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Abstract

In the classical supervised learning settings, classifiers
are fit with the assumption of balanced label distribu-
tions and produce remarkable results on the same. In the
real world, however, these assumptions often bend and in
turn adversely impact model performance. Identifying bad
learners in skewed target distributions is even more chal-
lenging. Thus achieving model robustness under these ”la-
bel shift” settings is an important task in autonomous per-
ception. In this paper, we analyze the impact of label shift
on the task of multi-weather classification for autonomous
vehicles. We use this information as a prior to better assess
pedestrian detection in adverse weather. We model the clas-
sification performance as an indicator of robustness under
4 label shift scenarios and study the behavior of multiple
classes of models. We propose t-RAIN a similarity map-
ping technique for synthetic data augmentation using large
scale generative models and evaluate the performance on
DAWN dataset. This mapping boosts model test accuracy
by 2.1, 4.4, 1.9, 2.7 % in no-shift, fog, snow, dust shifts re-
spectively. We present state-of-the-art pedestrian detection
results on real and synthetic weather domains with best per-
forming 82.69 AP (snow) and 62.31 AP (fog) respectively.

1. Introduction

Autonomous perception is notoriously vulnerable to out-
of-distribution settings like adverse weather and imagery
corruptions. As data from sensors is both limited and of-
ten corrupted by natural phenomena, for practical purposes,
in-built model robustness is essential for efficient computa-
tion. Given the dynamic surroundings and terrains present
in everyday driving scenes, building robustness to out-of-
distributions settings is an essential feature for vehicular
safety and trust. However, modern classifiers are mostly

Figure 1. Sim2Real Detection: DAWN-WEDGE (Real-
Synthetic) Data Samples Depicting Adversarial Weather Condi-
tions Including Dust (Tornado, Sandstorms), Fog (Mist, Haze,
Fog), Rain and Snow in Autonomous Driving Scenes.

trained on good-weather data due to the abundance and
ease of classification, making them vulnerable to adversar-
ial weather attacks like sand, dust, mist, snow, droplets, fog
and rain.

In this work, we treat multi-weather robustness as a su-
pervised learning problem in the standard settings and opti-
mize for best performance. Then we perturb the target dis-
tribution to simulate label shift and test this robustness. The
main goal is pedestrian detection under adversarial weather
conditions and study of the underlying performance shifts.
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Real Data (DAWN Dataset) Synthetic Data (WEDGE Dataset)Model car person bus truck T-4 AP mc bicycle mAP car person bus truck van mAP
Prior Art
Multi-weather city [27] - - - - 21.20 (39.19) - - (39.19) - - - - - -
RoHL [31] - - - - - - - 28.80 - - - - - -
Transfer Learning [25] 7.00 8.00 7.00 - 5.50 - 0.00 - - - - - - -
Data Augmentation [25] 6.00 4.00 3.00 0.00 26.25 - 92.00 - - - - - - -
Weather-
Night GAN [22] 48.00 0.00 0.00 0.00 12.00 - - - - - - - - -

Ensemble Detectors [39] 52.56 52.34 21.73 13.71 35.08 35.51 23.29 32.75 - - - - - -
Evaluation on DAWN-All
Trained on Good Weather Data (COCO [19])
FasterRCNN
MobileNet
Large 320 [15, 30]

37.56 34.93 20.90 12.91 26.57 23.15 18.95 24.73 34.10 36.26 39.35 16.05 0.00 25.15

FasterRCNN
MobileNet
Large [15, 30]

60.64 55.96 32.78 23.66 43.26 38.55 28.75 40.05 35.34 39.52 35.83 25.43 0.00 27.22

FasterRCNN ResNet 50 [30] 69.13 70.31 38.64 30.54 52.15 52.17 30.56 48.55 31.41 33.54 30.19 18.75 0.00 22.78
Fine-Tuning on WEDGE
FasterRCNN
MobileNet
Large 320 [15, 30]

39.52 23.97 7.81 22.08 23.34 0.00 0.00 15.56 40.40 43.01 49.88 31.41 10.19 34.98

FasterRCNN
MobileNet
Large [15, 30]

59.81 34.61 14.06 30.67 34.78 0.00 0.00 23.19 52.52 54.79 51.23 50.01 7.95 43.30

FasterRCNN ResNet 50 [30] 68.09 54.29 27.48 35.02 46.22 0.00 0.00 30.81 57.48 54.71 46.92 57.43 10.49 45.41

Table 1. Object Detection Benchmarks on DAWN and WEDGE datasets. The latest work [23] in this domain presents state-of-the-art
benchmark (models trained on Good-weather data and fine-tuned on WEDGE) on DAWN and WEDGE datasets. The pedestrian detection
benchmark is 70.31 AP on DAWN and 54.79 AP on WEDGE. (54.29 and 54.71 is best WEDGE fine-tuned model benchmark)

Our main contributions include:

1. Benchmark. Multi-weather classification benchmark
on DAWN dataset. Analysis of model behaviour under
limited settings.

2. Label Shift. Simulation of label shift settings for
multi-weather classification. Proposal of t-RAIN al-
gorithm for synthetic data augmentation using VLM
prompting.

3. Pedestrian Detection. We conduct experiments to
link the multi-weather classification behaviour by con-
sidering the task of pedestrian detection in synthetic
and real settings.

2. Background
2.1. Label Shift

Tackling image corruptions for improved perception has
been a long-standing challenge in the field of computer vi-
sion [1, 2, 26]. As newer datasets have introduced weather-
based corruptions [3, 17, 41] for improving robustness, the
awareness of this subject is on the rise. Recently, multi-
weather robustness has been the focus of several works
which proposed ideas like stacking [27], ensembles [39] and
image restoration [25], the performance of classic bench-
mark models still fail on extreme weather conditions. In the
history of label shift methods, several works study correct-
ing label shift and generalization in general, especially in

unsupervised settings [10–12]. The progress in this field is
rapid due to the parallel development of autonomous vehi-
cles and need for explainability for trust-worthy AI systems
for the future.

2.2. Adversarial Weather Robustness

The DAWN dataset [17] and WEDGE dataset [23]
present interesting adversarial weather conditions including
fog, rain, snow , dust as visible in Figure 1. The most recent
benchmark on these datasets [23, 25] presents state-of-the-
art results and demonstrates effectiveness of using synthetic
data augmentation in the task of overall object detection.

2.3. Sim2Real Gap

The recent development in large vision-language mod-
els [28, 29] and refined generative techniques, have led to
creation of more realistic synthetic images. The natural ad-
vancement would be adoption of synthetic images to aug-
ment limited real-world datasets. However, this adoption
is limited by the cost, realism, availability and usability of
synthetic images. By incorporating synthetic images [23]
in this work, we demonstrate one positive use case of such
images.

2.4. Pedestrian Detection

Finding people in imagery has been a long-standing
challenge in computer vision, with several decades of prior
work [6, 37, 44] setting up the foundation for examination



of finer problems in modern computer vision. The cre-
ation of high-quality datasets [6,9,13,42] was a contributing
factor to rapid development of powerful algorithms capa-
ble of detection in challenging conditions. Classical algo-
rithms combined with novel architectures for robust detec-
tion were the focus of many works in vision encompassing
multi-scale detection, occlusion invariance and cascaded re-
jection classifiers [4, 21, 24, 32, 38, 40, 43].More recently,
tracking and detection of pedestrians in the real-world has
been solved using a variety of deep networks, algorithmic
strategies and forecasting approaches [7, 8, 18, 33].

3. Methodology
3.1. Datasets

We employ the DAWN Dataset [17] and the WEDGE
dataset [23] to test the efficacy of our strategy. The DAWN
dataset is a 1000 image object detection dataset that in-
cludes traffic imagery in bad weather like rain,fog, dust
and snow. WEDGE is a synthetic dataset that employs the
DALL-E 2 model [28, 29] with prompts encompassing 16
weather and season conditions with a focus on autonomous
vehicle scenarios. It features images captured during severe
weather, such as rain, snow, fog, and sandstorms (Refer Fig-
ure 1).

3.2. Proposed t-RAIN Algorithm

In limited data settings, generalization capabilities are
naturally limited by the number of examples seen by the
classifier. However, with the development of large-scale
vision-language models (stable diffusion, DALL-E), access
to unlimited synthetic datasets has become much easier. We
propose an algorithm that can leverage classical classifiers
with synthetically generated data to provide generalization
capabilities even in limited data settings (< 160 images).

cos(x, y) =
x · y

||x|| · ||y||
(1)

The algorithm works by mapping similarity between the
source distribution classes (C) and target synthetic classes
(C) to sample relevant images and up-sample for each class.
The technique currently performs uniform weighting but
can be extended to weighted sampling in the future works.
Once the source class and target class are compared (this
can be between class and prompt keywords as well), we
filter the images with greatest similarity (currently cosine
similarity 1).

We return this set through the oracle until all classes
are mapped and sufficient samples (determined by hyper-
parameter β) from the target dataset (of size η) are satis-
factorily generated. The filtered target samples from class
with closest class similarity to source sample (Xi) are the
augmentation set.

Algorithm 1 t-RAIN Algorithm
Require: Randomly synthesized unlabelled dataset Qt

Labelled real training dataset Q with C classes
for i ∈ Train− Set Size(or B iterations) do

2: Sample data point Xi at random
ϕi ← Oracle(Xi, Ci)

4: QCi
← ϕi

end for
6: return Q

Sub-Program: Oracle for Mapping Sim2Real Samples

Require: Sample Xi, Class Ci

Labelled synthetic dataset S with C classes (extracted
from prompts)

Ensure: Ci ∈ C
j ← 1

8: for j ≤ η do
Sample synthetic data point Qj at random

10: Scj ← Cosine Similarity(Class(Qj), Ci)
ψj ← Qj

12: end for
SORT ψ by Scj

14: FILTER ϕi < −ψ[η − β : η]
(β = 210 maximum values here)
return ϕi

Figure 2. Label Shift Simulation: Shifts 0,1,2,3,4 correspond to
the simulated No-Shift, Rain, Fog, Snow, Dust Shifts’ target label
distributions.

4. Experiments
The experimentation procedure was carried out in the

following steps:

1. Training of set of classifiers on DAWN dataset targeted
for optimal classification accuracy.

2. Performance evaluation on smaller training sets (80-
50-20 splits) and robustness evaluation.



Split Model Train
Acc.

Test
Acc. F1-Score Prec. Recall F1-Score

Rain
F1-Score
Snow

F1-Score
Dust

F1-Score
Fog

80

Xception 99.69 71.88 0.73 0.72 0.72 0.62 0.93 0.77 0.56
VGG-16 99.69 78.75 0.79 0.79 0.79 0.68 0.9 0.88 0.71
VGG-19 99.53 70.63 0.7 0.71 0.7 0.55 0.82 0.79 0.63
ResNet50 41.56 45.63 0.5 0.49 0.45 0.45 0.73 0.34 0.28
MobileNet 99.69 78.12 0.79 0.78 0.78 0.73 0.91 0.87 0.63
DenseNet 99.22 77.50 0.78 0.76 0.77 0.73 0.88 0.83 0.63
InceptionV3 99.69 70.63 0.72 0.71 0.71 0.68 0.89 0.72 0.55
MobileNetV2 99.69 73.12 0.73 0.73 0.72 0.63 0.86 0.79 0.62
EfficientNetV2S 75.63 48.12 0.49 0.49 0.46 0.32 0.72 0.26 0.55
ConvNeXtSmall 61.56 51.25 0.41 0.41 0.4 0.31 0.59 0.3 0.42

50

Xception 99.75 72.50 0.73 0.72 0.72 0.68 0.87 0.73 0.61
VGG-16 99.75 69.38 0.7 0.69 0.69 0.61 0.88 0.78 0.5
VGG-19 99.75 70.00 0.7 0.7 0.7 0.59 0.84 0.78 0.58
ResNet50 58.75 55.62 0.51 0.51 0.49 0.53 0.7 0.25 0.46
MobileNet 99.75 73.12 0.74 0.73 0.73 0.65 0.87 0.8 0.61
DenseNet 99.75 74.37 0.75 0.74 0.74 0.67 0.89 0.81 0.6
InceptionV3 99.75 63.75 0.62 0.63 0.62 0.63 0.77 0.63 0.42
MobileNetV2 99.75 70.63 0.7 0.71 0.7 0.65 0.85 0.7 0.59
EfficientNetV2S 74.50 47.50 0.46 0.47 0.45 0.49 0.73 0.18 0.41
ConvNeXtSmall 65.25 50.63 0.46 0.47 0.45 0.49 0.73 0.18 0.41

20

Xception 100.00 67.50 0.67 0.68 0.67 0.62 0.82 0.7 0.54
VGG-16 100.00 65.00 0.66 0.66 0.66 0.6 0.76 0.68 0.6
VGG-19 100.00 62.50 0.62 0.62 0.62 0.54 0.73 0.64 0.58
ResNet50 61.87 48.75 0.5 0.47 0.47 0.52 0.57 0.26 0.52
MobileNet 100.00 73.12 0.74 0.73 0.73 0.67 0.86 0.78 0.6
DenseNet 100.00 71.88 0.71 0.71 0.71 0.65 0.89 0.76 0.54
InceptionV3 100.00 56.88 0.62 0.57 0.53 0.56 0.76 0.62 0.17
MobileNetV2 100.00 63.13 0.66 0.63 0.62 0.55 0.84 0.62 0.45
EfficientNetV2S 85.62 48.12 0.45 0.45 0.42 0.52 0.58 0.29 0.31
ConvNeXtSmall 68.75 44.37 0.59 0.42 0.37 0.49 0.52 0.05 0.44

Table 2. Weather Classification Benchmark (Learning with Limited Data) with Benchmark Models (Xception [5], VGG16 [34], VGG19
[34], ResNet50 [14], MobileNet [15], DenseNet [16], InceptionV3 [35], MobileNetV2 [15], EfficientNetV2S [36], ConvNeXtSmall [20]).
As expected, the models trained with 80-20 split (greatest training set) deliver the best results.

3. Simulation of 4 label shift scenarios and comparison
with uniform label distribution.

4. Pedestrian detection under 4 adverse conditions for 2
datasets: Real (DAWN) and Synthetic (WEDGE).

5. Results and Discussion
5.1. Model Generalization in Limited Data Settings

As visible in Table 2 and Figure 4, the model perfor-
mance drops significantly when restricted to limited data
environments as expected. The models begin overfitting
on training set and are unable to generalize to multi-
weather conditions. EfficientNetV2S and ConvNeXtSmall
(the weakest learning models) have shown improvement on
limited data settings, indicating the pseudo-generalization

capabilities of weak learners, albeit extremely poor perfor-
mance due to underfitting.

5.2. Label Shift Generalization

We simulate label shift by boosting one class at a time
(Figure 2) and a simple random affine transformation on
the remaining set sizes. The goal is to observe shift when
specific weather conditions dominate the target distribution.

5.3. Benchmark Comparison

We can see from Table 3 and Figures 3,6,7, some model-
specific trends:

1. Xception model which had fit very well on snow class,
performed better when the snow class was positively
biased in the target distribution. Similarly it per-



Figure 3. How well do models differenciate between weather? Evaluation of class-level performance of models under 80-20, 50-50
and 20-80 train-test splits using F1-Score Metric on DAWN dataset [17].

Split Shift M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

80

1 71 78 70 45 78 77 70 73 48 51
2 70 77 68 56 81 79 73 72 42 49
3 71 81 71 38 79 75 66 73 56 54
4 75 83 76 53 81 81 73 78 53 57
5 67 80 69 35 78 74 69 75 41 44

50

1 72 69 70 55 73 74 63 70 47 50
2 77 75 74 59 76 76 70 76 46 50
3 73 68 70 52 71 74 59 69 43 52
4 75 77 76 59 77 81 71 79 48 53
5 67 68 66 46 69 71 59 69 37 43

20

1 67 65 62 48 73 71 56 63 48 44
2 70 68 65 51 77 74 68 66 53 47
3 67 68 64 48 68 70 44 61 43 35
4 74 69 67 45 77 77 58 73 50 35
5 61 66 64 43 67 69 50 63 35 36

t-RAIN

1 70 68 65 55 71 74 64 66 43 42
2 70 71 62 61 74 76 66 71 42 38
3 70 69 65 50 72 72 60 64 47 43
4 72 73 69 56 80 78 68 67 43 38
5 66 67 62 50 68 70 58 63 38 39

Table 3. Weather Classification Benchmark: Test Accuracy of Benchmark Models M1 to M10 from Left to Right (Xception [5],
VGG16 [34], VGG19 [34], ResNet50 [14], MobileNet [15], DenseNet [16], InceptionV3 [35], MobileNetV2 [15], EfficientNetV2S [36],
ConvNeXtSmall [20]) After Label Shift Shift 1 : None, Shift 2: Rain , Shift 3: Fog , Shift 4: Snow , Shift 5: Dust on DAWN dataset [17].

forms worse when exposed to other shifts which it had
learned poorly. Upon applying t-RAIN it shows 3 %
increase in accuracy for no-shift and fog shift condi-
tions. It shows 5% increase in accuracy for dust-shift

attacks.

2. VGG-16 is one of the stronger learning models with
higher performance values. It performs similar on all
classes and attains high performance under all shifts,



Figure 4. Size matters!: Effect of training set size on model per-
formance, S-1, S-2, S-3 represents the 80-20 (red), 50-50 (blue)
and 20-80 (green) train-test split variations of the trained models
on DAWN dataset [17].

Weather/Data DAWN WEDGE
Rain 73.5 29.7
Snow 82.69 22.34
Dust 59.66 60.89
Fog 73.32 62.31

Table 4. Pedestrian detection in adverse weather: We observe
that best detection performance is under Real Snow Conditions
with 82.69 AP and Synthetic Fog Conditions with 62.31 AP when
evaluated on DAWN and WEDGE datasets. The number of images
used for evaluation was 766 and 810 respectively. The model for
detection is FasterRCNN with Resnet 50 Backbone pre-trained on
COCO images [19].

especially snow. When synthetic data is sampled via
t-RAIN, it consistently outperforms baseline VGG-16
with 1-4% increases. This may point towards bet-
ter generalization of stronger models due to efficient
learning of complex representations from the extended
input space.

3. VGG-19 shows similar trends to VGG-16 but with 3%
under-performing margin for rain and dust shifts.

4. ResNet50 is one of the weakest learners with second-
last performance in most cases. It generalizes better in
limited data due to under-fitting and shows mediocre
results which improve marginally for snow shifts. t-
RAIN dramatically improves the ResNet performance
on all shifts by 2-11 % accuracy. This is an important
result, as we observe that variability in data can boost

both strong and weak learners, with greater effects on
weak learners.

5. EfficientNetV2S is a significantly weak learner with
worst performance on dust shift. t-RAIN is only able
to boost performance by 3-4 % on dust and fog shifts.

6. ConvNextSmall is also one of the more poorly
performing models with almost zero robustness to
weather conditions like dust shift. Although t-RAIN
improves robustness under all conditions by 3 - 8 %
except rain and no-shift the model suffers under lim-
ited data constraints and plummets to bottom rank.

7. MobileNet features good performance and fast train-
ing. It is not robust to fog corruptions but otherwise
provides reasonable results with 1-4% boosts in ma-
jority classes and worse under rain and no-shifts.

8. DenseNet features similar trends with baseline perfor-
mance mainly for snow shifts. It features the most
common boost of 1-3 % over all shifts uniformly.

9. MobileNetV2 features good performance and fast
training. The model improved with t-RAIN under rain
and fog shifts by 5 % and 3 % respectively.

10. Inception V3 is an average learner but suffers ad-
versely from fog shift. Adding t-RAIN to such models
significantly improves the performance which is a re-
markable result. There is 8 and 16% increase in test ac-
curacy after using t-RAIN to improve no-shift and fog
robustness in Inception V3.Adding t-RAIN improves
the performance the most dramatically out of all the
other results with 16% increase in test accuracy here
under fog shift which is a remarkable result.

Some general observations include snow being one of
the easiest weather classes to recognize due to significant
distinguishing characteristics. Models suffer from easier
evaluation when snow is considered as one of the evaluation
classes. For true robustness evaluation such classes should
be held out and only measured as sanity checks and not ro-
bustness measures. As visible in Figure 6, the t-RAIN algo-
rithm is able to improve generalization , for all learners from
strong learners like VGG-16 to weak learners like Efficient-
NetV2S and outperforms the performance on limited data
with synthetic augmentation. The averaged improvement
across all 5 shifts are 2.1, -0.8,4.4,1.9, 2.7 % respectively.
One interesting result presents a question of why t-RAIN
boosts specific class -shifts performance inspite of under-
lying uniform distribution and uniform augmentation. This
could potentially be attributed to special variations and ro-
bustness introduced by the synthetic data which helped gain
generalization capabilities beyond the source distribution.



Figure 5. Understanding multi-weather robustness: Relative Performance of classification models under different label shift and training
data distributions on DAWN dataset [17].

Figure 6. Contribution of t-RAIN to Model Generalization: We demonstrate model performance under 5 shift conditions: No shift,
Rain, Fog, Snow, Dust in the above 5 figures from Left to Right. The black arrows indicate the test accuracy of t-RAIN algorithm and
in-line coloured circles represent individual models. Whenever the black arrow appears above the circle, the t-RAIN outperforms limited
data benchmark on DAWN dataset [17].

5.4. Pedestrian Detection

We use the earlier analysis as a prior to analyze perfor-
mance of models in detection pedestrians under anomalous
weather conditions. As visible in Table 4 and Figure 8, the
best detection performance is under Real Snow Conditions
with 82.69 AP and Synthetic Fog Conditions with 62.31
AP when evaluated on DAWN and WEDGE datasets. In-
tuitively another direction we explore the adversarial diffi-
culty of each weather condition for detecting pedestrians. In
real data, dust weather appears to obstruct vision for pedes-
trian detectors the most whereas in synthetic data, snow ap-
pears to obstruct vision the most. This is a surprising re-
sult as snow is the easiest weather in real data, which is the
opposite in synthetic data. Due to this adversary, we can
understand now why t-RAIN improves generalization ca-
pability of 7/10 models under snow shift with a maximum
increase of 10% accuracy. However, conversely, ease in de-
tection like fog conditions does not imply ineffectiveness
of t-RAIN. t-RAIN improves generalization capability of
10/10 models under fog shift with a maximum increase of
16% accuracy. Further analysis can be done in the direc-

tion of discovering distribution shift induced by synthetic
generation. This analysis was not performed in the scope
of this study, but there can be multiple possible underlying
factors for the results reported in Table 4. Firstly, we can
see that generated humans in synthetic data appear out-of-
distribution due to the trust and security layers implemented
for privacy concerns and obscuration. Thus evaluation of
pedestrian detection across Sim2Real data is not actually an
informative indicator of generative accuracy but may hint
towards undiscovered generative anomalies. Models that
work well on real-data and poorly on synthetic data could be
suffering due to (a) Real2Sim gap (b) Beneficial adversarial
robustness or (c) Harmful generative anomalies that do not
help real-world models. Identifying the exact cause for per-
formance shift is an interesting challenge that we propose
for future works.

6. Conclusion
Better overall test performance may not always signify

better multi-weather generalization, but could be attributed
to underlying factors like unseen target distribution shifts.
Models may have possibly rote-learned specific classes and



Figure 7. Performance Evaluation: The lines demonstrate model-wise performance differences as measured by relative accuracy be-
tween limited data benchmarks and proposed t-RAIN algorithm under all 5 shift conditions. Fog shift appears to have the most dramatic
improvement in test-time performance on DAWN dataset [17].

Figure 8. Finding people in all seasons: Pedestrian Detection in
Real (DAWN) and Synthetic (WEDGE) imagery (left to right).

still go unseen as bad learners due to convenient boosts in
model performance due to label shifts. Weak learners also
show pseudo-generalization capabilities which are usually
too small in magnitude and misleading to be considered
significant. Leveraging weaker learners through ensemble
methods can be explored in the future scope of this study.

Through this small-scale study, we were able to uncover
many insights on the fundamental problems with multi-
weather robustness as an extension on the label shift and
generalization problems of benchmark classification mod-
els.

The applications of this study mainly apply to au-
tonomous perception in unsupervised settings, where model
robustness is difficult to evaluate and target distributions are
often skewed. They can extend to all real world scenarios
like medical image analysis, species classification etc that
showcase out-of-distribution examples and variable label
distributions. Given unlabelled target data, one can attain
reasonable results if model is robust to label shift on uni-
form source label distribution. One might also attempt to
predict unlabelled target weather distribution upto a certain
confidence using a well-trained model from this work. An-
other application can include using weather-classification
labels as a prior for downstream computer vision tasks like
specialized image denoising specific to the weather condi-
tion. We consider the integration of large-scale generative
models into our study as an example of improvement on
classical data collection methods with novel architectures
for better generalization. In the future work, we would like
to put forward better methods for overcoming label shift
vulnerability and weather-specific methods for robust all-
weather vision extended to unsupervised settings.
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