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Abstract

With the advance of AI, road object detection has been a

prominent topic in computer vision, mostly using perspec-

tive cameras. Fisheye lens provides omnidirectional wide

coverage for using fewer cameras to monitor road inter-

sections, however with view distortions. To our knowledge,

there is no existing open dataset prepared for traffic surveil-

lance on fisheye cameras. This paper introduces an open

FishEye8K benchmark dataset for road object detection

tasks, which comprises 157K bounding boxes across five

classes (Pedestrian, Bike, Car, Bus, and Truck). In addition,

we present benchmark results of State-of-The-Art (SoTA)

models, including variations of YOLOv5, YOLOR, YOLO7,

and YOLOv8. The dataset comprises 8,000 images recorded

in 22 videos using 18 fisheye cameras for traffic monitor-

ing in Hsinchu, Taiwan, at resolutions of 1080×1080 and

1280×1280. The data annotation and validation process

were arduous and time-consuming, due to the ultra-wide

panoramic and hemispherical fisheye camera images with

large distortion and numerous road participants, particu-

larly people riding scooters. To avoid bias, frames from a

particular camera were assigned to either the training or

test sets, maintaining a ratio of about 70:30 for both the

number of images and bounding boxes in each class. Exper-

imental results show that YOLOv8 and YOLOR outperform

on input sizes 640×640 and 1280×1280, respectively. The

dataset will be available on the GitHub link with PASCAL

VOC, MS COCO, and YOLO annotation formats. The Fish-

Eye8K benchmark will provide significant contributions to

the fisheye video analytics and smart city applications.

Figure 1. Sample of the 5 classes in the FishEye8K dataset: Pedes-

trian (all visible people on the streets), Bike (people riding bicy-

cles, motorcycles, or scooters), Car (light vehicles such as sedans,

SUVs, Vans, etc.), Bus, and Truck (dump-truck, semi-trailers, etc.)

1. Introduction

Fisheye lenses have gained popularity owing to their nat-

ural, wide, and omnidirectional coverage, which traditional

cameras with narrow fields of view (FoV) cannot achieve.

In traffic monitoring systems, fisheye cameras are advanta-

geous as they effectively reduce the number of cameras re-

quired to cover broader views of streets and intersections.



Dataset Frame Boxes Task Vehicles Pedestrian Weather Occlusion Altitude View Classes Location Type

MIT-Car 2000 [16] 1.1K 1.1K D + - Surveillance 2D

KITTI-D 2014 [4] 15K 80.3K D + + + 3 Car 2D

UA-DETRAC 2015 [22] 140K 1210K D,T + + + 4 Surveillance 2D

Detection in LLC 2017 [10] 7.5K 15K D + + 12 Car 2D

CARPK 2017 [6] 1.5K 90K D + - Drone 2D

UAVDT 2017 [2] 80K 841.5K D,T + + + + + - Drone 2D

NEXET 2017 [7] 50K - D + + 5 Car 2D

BDD100k 2018 [23] 5.7K - D,T + + + 10 Car 2D

AAU RainSnow 2018 [1] 2.2K 13297 D,Seg + + Surveillance RGB&Thermal

MIO-TCD CCTV 2018 [13] 113K 200K D + + 5 Surveillance 2D

BDD100k Adas 2018 [25] 100K 250K D,Seg + + 10 Car 2D

Woodscape 2018/2019 [24] 10K - D,3D,T + + 7 Car Fish-Eye

CityFlow2D 2021 [15] - 313.9K D,T + Surveillance 2D

FishEye8K 2023 [our] 8K 157.0K D + + + 5 Surveillance Fish-Eye

Table 1. Summary of existing road traffic datasets. The second and third columns (1K = 103) indicate the number of images containing

at least one object on them and the unique object bounding boxes. Remaining columns: additional attributes for each dataset, i.e., ”D”:

target is a detection task, ”3D”: target is a three-dimensional detection task, ”T”: target is a tracking task, and the ”Seg”: target is a

segmentation task.

Despite these benefits, fisheye cameras present distorted

views that necessitate a non-trivial design for image undis-

tortion and unwarping or a dedicated design for handling

distortions during processing. It is worth noting that, to the

best of our knowledge, there is no open dataset available for

fisheye road object detection for traffic surveillance appli-

cations. The WoodScape dataset [24] was collected using

an in-car fisheye dash camera; however, it was intended for

self-driving scenarios.

In this paper, we present a new open FishEye8K bench-

mark dataset for the training and evaluation of 2D road ob-

ject detection tasks. The FighEye8K dataset consists of

8,000 image frames with 157K bounding box annotations of

5 object classes, namely, Pedestrian, Bike, Car, Truck, Bus,

and Truck; see Figure 1. A total of 22 short (8 to 20 min-

utes) videos were extracted from many hour-long videos

collected from 35 fisheye cameras. These traffic surveil-

lance cameras are properties of the police department of

Hsinchu City, Taiwan, and our data collection is free from

user consent agreements or license issues. However, efforts

are performed in blurring out visible faces and license plates

in the video frames. The dataset comprises different traffic

patterns and conditions, including urban highways, road in-

tersections, various illumination, and shooting angles of the

five road object classes in various scales.

The labeling of objects of interest is meticulous. Specif-

ically, we labeled all visible and recognizable objects even

if they are located far away. The FishEye8K sample im-

ages are split into the training and test sets, with a ratio of

about 70:30. Efforts are made to keep a similar ratio for

each class of road objects. To avoid bias, the train and test

sets do not share frames from the same camera. Annotations

are provided in several standard formats, including Pascal-

VOC [3], MS COCO [12], and YOLO [19].

We also provide benchmarking results of the latest

State-of-The-Art (SoTA) two-stage object detection mod-

els, including YOLOv5x [8], YOLOR [20], YOLOv7 [21],

and YOLOv8, and report in standard metrics including

Precision, Recall, mAP s, AP S, APM, AP L, F1−score,

and their inference time.

The FishEye8K benchmark dataset will be available at

https://github.com/MoyoG/FishEye8K upon

paper acceptance.

2. Related Works

Road datasets. High-resolution, diverse, and large-scale

road datasets play a critical role in advancing and enhanc-

ing traffic monitoring systems. In the last decade, the num-

ber of open road datasets [1, 2, 4, 6, 7, 10, 13, 15, 16, 22–25]

for 2D and 3D road object detection, single and multi-

ple object tracking, object segmentation tasks have signif-

icantly increased. Table 1 provides a summary of pop-

ular road datasets that are used in both model develop-

ment as well as for benchmarking and public contests. In

terms of camera locations, the following datasets are cap-

tured using fixed surveillance cameras: MIT-Car [16], UA-

DETRAC [22], AAU RainSnow [1], MIO-TCD [13], and

AI-City [15] datasets. The CARPK [6] and UAVDT [2]

dataasets are captured using drones. The KITTI [4], Detec-

tion in LLC [10], NEXET [7], BDD100K [23], and Wood-

scape [24] datasets are captured using in-dash cameras

mounted on a car. In terms of FoV, all the datasets were con-

structed using standard perspective cameras, with the draw-

back of narrow FoV. The only exception is the WoodScape

dataset [24] that are captured using an in-dash 180° fish-

eye camera. To our knowledge, the proposed FishEye8K

dataset is the first of the kind among the open datasets, that

are designed and constructed specifically for the develop-

ment and evaluation of road object detection using fisheye

traffic surveillance cameras.

Fixed perspective traffic camera-based datasets. Ta-



Figure 2. Sample images of FishEye8K dataset: (Top) the original unlabelled images, (Middle) the labeled ground truths, (Bottom) the

YOLOv5x6 [8] detected objects. The columns illustrate several viewing angles, time of day, various intersections and road participants in

the dataset.

ble 1 shows that most datasets are captured using fixed,

perspective cameras, which are limited by the narrow FoV.

All the datasets have annotations for 2D road object detec-

tion task; on top of it, a few datasets [2, 15] have multi-

ple objects tracking annotation, and one [1] has segmenta-

tion mask annotation. In 2000, MIT-Car dataset [16] was

publicly offered as a flagship dataset pioneering the road

automation research field. The dataset has 1.1K frames,

including 1.1K bounding boxes for the vehicle detection

task. In 2016, UA-DETRAC [22] dataset was offered with

140K frames, including rich annotations of illumination,

vehicle type, occlusion, and 1210K bounding boxes. The

dataset has four classes (car, van, bus, and others) for de-

tection and multiple object detection tasks. In the same

year, similarly, MIO-TCD CCTV [13] dataset is offered

with 113K frames, including 200K bounding boxes for the

detection task. In 2018, the AAU RainSnow [1] dataset was

offered as a benchmark for evaluating state-of-the-art rain

removal algorithms. The dataset has 22 five-minute real-

world camera video sequences collected from 7 urban in-

tersections covering various weather conditions, i.e., snow,

rain, haze, and fog. They have extracted 100 frames from

each five-minute video to construct 2200 frames, including

13297 bounding boxes. Recently, in 2021, AI-City Chal-

lenge [15] was held, including vehicle detection and re-

identification on CityFlowV2-ReID dataset and multi-target

multi-camera vehicle tracking challenge on CityFlow2D

dataset. CityFlow2D dataset has 313.9K bounding boxes

for 880 distinct vehicles.

Drone based datasets. Lately, drone road datasets have

been publicly offered in the literature, namely CARPK [6]

and UAVDT [2]. Both datasets were captured from a high

altitude with a viewing angle of the top by narrow FOV

cameras for the drone-based road monitoring systems. Thus

they are not suitable for fixed surveillance camera-based

traffic monitoring.

3. The FishEye8K Dataset

We provide detailed information on the new FishEye8K

road object detection dataset. The dataset consists of 8,000

annotated images with 157K bounding boxes of five object

classes. Figure 2 shows sample images of the wide-angle

fisheye views, which provide new opportunities for large

coverage, but also new challenges of large distortions of the

road objects.

3.1. Video Acquisition

We have acquired a total of 35 fisheye videos captured

using 20 traffic surveillance cameras at 60 FPS in Hsinchu

City, Taiwan. Among them, the first set of 30 videos (Set

1) was recorded by the cameras mounted at Nanching Hwy

Road on July 17, 2018, with 1920 × 1080 resolution, and

each video lasts about 50-60 minutes. The second set of 5

videos (Set 2) was recorded at 1920× 1920 resolution, and

each video lasts about 20 minutes.

All cameras are the property of the local police depart-

ment, so there is no issue of user consent or license issues.

All images in the dataset will be made available to the pub-

lic for academic and R&D use.

3.2. Dataset Preparation and Characteristics

Sampling. We chose 18 videos from the recorded

footage, with 15 videos coming from Set 1. These were

cropped into shorter videos, each lasting approximately 8

to 10 minutes, except for one that lasted 16 minutes. Us-

ing a sampling method of one frame per 50 and 200 frames



Figure 3. The class distributions of objects in terms of (a) Splits for FishEye8K dataset; (b) Illumination; and (c) Scale.

for Set 1 and Set 2 videos, respectively, we extracted over

10,000 frames. The resulting images were then resized to

1080 × 1080 and 1280 × 1280 for Set 1 and Set 2, respec-

tively.

To incorporate a wide range of perspectives on road con-

ditions, we carefully selected videos for our dataset that fea-

ture diverse camera angles, including side-view and front-

view shots, as well as varying video quality. The dataset

also includes images from different intersection types, such

as T-junctions, Y-junctions, cross-intersections, midblocks,

pedestrian crossings, and non-conventional intersections.

The videos were captured under various lighting condi-

tions, including morning, afternoon, evening, and night,

and diverse traffic congestion levels ranging from free-

flowing to steady and busy. Figure 2 illustrates some of

the wide-ranging road conditions with ground truth anno-

tations of road objects and detection results obtained from

YOLOv5x6 [8].

Object classes: We annotate 5 major classes for road ob-

jects, namely, Pedestrian (all visible people on the streets),

Bike (riders on bicycles, motorcycles, or scooters), Car

(light vehicles such as sedans, SUVs, vans, etc.), Bus, and

Truck (dump-truck, semi-trailers, etc.).

Distant objects: The wide fisheye lens creates a wide

FoV but also results in a panoramic hemispherical image

that is notably distorted with a barrel effect. Additionally,

the camera has a tendency to produce blurred images of

objects located around the edges of the lens. As a conse-

quence, distant objects can appear minuscule and indistinct.

Annotating these distant objects can be an arduous or even

impossible task due to their lack of clarity.

Illumination: Four categories of illumination condi-

tions were identified, namely morning (sunrise), afternoon

(sunny), evening (sunset), and night. The distribution of

video sequences based on their respective illumination at-

tributes is illustrated in Figure 3(b), with the majority of

bounding boxes falling under the afternoon category. Night-

time sequences follow in second place, with morning and

evening categories trailing behind respectively. Notably, the

distribution of classes across all times of day is remarkably

similar

Object scale: We define the scale of the bounding boxes

of road participants based on their size (length and width)

in pixels. The MS COCO evaluator is employed for small

and medium, and large scaled objects. However, as the size

of the image grows toward 1080 × 1080 or 1280 × 1280,

respectively for Sets 1 and 2, we doubled the size of stan-

dard scales, i.e., small (pixels ≤ 64×64), medium (64×64

< pixels ≤ 192×192), and large (pixels > 192×192). The

distribution of road participants in the dataset in terms of

scale is presented in Figure 3 (c), where small and medium-

scaled objects make the most of the dataset. Bus and Truck

classes have a similar number of small and medium scaled

objects. On the contrary, other classes have a compara-

tively high number of small-scaled objects than medium and

large-scale objects.

3.3. Annotation

Annotation Rule. The road participants were annotated

based on their clarity and recognizability to the annotators,

regardless of their location. In some cases, distant objects

were also annotated based on this criterion.

Annotation. Two researchers/annotators manually la-

beled over 10,000 frames using the DarkLabel annotation

program over a period of one year. After cleaning the

dataset, a total of 8,000 frames containing 157012 bounding

boxes remained. Unsuitable frames were removed, includ-

ing those featuring road participants outside the five classes

of interest.

The distribution of objects per class for each video is

depicted in Figure 4. Notably, the night video captured by

Camera 3 has the highest number of objects. In this dataset,

the dominant classes are Bike (88,373) and Car (50,597),

which can be attributed to the semi-tropical location of the

country where the videos were recorded. On the other hand,

the classes of Truck (3,317) and Bus (2,982) have the lowest

number of objects, rendering the dataset highly imbalanced.

Figure 1 displays a selection of samples from all classes,

showcasing various scales. Furthermore, the distributions

of classes are depicted as bar graphs in Figure 3.

For the sake of convenience, we provide three differ-

ent formats for the annotations of FishEye8K datasets, i.e.,

Pascal-VOC [3], MS COCO [12], and YOLO [19].





which results in faster processing times and makes them

suitable for real-time applications. However, these detectors

prioritize inference speed and may not perform as well for

recognizing irregularly shaped objects or groups of small

objects. Table 2 presents the results of our benchmark of

the one-stage detectors.

4.2. Training Procedure

We utilized several frameworks and platforms, i.e.,

Darknet [18], Pytorch [17], and PaddlePaddle [14], for the

model training.

Hyperparameters. All YOLO variations were pre-

trained on MS COCO [12] dataset. Among the models,

we trained four models (YOLOv7 [21], YOLOv7-X [21],

YOLOv8l, and YOLOv8x on the input size 640×640. Six

models (YOLOv5x6 [8], YOLOv5l6 [8], YOLOR-W6 [20],

YOLOR-P6 [20], YOLOv7-D6 [21], YOLOv7-E6E [21])

on the input size 1280×1280. All models have trained

with the same training procedures for 250 epochs, Adam

[9] optimizer with the momentum of 0.937 except for

YOLOv5 [8] which employed SGD optimizer. The confi-

dence and NMS (Non Max Suppression) IoU (Intersection

over Union) thresholds were both 0.5, and a learning rate of

0.01.

Data preprocessing. For the purpose of training and

testing, the input images were resized to 640×640 and

1280×1280 for particular models, see Table 2.

Loss Objective. We employed the Focal loss [11] as it

is commonly used in the multi-object detection and multi-

label image classification domain. The loss function is de-

fined as:

FL(pt) = −αt(1− pt)
γ log(pt), (1)

where by default γ = 0.5 and α = 0.5, pt is the predicted

probability for the object indexed by t.

4.3. Metrics

All models are analyzed and evaluated with the same

metrics, i.e., Precision, Recall, mAP s, AP S, APM,

AP L, F1− score, and their inference time.

F1-score metric measures the balance between Preci-

sion and Recall. When both Precision and Recall are high,

the F1 score is high as well, indicating good model perfor-

mance. On the other hand, a low F1 score indicates that the

Precision and Recall values are imbalanced, and the model

is not performing well. The F1 score is calculated as below:

F1 =
2× Precision×Recall

Precision+Recall
(2)

Average Precision (AP ) represents all Precision and

Recall values into a single score. The AP is calculated ac-

cording to:

AP =

n−1∑

k=0

[Recall(k+1) −Recall(k)] ∗ Precision(k+1),

where k is an index of the frame, and n is the number of

frames for a given class.

Intersection over Union (IoU). The model predicts the

bounding boxes of the detected objects; however, it is ex-

pected that the predicted box will not match exactly the

ground truth box. Intersection over Union (IoU) is em-

ployed to quantify the measure to score how the ground

truth and predicted boxes match: IoU = Intersection Area
Union Area

.

Normalized Confusion Matrix is used to determine the

prediction quality of the model by each class. A confusion

matrix is made up of 4 components, namely, True Positive

(TP), True Negative (TN), False Positive (FP), and False

Negative (FN).

Mean Average Precision (mAP s) is the mean of the

AP s for all classes. The mAP of the object detection

model is calculated according to:

mAP =
1

n

n∑

k=1

APk, (3)

where n is the number of classes in the dataset and AP (k)
is the average precision (AP ) for a given class k.

4.4. Performance

In this subsection, we report the experimental results of

variations of YOLOv5 [8], YOLOR [20], YOLOv7 [21],

and YOLOv8, which are trained on DGX-1 GPU server ac-

cessed by internal web-based job and resource allocation

system [5].

Table 2 presents two sets of models that were trained on

the FishEye8K dataset, with input sizes of 1280×1280 and

640×640.

4.4.1 Results on Input Size 640 × 640

For input size 640×640, the highest two mAP 0.5s of

0.6146 and 0.612 are achieved by YOLOv8x and YOLOv8l,

respectively. The lowest mAP 0.5s of 0.4235 is result

of YOLOv7 [21]. In terms of F1-score and Recall,

YOLOv7-X achieved the highest performance with 0.5794

and 0.4888, respectively. Further, in terms of object

scale, YOLOv7-X outperformed on all three scales (small,

medium, and large) as well.

The confusion matrix for the best-performing model,

YOLOv8x, on the input size of 640×640, is presented in

Figure 5, and Table 3 tabulates the results. The Car class

achieved the highest mAP 0.5 score of 0.749, followed by

Bus, Bike, Truck, and finally Pedestrian with a score of





objects, with an APL of 0.7216.

Figure 6 shows the confusion matrix and Table 4 tab-

ulates the results provided by the best-performing model

YOLOR-P6 [20] on the input size of 1280×1280. The most

accurately predicted class is Bus with an mAP 0.5 of 0.8161

followed by Car, Truck, Bike and finally Pedestrian with

mAP 0.5 of 0.3621.

The Bike has the maximum normalized FP rate at 0.65

when the background is incorrectly detected as Bike. Ad-

ditionally, a substantial fraction of objects in each class

remains undetected, as indicated by their normalized FN

rates varying between 0.29 to 0.72. Despite this, the model

demonstrates comparatively good performance in terms of

Precision across all classes, with values ranging from 0.77

to 0.95, with the exception of the Pedestrian class, which

displays a significantly low Precision of 0.49.

4.4.3 Inference Time

The inference time for each model was measured on a work-

station featuring an 11th Gen i7 CPU and an Nvidia RTX

3080 GPU, and the results are presented in Table 2. The

outcomes demonstrate that all models perform efficiently

on this high-end computer, with inference times varying be-

tween 4.3 ms to 43.9 ms.

5. Discussions

The majority of the dataset, consisting of images from

Cameras 1-15, were derived from fisheye surveillance cam-

era footage captured on a single day in July 2018 in Taiwan.

Although the dataset contains images of 5 major road partic-

ipants captured from varying angles and under different il-

lumination conditions, it lacks diversity in terms of weather

conditions, such as fog, rain, snow, and storms. Addition-

ally, the dataset is imbalanced, with the class Bike having

the highest number of objects at 88K, while the Bus class

has the lowest number at 2.98K.

Hard cases of the best-performing YOLOR-W6 [20] are

represented by few samples in Figure 7.

In Figure 7(a), several examples of false negatives

are shown where the labeled objects are not detected.

These instances can be categorized into two groups:

parked/stationary vehicles and road participants in motion.

In the top left, only two out of nine scooters parked in a row

on the sidewalk are correctly detected. On the top right, two

partially visible cars parked in a garage are not detected.

The presence of numerous parked vehicles in the dataset

and the misdetection of such vehicles contribute to the high

false negative rates observed across all classes.

The second type of false positives involves road partic-

ipants in motion, such as a truck, a pedestrian, and a bus

shown in the three crops at the bottom of Figure 7(a)

Figure 7. Some samples of hard cases of YOLOR-P6 detections

on input size 1280 × 1280.

The examples shown in Figure 7(b) illustrate instances

where the background is misclassified as one of the object

classes, resulting in higher false positive rates. Specifically,

in the top left, a road sign is incorrectly detected as a Pedes-

trian, while in the bottom left, a yellow building is misclas-

sified as a Bus. In the center, a building pillar is erroneously

labeled as a Pedestrian, and on the right, a horizontal road

sign is detected as a Bike.

In Figure 7(c), we can observe cases where classes are

misclassified as other classes. The four images, from the

bottom to the top, show how the predictions change as

Pedestrians walk away from the camera. We can see that

misclassification occurs when the size of the objects gets

smaller. Specifically, the objects were initially correctly de-

tected as Pedestrians when they were closer to the camera,

but as they moved away and became smaller, they were mis-

classified as Bikes.

6. Conclusions

We presented the FishEye8K benchmark dataset along

with the evaluation of the SoTA one-stage object detectors

for the use of fisheye cameras for road object detection.

This dataset fills the gap in the lack of a fisheye surveil-

lance camera dataset for road 2D object detection tasks.

The anonymized dataset includes 8000 frames with 157K

bounding boxes of 5 different road participants and various

aspects of road conditions. Our evaluation results show that

YOLOv8 and YOLOR models [20], which are pretrained

on MS-COCO [12], outperforms the other models. There-

fore the FishEye8K dataset will be a significant contribution

to the fisheye video analytics and smart city applications.



Future work includes the creation of a large and more

balanced dataset with more diverse street object categories

that can be used for object re-identification model training

and evaluation.
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