint rendering. However, the aforemen-
tioned models all require long training and inference time
despite using high-end computational hardware. Accelerat-
ing model training and inference is the key to real-time neu-
ral rendering applications such as conferencing and gaming.

2.3. Accelerating NeRF

NeRF generally requires long per-scene training time
and per-image inference time [8]. For example, on a
NVIDIA V100 GPU, vanilla NeRF [19] takes 1-2 days to
train a scene with 100 images of 800x 800 resolution, and
takes 30 seconds to inference an image of the same resolu-
tion. The inefficiency hinders its real-world real-time usage.

Besides hierarchical sampling in vanilla NeRF, several
methods were developed to accelerate the NeRF training
and/or inference. A category of acceleration methods works
on modifying the data structures to be more easily acces-
sible. For example, NSVF [14] organizes a scene into a
sparse voxel octree and thus reduces the number of sam-
pling. PlenOctree [35] trains a spherical harmonic NeRF
and converts it into a sparse octree representation for in-
creased inference speed. FastNeRF [5] proposes a graphics-
inspired factorization approach that enables caching with
sparse octree and fast query. These methods only improve
the inference speed at the cost of memory, while do not re-
duce training time. Instant-NGP [21] proposes a learned
parametric multi-resolution hash encoding that accelerates
both training and inference when applied to NeRF.

Some methods attempt to modify the MLP in NeRF.
KiloNeRF [27] uses thousands of tiny MLPs instead of a
deep MLP: it subdivides the scene into thousands of 3D
cells with each part represented by a tiny MLP, and thus
largely reduces the query time at inference. Instant-NGP
[21] demonstrates that integrating hardware-accelerated

fully-fused CUDA kernels [22] into NeRF can increase both
training and inference speed.

Some methods optimize the ray marching and volume
rendering techniques. In addition to using tiny MLPs,
KiloNeRF [27] employs early ray termination and empty
space skipping strategies to improve rendering speed fur-
ther. Instant-NGP [21] also implements exponential step-
ping, empty space skipping, and sample compaction. Au-
tolnt [13] approximates the volume rendering steps and re-
duces the number of samples for the rendering step, but it
compromises the rendering quality. Multiple independent
strategies mentioned above can be combined to achieve ac-
celerations of several orders of magnitude.

The above methods were mainly designed for acceler-
ating static scenes. Little effort has been made for accel-
erating human neural rendering. More complex than static
scenes, a human body contains rigid and non-rigid parts and
can perform dynamic movements. The distinct nature re-
quires greater effort in accelerating human rendering, as the
existing acceleration methods may not be fully applicable.

3. Envisioning the System Pipeline

Existing conferencing systems provide remote commu-
nication opportunities, but they cannot fully fulfil the re-
alism needed for an immersive meeting experience. We
envision a metaverse conferencing pipeline that addresses
the challenges in efficiently achieving a higher level of real-
ism. We explore an accelerated free-viewpoint photorealis-
tic synthesis for rendering human dynamics, with the added
simplicity of using a single-camera video acquisition. Fig. 1
illustrates the design of the system pipeline. Our envisioned
pipeline offers a potential solution for low-cost, real-time,
and immersive conferencing.

The system pipeline contains four major components to
realize an immersive conferencing experience: a human
motion acquisition module, a cloud database, a MetaNeRF
renderer, and a client-end device. Unlike most common
systems demanding multiple cameras, our motion acquisi-
tion module only requires a single camera, which simul-
taneously improves the hardware and data efficiency. The
motion acquisition module captures full-body movement
sequences of a dynamic human and uploads the acquired
information into the cloud database. The motion informa-
tion can be in several formats, such as a monocular video
or a sequence of video frames. Alternatively, an additional
process can be added to extract the key information from
the raw data (e.g. the appearance profile and 3D skeletal
points), which reduces the communication bandwidth. Fur-
thermore, historical data can be leveraged to accelerate data
communication in future conferencing events.

The cloud database stores the motion data. Fig. 1
presents the database as a central database on a cloud server.
It can vary according to the application needs when de-
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Figure 1. Overview of an envisioned pipeline for extended reality metaverse conferencing using NeRF. The pipeline consists of four
building blocks: a motion acquisition module, a cloud database, a MetaNeRF renderer, and a client-end device. The motion acquisition
module captures a human’s motions using a single camera. The cloud database stores the motion data and transfers them to the MetaNeRF
renderer. The renderer combines arts from human animation and NeRF to create photorealistic view synthesis. The client-end device
displays synthesized views from the renderer. The pipeline can be flexibly customized according to application needs, with easy extension
to create a multi-user conferencing system. The illustration is made with ZJU-MoCap dataset [26].

ployed in the system. For example, the database can be a
group of distributed databases on a cloud server or on the
edge. Besides the motion data, the database can optionally
store a library of background and environment data includ-
ing lighting that can customize the themes for rendering.

MetaNeRF renderer is the core module for enabling an
immersive experience. It combines the arts from human
animation and NeRF to create photorealistic view synthe-
sis from any viewpoint. Using the motion data as input,
the renderer interprets the human body and camera parame-
ters, and employs neural networks to learn a human motion
field. The renderer also leverages an acceleration approach
to speed up training and inference. Detailed implementation
is discussed in Sec. 4. The renderer can be flexibly extended
for multi-user conferencing and scene relighting.

The client-end device downloads and displays synthe-
sized photorealistic views from MetaNeRF renderer. When
compatible and applicable, participants can join metaverse
meetings using several types of client-end device, such as
smart phone, TV, computer, and AR/VR glasses. Option-
ally, the client-end device can serve as a computation unit
for some efficient computation in the MetaNeRF renderer,
or as a private data storage for sensitive personal data.

With the four components, our envisioned system
pipeline can provide an immersive 3D experience for par-
ticipants joining meetings from distributed locations. The
envisioned pipeline allows a high flexibility to customize
the components according to the application needs and ex-
tend the functionalities for complex scenarios such as theme
editing or multi-user conferencing.

4. MetaNeRF: Rendering Human Dynamics

We explore a more efficient free-viewpoint synthesis al-
gorithm for rendering photorealistic human dynamics from

a monocular video. The algorithm demonstrates its effec-
tiveness in realizing an immersive meeting experience and
its potential in achieving real-time conferencing.

We obtain the free-viewpoint synthesis results accord-
ing to the framework in Fig. 2. Given a sequence of im-
ages from a monocular video, we firstly use SPIN (SMPL
oPtimization IN the loop) [10], a parametric human body
model, to estimate initial camera parameters K, body pose
6 and shape S of the human body. Compared to the vanilla
SMPL model [18] which relies solely on regression, SPIN
combines iterative optimization and deep-network regres-
sion to estimate human poses more accurately. These SPIN
estimations are used as the initial input into the framework,
where the pose parameters, particularly, are gradually re-
fined through a pose refiner MLP during training (Sec. 4.1).

Inspired by previous work [9,15,25,32,38], we represent
human motion field M as addition of skeleton-driven mo-
tion field Mg; and a residual non-rigid motion field M,..,

M = Mskel + Mres- (4)

Specifically, we learn a motion field of the human through
two neural networks following [32]. One is a convolutional
neural network (CNN) that learns the skeleton rigid motion
(Sec. 4.2), but it is not a full motion representation since it
cannot interpret the non-rigid contents. We thus use a MLP
to account for the residual non-rigid motion (Sec. 4.3).

4.1. Pose refiner

Each body pose 6 can be represented as a combina-
tion of K joints J and corresponding K joint angles €2 =
wo, -+ ,wk. The poses estimated from pre-trained weights
of parametric models do not have sufficient accuracy and
may lead to pose mismatch. Following [32], we use a MLP
to learn an adjustment for a better pose alignment.
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Figure 2. Overview of the framework. Given a sequence of monocular images, we estimate the camera parameters K, pose 6 and shape
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training. Combining the refined pose 6°, shape /3, and a latent variable z, we learn a motion representation through a skeleton motion
network and a residual motion network. We use inverse linear blend skinning to transform the motions in observation space to canonical
space. A NeRF-like network is used to learn the color and density maps, which are then volume-rendered into images. We optimize the

Losses between the rendered images and the ground truths. This framework is inspired by [
]. The illustration is made with ZJU-MoCap dataset [26].

accelerated using fully-fused CUDA kernel [

We retain the joints J estimated from images using the
SPIN model [10], and optimize an adjustment to each of

the K joint angles, Aqg = Awyg, -, Awg. We optimize
the network parameters of MLP that provide updates to
Awy, -+ , Awg conditioned on wy, - - - ,wg. According to

the empirical findings in [32], optimizing the network pa-
rameters leads to faster convergence compared to directly
optimizing Awyp, - -+ , Awg.

Aq = MLP(Q) 5)

We can then update each 6 to 6° by corresponding joints,
joint angles, and joint angle relatives:

0° = (J, Aq ® Q). (6)

4.2. Human skeleton motion

To volumetrically represent the skeleton motion field
M1, researchers typically use either an implicit represen-
tation using MLP or an explicit representation using CNN.
References [17, 32] discuss the respective advantages and
disadvantages of implicit and explicit representations, and
adopt the explicit representation with CNN because it is
computationally easier and provides smoothness to regular-
ize the optimization.

Similar to [9, 15,17,25,31,32, 38], we model the skele-
ton motion volume based on an inverse linear blend skin-
ning algorithm that wraps the points in observation space to
canonical space (equivalent to warping an observed pose 6°
to a predefined canonical pose 6€) in a form as follows:

K

Mg (x,0°) =Y wf(x)Gi(x), (7)

i=1

]. The networks in the framework are

where wy is the blend weight for the i-th bone in the obser-
vation space and G, is the skeleton motion basis for the i-th
bone. Practically, G; is defined as

G;(x) = Rix + t;, (®)

with R; and t; calculated from corresponding body pose
0°, and wy is obtained by first solving the canonical blend
weight w{ and then deriving from:

cq.
w(x) = sz o :
> k1 Wi Gr(X)
Specifically, we use a CNN to generate a weight volume

We(x), which contains a set of w{(x), from a random con-
stant latent variable, and optimize the network parameters:

®)

W€(x) = CNNgel(X; Z). (10)
4.3. Residual motion field

We estimate a residual motion field M, to account for
the non-rigid deformation that is not explained in the skele-
ton motion field, such as the shifting and folding of clothes.
In light of previous works [25,32], we model the residual
motion as a pose-dependent deformation field. Specifically,
we use a MLP to learn a non-rigid deformation offset con-
ditioned on the skeleton motion field and the body pose:

Mes (Xskeh 90) = MLP; (V(Xskel% 90); (11)

where X represents points in skeleton motion field My,
and v is a positional encoding function.

Adding the non-rigid offset to skeleton motion com-
pletes the motion. Points in the motion field can be rep-
resented as:

Xfinal = Xskel T Xres, (12)



where X represents points in residual motion field M.

The residual motion network is not turned on at the early
stage of training. This avoids overfitting the residual motion
network to the input and undermining the contribution of
the skeleton motion. When it joins, we employ a coarse-to-
fine manner to the residual motion network with a truncated
Hann window applied to the frequency bands of positional
encoding [32]. At a certain iteration of training, we set it
back to full frequency bands of positional encoding.

4.4. Learning and representing color and density

We represent the dynamic human in canonical space as
a continuous field, and derive the color ¢ = (r,g,b) and
density o using a NeRF-like MLP network:

c,o= MLPnerf(’Y(Xﬁnal))v (13)

where v is a standard positional encoding function. Using
the learned ¢ and o, we use the volume rendering technique
discussed in Sec. 2.1 to reconstruct images.

Since the bounding box of a human performer can be
estimated from the image, we apply stratified sampling ap-
proach [19] inside the bounding box. In addition, we adopt
the augmentation method introduced in [32] to further im-
prove sampling efficiency. The augmentation method uses
the denominator of Eq. (9) to approximate the likelihood
of being part of the human performer, and augment the
(1 —exp (—0;9;)) in Eq. (3) to be small by multiplying the
likelihood when the likelihood is lose to zero.

4.5. Accelerating training and inference

To increase the training and inference speed, we adopt
fully fused neural networks introduced in [21,22]. As dis-
cussed in [22], fully fused neural networks take advan-
tage of fully utilizing fast on-chip memory and minimiz-
ing traffic to ’slow” global memory. We reproduce a figure
from [22] in Fig. 3 to elaborate the mechanism of the fully
fused neural networks that leverage the parallelism of mod-
ern GPUs. As shown in Fig. 3 (a), given a batch of input
vectors, a regular MLP evaluation corresponds to alternat-
ing weight-matrix multiplication and element-wise applica-
tion of the activation function. In contrast, a fully fused
MLP in Fig. 3 (b) partitions the given batch of input vectors
into block-column segments and processes each segment by
a single thread block. The width of fully fused MLP is nar-
row, enabling the full utilization of fast on-chip memory
(e.g. registers and shared memory). For a matrix multipli-
cation Hj | = W; H; (Fig. 3 (c)), each warp of the thread
block computes one block-row (striped area) of Hj, , by
first loading the corresponding striped weights in W; into
registers and then multiplying the striped weights by all
block-columns of H;. Thus, each thread block loads the
weight matrix (e.g. ;) from global memory exactly once,
while frequent accesses to H; are via fast shared memory.

We implement the MLPs in Sec. 4 as fully fused MLPs
using tiny CUDA neural network (tiny-CUDA-nn) frame-
work [20]. We use suggested configurations as in [22].

5. Experiment
5.1. ZJU-MoCap dataset

We use realistic dataset ZJU-MoCap [26] in our experi-
ment for evaluating the system pipeline and algorithm per-
formance in real-world conferencing scenarios. This dataset
was captured in the real world by a multi-camera system
that contains 20+ synchronized cameras each producing a
monocular video. It includes a wide variety of human com-
plex motions, such as warmup, kicking, arm swings, Taichi,
and twirling. We select 7 subjects with diverse motions in
the experiment. Particularly, we use images captured by
camera 1 for training and other camera data for evaluation.
We utilize the provided segmentation mask, camera intrin-
sics and extrinsics, and SMPL parameters of each frame.
The resolution of ZJU-MoCaP images is 1024pi x 1024pi.

5.2. Implementation

Loss function. We use Mean Squared Error (MSE) and
Learned Perceptual Image Patch Similarity (LPIPS) [36] in
the loss function. The MSE accounts for the fidelity of
pixel-wise appearance, while the LPIPS assesses the per-
ceptual similarity. We optimize the loss between the input
frames and the corresponding rendered images with respect
to all trainable parameters in networks discussed in Sec. 4.

L= /\mseﬁmse + )\lpipsﬁlpips (14)

Following [32], we use Apse = 0.2, A\jpips = 1.0 in
Eq. (14) and employ VGG as the backbone of LPIPS. We
use patch-based ray sampling to accommodate LPIPS loss
[28,32]. Specifically, we choose 6 patches with size 20 x 20
on an image, and compare the reconstructed patches against
the patches at the same positions on the input image.
Training. We apply Adam optimizer with 3; =
0.9,8, = 0.99. We use a learning rate of 5 x 10~* for
the NeRF network, and use 5 x 10~° for other networks.
We sample 128 points per ray. For each experiment, train-
ing is performed for 150K iterations on a single NVIDIA
GeForce RTX 3080 Ti GPU. We activate the residual mo-
tion network at 10K iterations and set it back to full fre-
quency bands of positional encoding at 50K iterations.
Evaluation. To evaluate the rendering performance at
unseen camera views, we use additional camera data (e.g.
camera 2 to camera 21) for testing. For each human sub-
ject, we sample an image every 30 frames for each camera
view from all available cameras, resulting in 350 — 700 test-
ing images for each subject. Evaluation is conducted on a
single NVIDIA GeForce RTX 3080 Ti GPU. We compare
our method to HumanNeRF [32], a state-of-the-art method
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Figure 3. (a) A regular MLP evaluation for a given batch of input vectors corresponds to alternating weight-matrix multiplication and
element-wise application of the activation function. (b) A fully fused MLP achieves accelerated performance by parallelizing the workload.
It partitions the batch into 128 element wide chunks and processes each chunk by a single thread block. The fully fused MLP is narrow
(Mhsiddgen = M;n = 64 neurons wide), allowing the weight matrices to fit into registers and the intermediate 64 x 128 neuron activation
to fit into shared memory. (c¢) Within a matrix multiplication, each thread block transforms the i-th layer H; into the pre-activated next
layer H;,,. H; is diced into 16 x 16 elements to match the size of the NVIDIA hardware-accelerated half-precision matrix multiplier
TensorCore. Each warp of the thread block computes one 16 x 128 block-row (e.g. the striped area) of H; ;. The computation is done
by first loading the corresponding 16 x 64 striped weights in W; into registers and then multiplying the striped weights by all 64 x 16
block-columns of H;. Thus, each thread block loads the weight matrix (e.g. W;) from global memory exactly once, while frequent accesses
are over H; located in fast shared memory. This figure is reproduced from [22].

that has relatively higher computational efficiency and ren-
dering quality when compared to some other methods.

Metrics. To quantify the rendering quality, we employ
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM) in addition to MSE and LPIPS. PSNR is a
popular metric for measuring reconstruction fidelity that is
affected by corrupting noise. SSIM is a perceptual loss that
takes into account luminance, contrast, and structure. These
metrics have their own limitations, thus using all four met-
rics can provide a more comprehensive assessment.

5.3. Results

We compare the performance of our method to that of
HumanNeRF [32] in terms of rendering quality and time.
Tables 1 and 2 present the training performance compar-
ison and inference performance comparison, respectively.
Figs. 4 and 5 showcase visual quality comparisons between
our method and HumanNeRF for rendering a human from
4 different viewpoints in the same time frame, and from the
same viewpoint at 4 different time frames, respectively.

Quantitatively, the evaluation metrics indicate that our
method is significantly more efficient while achieving com-
parable rendering quality compared to HumanNeRF in both
training and inference. On average, compared to Human-
NeRF, our method reduces the training time by 44.5% and
increases the rendering frame rate by 213%. Specifically,
our method renders 1024pi x 1024pi images at a frame
rate of 1.209 FPS compared to HumanNeRF’s 0.387 FPS.
Although there is some variation in the evaluation metrics
for image reconstruction between our method and Human-

HumanNeRF Ours HumanNeRF Ours Ground Truth

Ground Truth

Figure 4. Inference comparison: rendering a human from 4 differ-
ent viewpoints in the same frame (enlarged in supplementary).

NeRF, the overall difference is insignificant.

Qualitatively, our method recovers finer and more pre-
cise details than HumanNeRF as illustrated in Figs. 4 and 5.
Our method delivers better contours, while the Human-
NeRF has some floating artifacts at the boundaries. How-
ever, both our method and HumanNeRF lose some details,
such as the clothing wrinkles at the front upper body and the
shape of the fingers and hands. Potential improvements can
be done by relaxing the constraints imposed in the initial
input shape, and by incorporating finer pose parameters.

Overall, our method demonstrates greater efficiency in
both training and inference while maintaining comparable
quality to HumanNeRF. The performance improvement is
mainly a result of fully utilizing on-chip memory and min-
imizing traffic to slow global memory in the MLP evalua-



PSNR 1 SSIM 1 LPIPS %1000 J Time (hour) |

Dataset HumanNeRF Ours HumanNeRF Ours HumanNeRF Ours HumanNeRF Ours
313 32.20 31.93 0.9724 0.9696 17.83 20.84 7.10 3.80

377 36.30 34.46 0.9842 0.9847 12.23 11.98 7.05 3.93

386 35.29 34.56 0.9704 0.9764 19.02 17.69 7.12 3.80

387 31.64 30.99 0.9728 0.9681 22.77 27.18 7.13 4.02

392 34.90 34.18 0.9788 0.9778 16.81 17.65 7.10 3.97

393 32.24 31.93 0.9745 0.9729 17.98 19.77 6.82 3.95

394 35.13 34.11 0.9794 0.9759 14.01 16.29 7.07 3.95
Avg 33.96 33.17 0.9761 0.9751 17.24 18.77 7.05 3.92
%Deviation™ -2.33% -0.10% +0.01% -44.5% (Best: -46.60%)

* %Deviation™ = (avg of our method - avg of HumanNeRF) / avg of HumanNeRF * 100%. Same for other tables.

Table 1. Training performance comparison between HumanNeRF [32] and our method.

Dataset PSNR 1 SSIM 1 LPIPS %1000 | Frame rate (FPS) 1

HumanNeRF Ours HumanNeRF Ours HumanNeRF Ours HumanNeRF Ours

313 29.44 29.66 0.9676 0.9687 30.33 30.42 0.353 1.117
377 30.43 30.52 0.9754 0.9780 24.07 22.22 0.413 1.282
386 33.66 33.55 0.9743 0.9771 31.26 27.84 0.452 1.385
387 28.34 28.39 0.9641 0.9643 35.72 37.45 0.380 1.189
392 31.03 31.29 0.9702 0.9715 34.09 3245 0.380 1.188
393 28.50 28.60 0.9605 0.9616 37.99 37.90 0.355 1.120
394 29.73 29.54 0.9619 0.9613 35.87 37.16 0.377 1.181
Avg 30.16 30.22 0.9677 0.9689 32.76 32.20 0.387 1.209
%Deviation™ +0.20% +0.13% -0.00% +213% (Best: +216%)

Table 2. Inference performance comparison between HumanNeRF [32] and our method.

represents progress in the pursuit of the desired capability.
It provides potential insight for future design of such a real-
time, lifelike conferencing system.

6. Conclusion

We envision a pipeline for a future extended reality con-
ferencing system that offers an immersive and photorealis-
tic experience. At the core of the pipeline, we explore a
more efficient free-viewpoint synthesis method with NeRF

* . N iy for rendering human 3D dynamics. Our method achieves

HumanNeRF Ours Ground Truth HumanNeRF Ours Ground Truth . . ..
state-of-the-art comparable quality and increases training

. o .
Figure 5. Inference comparison: rendering a human from the same and inference speed by 44.5% and 213% respectively on

viewpoint at 4 different time frames (enlarged in supplementary). average. In addition, our method only requires a single-
camera motion acquisition, which largely enhances hard-

ware and data efficiency. Our envisioned pipeline provides
a design basis for the next generation real-time conferenc-
ing systems of low cost, low bandwidth demand, and high
accessibility. Future work can focus on improving the ren-
dering speed closer to real-time. Further exploration could
be done to extend the system pipeline to enable more com-
plex application scenarios, such as dynamic scene relighting
with customized themes and multi-user conferencing that
harmonizes real-world people into an extended world.

tion. However, challenges still remain in realizing our en-
visioned real-time conferencing, which generally requires
a frame rate close to 30 FPS. Unlike static scene render-
ing, the dynamic motion and pose-dependent deformation
of a human body enforce higher acceleration difficulties not
only in rendering but also many facets of body and pose re-
construction. While the current work may not fully meet
the requirement of our envisioned system, our exploration
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Supplementary Material
Network architecture

Figs. 6 to 9 show the network architecture of pose refiner,
skeleton motion, residual non-rigid motion, and NeRF net-
works.

(a2

) (o)) »
I R

Figure 6. Pose refiner network. Given a body pose 8 = (J,Q)
in an image, this network takes in joint angles €2 and outputs joint
angle relatives A2, which is used to obtain an updated body pose
0°.
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Figure 7. Skeleton motion network. This network generates a
weight volume W€ to explicitly represent the skeleton motion
field. This network is composed of a fully-connected layer, a ten-
sor reshaping operator, and five 3D transposed convolutions in se-
quential. It takes in a random constant latent variable z of a size
256 and outputs a volume of size 32 x 32 x 32 x 25. The generated
weight volume W€ is then used to derive the blend weights wy .

- - - - - -
N—7N—7DN—7DN—7 N — N
[oc] [ee] (o] [ee] [ee] [ee] res

Figure 8. Residual non-rigid motion network. This network is
conditioned on the body pose 6° and the skeleton motion field
M. Specifically, it takes in the updated joint angles Q° (Q2° =
Ag ® ), and the positional encoding of the points in skeleton
motion field v(Xsuel). At the fourth layer of the network, we use
a skip connection for v(Xgue). This network produces a residual
motion field as an offset Xes t0 Xkel. The addition of Xger and Xres
completes the full motion field.
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Figure 9. NeRF network for obtaining ¢ and o. This network
takes in the positional encoding of the points in full motion field
~(Xfinal ), Where Xfinal = Xskel + Xres. At the fourth layer of the net-
work, we use a skip connection for ~y(Xsl ). This network outputs
color ¢ and density o for volume rendering.

Enlarged rendering images

Figs. 10 and 11 are enlarged versions of Figs. 4 and 5,
which showcase a visual quality comparison between our
method and HumanNeRF for rendering a human from 4 dif-
ferent viewpoints in the same time frame, and from the same
viewpoint at 4 different time frames, respectively.



HumanNeRF Ours Ground Truth HumanNeRF Ours Ground Truth

Figure 10. Enlarged Fig. 4 for detailed inference comparison: rendering a human from 4 different viewpoints in the same time frame.
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Figure 11. Enlarged Fig. 5 for detailed inference comparison: rendering a human from the same viewpoint at 4 different time frames.
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