
Camera-based Recovery of Cardiovascular Signals from
Unconstrained Face Videos Using an Attention Network

Yogesh Deshpande

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

A. Lynn Abbott, Chair

Creed F. Jones

Abhijit Sarkar

May 01, 2023

Blacksburg, Virginia

Keywords: Deep Learning, Remote Photoplethysmograph (iPPG), Biometrics

Copyright 2023, Yogesh Deshpande



Camera-based Recovery of Cardiovascular Signals from Unconstrained
Face Videos Using an Attention Network

Yogesh Deshpande

(ABSTRACT)

This work addresses the problem of recovering the morphology of blood volume pulse (BVP)

information from a video of a person’s face. Video-based remote plethysmography methods

have shown promising results in estimating vital signs such as heart rate and breathing

rate. However, recovering the instantaneous pulse rate signals is still a challenge for the

community. This is due to the fact that most of the previous methods concentrate on

capturing the temporal average of the cardiovascular signals. In contrast, we present an

approach in which BVP signals are extracted with a focus on the recovery of the signal

morphology as a generalized form for the computation of physiological metrics. We also place

emphasis on allowing natural movements by the subject. Furthermore, our system is capable

of extracting individual BVP instances with sufficient signal detail to facilitate candidate

re-identification. These improvements have resulted in part from the incorporation of a

robust skin-detection module into the overall imaging-based photoplethysmography (iPPG)

framework. We present extensive experimental results using the challenging UBFC-Phys

dataset and the well-known COHFACE dataset. The source code is available at https:

//github.com/yogeshd21/CVPM-2023-iPPG-Paper.

https://github.com/yogeshd21/CVPM-2023-iPPG-Paper
https://github.com/yogeshd21/CVPM-2023-iPPG-Paper


Camera-based Recovery of Cardiovascular Signals from Unconstrained
Face Videos Using an Attention Network

Yogesh Deshpande

(GENERAL AUDIENCE ABSTRACT)

In this work we are trying to study and recover human health related metrics and the

physiological signals which are at the core for the derivation of such metrics. A well know

form of physiological signals is ECG (Electrocardiogram) signals and for our research we

work with BVP (Blood Volume Pulse) signals. With this work we are proposing a Deep

Learning based model for non-invasive retrieval of human physiological signals from human

face videos. Most of the state of the art models as well as researchers try to recover averaged

cardiac pulse based metrics like heart rate, breathing rate, etc. without focusing on the

details of the recovered physiological signal. Physiological signals like BVP have details like

systolic peak, diastolic peak and dicrotic notch, and these signals also have applications

in various domains like human mental health study, emotional stimuli study, etc. Hence

with this work we focus on retrieval of the morphology of such physiological signals and

present a quantitative as well as qualitative results for the same. An efficient attention

based deep learning model is presented and scope of re-identification using the retrieved

signals is also explored. Along with significant implementations like skin detection model

our proposed architecture also shows better performance than state of the art models for two

very challenging datasets UBFC-Phys as well as COHFACE. The source code is available at

https://github.com/yogeshd21/CVPM-2023-iPPG-Paper.

https://github.com/yogeshd21/CVPM-2023-iPPG-Paper
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Chapter 1

Introduction

1.1 Motivation

Devices that perform convenient measurements of physiological signals have grown in pop-

ularity in recent years. For example, wearable devices by Fitbit [8], Apple [20], AliveCor

[1], and others are capable of monitoring heart rate and other vital metrics. In addition

to wearable devices, researchers have also considered the use of camera-based monitoring

of physiological signals (e.g., [25, 35, 50, 52]). Circumstances such as the novel coronavirus

pandemic have also increased awareness of benefits that can be obtained from convenient,

noninvasive devices [26]. Unlike systems that require contact with the body, camera-based

systems have the potential to be less intrusive in many situations like patient monitoring,

driver monitoring [24, 36, 44, 46]. Chen et al. [5] have developed imaging-based systems

that benefit from deep-learning techniques. However, more work is needed in sensing instan-

taneous (instance-level) physiological metrics [22].

This work is concerned with monitoring the cardiovascular system through the analysis of

image sequences from standard RGB video cameras. Sample frames are shown in Figure 1.1.

The approach is based on the principle that each beat of the heart causes blood volume

pulses (BVP) to travel through the body; these pulses cause slight changes in reflectance

near the skin that are captured by the camera. The resulting intensity changes are very

faint and are not noticeable with the unaided eye. The general framework is known as

1
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Figure 1.1: Examples of head movement and occlusion of the face in the dataset UBFC-
Phys [34], highlighting our inclusion of natural movements. Green boxes indicate face regions
that were detected using MTCNN [55].

remote photoplethysmography (iPPG), which refers to the use of light to perform remote

measurements of volumetric changes.

In recent years, there has been a significant effort toward studying cardiovascular signals us-

ing camera-based iPPG. However, most previous approaches have focused on scenarios where

the subject’s head remains stationary during the measurement process. In contrast, our work

emphasizes the need to accommodate relatively large head movements. These movements

pose significant challenges in detecting skin regions and measuring intensity changes accu-

rately and reliably. Moreover, several confounding factors complicate the problem further,

such as facial hair, eyeglasses, occlusion of the face, and variations in skin tone across sub-

jects. Our work proposes a novel approach to address these challenges and improve the

accuracy and reliability of camera-based recovery of cardiovascular signals in scenarios with

significant head movements.
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One of the key distinguishing features of our work is the focus on extracting individual

BVP instances with good approximations of the underlying volumetric signal shape. Unlike

previous systems that estimate average heart rate (HR), our approach has the potential to

provide information related to inter-beat intervals and heart-rate variability (HRV). Another

potential benefit of a pulse-level signal information is the ability to distinguish one person

from another. This work also considers the problem of re-identification based on iPPG

signals. We present a model that can make such re-identification possible.

1.2 Main Contributions

In summary, the main contributions of this work are as follows,

1) Improved Attention Pipeline: The method relies on a deep network that incorporates a

novel attention branch with a refined region of interest that emphasizes skin detection and

also handles cases with facial hair and specular reflection, over a wide range of skin tones.

2) morphology Recovery: The new method emphasizes the recovery of morphology of physi-

ological signals solely from RGB videos of the human face, with emphasis on handling large

head movements and partial occlusion.

3) Improved Standard Cardiovascular Metrics: We present quantitative experimental results

that demonstrate improved estimates of heart rate, as compared to previous state-of-the-art

methods.

4) morphology Metrics: We present recovered time-variant physiological signal-based metrics

and propose a standardized approach that could be followed by future researchers.

5) Re-identification: We introduce a candidate approach to subject re-identification, based on

the recovered signals from the proposed model rather than averaged cardiovascular metrics.
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Our work therefore has the potential for use in biometric authentication tasks.

6) Generalized ROI With Significant Variations: Rather than handpicked regions of interest

(ROI), our model targets generalization even in extreme cases including partial candidate

visibility, occlusion cases, specular reflections from the skin as well as cases such as facial

hair; all of them are addressed by our model.



Chapter 2

Literature Review

The research on remote photoplethysmography (iPPG) is based on the biological background

where when the visible light goes between 4 to 5mm below the skin surface and the light

absorbing components in the skin called chromophores like hemoglobin, change their content.

These changes are seen in every pump cycle of the heart which bring up variation in the skin

color but is not visible to the human eye. This same phenomenon could be observed using

RGB sensors like camera where photoplethysmography comes into play. The approaches

considered to work with this idea are generally signal processing based, supervised learning

based or unsupervised approaches and their combinations.

2.1 Supervised Learning Based Approaches

One such deep learning based approach is presented in the paper ‘DeepPhys: Video-Based

Physiological Measurement Using Convolutional Attention Networks’ by Weixuan Chen and

Daniel McDuff [5]. In this paper the authors are trying to suggest an architecture which

allows visualization of spatial-temporal distributions of physiological signals using attention

network-based architecture which could also be used to retrieve heart rate and breathing rate.

The method is a video based implementation which also considers motion representation

based on a skin reflection model and the devised attention mechanism.

Similarly, in the paper ‘RhythmNet: End-to-end Heart Rate Estimation from Face via

5
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Spatial-temporal Representation’ by Xuesong Niu et. al. [28] the authors propose a method

for heart rate estimation with an approach based on the generation of a spatial-temporal

mask and further using them in a convolution network in order to estimate the heart rate val-

ues. They also come-up with a new dataset VIPL-HR specifically created with an intension

of working in the area of remote heart rate measurement.

But on the other hand, considering simple CNN based implementations we have the paper

‘Visual Heart Rate Estimation with Convolutional Neural Network’ by Radim Špetlík et. al.

[40] in which the authors present a two-step straightforward convolutional neural network

to estimate the heart rate from facial images. They also address the lack of variability in

the datasets available at that time and have developed their own dataset with essential

illumination variation and motion variation among the subjects.

Addressing more on architectures which work towards nullifying the affect on iPPG mea-

surements due to external variations there is this paper ‘Video-based Remote Physiological

Measurement via Cross-verified Feature Disentangling’ by Xuesong Niu et. al. [29] through

which the authors propose a unique deep learning based implementation where they are

trying to address the issue generated due to the overlap of physiological as well as non-

physiological parameters in the iPPG based contactless measurements. The disturbances

caused due to motion, variation in light, etc. are considered here as the non-physiological

parameters and using the cross-verified disentangling strategy they propose a method to

retrieve the physiological parameters. They also propose a method to retrieve multi-scale

spatial-temporal maps from input frames which are useful for highlighting the physiological

information in the face videos.

On the same lines using deep learning techniques but addressing advanced issues like video

compression there is this paper titled ‘Remote Heart Rate Measurement from Highly Com-

pressed Facial Videos: an End-to-end Deep Learning Solution with Video Enhancement’ by
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Zitong Yu et. al. [53] in which the authors propose an architecture which address the video

compression loss as well as measures iPPG signals from highly compressed videos with its

help. The method is divided into two parts where one is the input video enhancement based

on a unique network and the other part is an attention based network which is used for

retrieving the iPPG signals. The authors have named the first block as STVEN (Spatio-

Temporal Video Enhancement Networks) and the next one as rPPGNet.

2.2 Unsupervised Learning Based Approaches

Further addressing the overlap of signal processing and unsupervised learning based methods

for iPPG based implementations we have the paper ‘An Open Framework for Remote-PPG

Methods and Their Assessment’ by Giuseppe Boccignone et. al. [3] where authors have

developed an open source iPPG package named pyVHR which stands for Python tool for

Virtual Heart Rate. They introduce a logical pipeline useful for addressing the heart rate,

heart rate variability and BVP signals in general. They also highlight some important points

in the paper where they have mentioned the importance of standardization required in iPPG

related research. As the variation in preprocessing, usage of data, testing on across datasets

as well as different types of postprocessing methods applied by the various implementations

makes the comparison of the different techniques invalid or difficult. They suggest a need

of standardization in terms of preprocessing or in general steps as such which have been

followed in many implementations and benefit the iPPG related results and implementation.

Similarly in the paper ‘Real-Time Webcam Heart-Rate and Variability Estimation with

Clean Ground Truth for Evaluation’ by Amogh Gudi et. al. [11] the authors suggest an

approach to recover the iPPG signals in real time such that it calculates the heart rate and

gives out the pulse waveform to time heart beats and heart rate variability. They also focus
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on performing this as an unsupervised approach which brings a completely unique aspect,

as the major data-based training procedure is removed. They have also introduced a new

dataset named VicarPPG2 which is specifically useful for heart rate and heart rate variability

measurements.

2.3 Signal Processing

Using signal-processing techniques,the variation in average brightness of skin pixels is tracked

over time [47]. This variation is too subtle to be noticed by human eyes without digital

magnification [35]. Wu et al. [49] proposed a method to amplify such subtle changes. The

method, commonly referred to in the literature as VidMag, takes a video sequence as input

followed by temporal (band-pass) filtering of frames. The resulting signal after amplification

was used to reveal hidden signals. Similarly, Garbey et al. [10] made use of sensitive thermal

cameras to acquire the signals from major superficial vessels of face and neck regions. Fourier

methods were used to measure cardiac pulse amplitudes. The main problem with these

methods is the stability of the face in videos. The observed face is expected to remain

stationary, and even small movements cause significant noise during PPG signal recovery.

Later, researchers began utilizing a combination of signal-processing techniques and facial

tissue trackers to tackle this problem [57].

2.4 Authentication

Every individual possesses a heart and associated vascular system that are inherently unique.

When sensing physiological signals such as PPG and ECG, differences between individuals

can lead to distinctive characteristics that can be leveraged for the purpose of biometric
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authentication [14, 37, 38]. Various research works have shown promising efforts in the

field of authentication using contact sensor-based PPG [18]. However, the development

of biometric authentication systems using camera-based PPG (rPPG) signals has been a

challenging task due to various factors. One of the primary challenges is the presence of

noise in iPPG signals, which can lead to inaccurate results. Additionally, the recovery of

morphology from iPPG signals has been a difficult task for researchers [23, 30].

2.5 Architectural Progressions

As far as architectures are concerned for the study of deep learning based iPPG methods,

they have evolved a lot over the years and have included many different components/modules

addressing the problem at a deeper level. Initially the process included face detection, ROI

segmentation and further signal processing based on the retrieved ROI’s. This approach was

too naïve for generalization and did not serve the demanded outcomes. Then with all the

different approaches mentioned previously, different techniques and architectural approaches

were made available to the research community. Starting with the architecture suggested in

the paper DeepPhys which was divided into two parts, a motion model and an appearance

model. The motion model was more of a VGG-style CNN model which was useful for

identifying the physiological signals based on the motion representations and the appearance

model was the attention network devised in order to focus on the skin segmentation such

that the predictions are derived based on the expected portions of the face. Similarly in

case of the paper Rhytmnet the architecture starts with face detection where they used

the SeetaFace face detector and thereby identify 81 facial landmarks. Once the faces are

detected and with the corresponding landmarks skin segmentation is done. These processed

frames are further converted to YUV color channel and from n face ROI blocks, from which



10 CHAPTER 2. LITERATURE REVIEW

the respective YUV signals are retrieved. These retrieved signals thus generate the spatial-

temporal map which is further used with the convolution network to generate the heart rate

signals. The format of the convolution layers is equivalent to the ResNet-18 architecture and

the color space transformation from RGB to YUV is computed using,


Y

U

V

 =


0.299 0.587 0.114

−0.169 −0.331 0.5

0.5 −0.419 −0.081



R

G

B

+


0

128

128

 (2.1)

When addressing advanced issues like video compression the paper ‘Remote Heart Rate

Measurement from Highly Compressed Facial Videos: an End-to-end Deep Learning Solu-

tion with Video Enhancement’ by Zitong Yu et. al. [53] similar approaches are used with

additions of physiological and noise encoder.

Moving on to the Unsupervised and Signal Processing based architectures even they tend to

start similar with face area detection and attempts to focus on ROI’s but further they adopt

different signal processing techniques in order to achieve the desired results. Like in the

paper ‘An Open Framework for Remote-PPG Methods and Their Assessment’ by Giuseppe

Boccignone et. al. [3], the suggested architecture starts with face extraction using different

methods like MTCNN, Dlib and Kalman based face extraction from the input video dataset.

Further skin detection is implemented on these extracted faces as the next pre-processing

step. They also provide two different options for skin detection one in which standard ROI

is considered as in forehead, nose, cheeks, etc. in terms of rectangular regions and the other

options includes actual skin segmentation which is achieved by converting the frame in HSV

spectrum and then thresholding it based on the possible skin pixel values. Once the ROI’s

are obtained though it be from a rectangular patch R(t) or skin patch S(t), for each frame

an average over all the selected pixels is computed denoted as q(t) and is given as,
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q(t) =


Patch(R(t))

Skin(S(t)),

(2.2)

where

Patch(R(t)) =
1

N

N∑
i=1

1

|R(i)(t)|
∑

(x,y)∈R(i)(t)

R(i)
x,y(t) (2.3)

Skin(S(t)) =
1

|S(t)|
∑

(x,y)∈S(t)

Sx,y(t) (2.4)

Thus, once the skin detection is performed, from the resultant frame RGB signals are ex-

tracted and in order to suppress noise and outliers band-pass filtering is used to get acceptable

signals in order to perform BVP signal extraction. They provide different methods like FIR

filters, Butterworth IIR filters, Moving Average Filters and methods like detrending so as

to achieve the required state of the signals. After this the developed pipeline offers various

iPPG algorithms for computing the BVP signal which includes methods like ICA (Indepen-

dent Component Analysis), PCA (Principal Component Analysis), GREEN, CHROM, POS

(Plane Orthogonal to Skin), SSR, LGI (Local Group Invariance), and PBV (Pulse Blood

Volume).

2.6 Datasets

While there are a plethora of suggested architectures and approaches there is a consistent

talk about the lack of availability of right datasets which could help in iPPG kind of imple-

mentation, to an extent where a custom dataset is developed by many of the groups. The
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dataset VIPL-HR is introduced in [28] which is combination of visible light videos (VIS)

and near-infrared (NIR) videos including variations like head movements, illumination vari-

ations, and acquisition device changes. These samples are collected in a less-constrained

scenario thus trying to produce natural environment for Heart rate estimation which is one

of the major requirements to avoid overfitting or lack of critical learning scenarios. Similarly,

VicarPPG 2 dataset is introduced by [11] which is majorly with an aim of evaluating the

heart rate and heart rate variation estimations for iPPG based methods. But as we mention

more about such application specific datasets there is also data collection seen like in the

case of [34] where the data include videos with natural head motions and ground truth as

blood volume pulse (BVP) signals as well as electrodermal activity. This dataset called the

UBFC-Phys dataset was original created with an application intension for the study of social

stress but even such a dataset is useful in the application of iPPG if used in the right way.

There are different levels of research challenges in this domain of work, and they are high-

lighted along with some potential solution in the paper ‘Camera-Based Physiological Sensing:

Challenges and Future Directions’ by Xin Liu et. al. [22]. In this paper the authors mention

the importance of clinical graded equipment, measurements using them and how generally,

coarse measurements like pulse rate and breathing rate are submitted as results in iPPG

work rather than pulse transit time, oxygen saturation and other clinically meaningful met-

rics. Similarly, most of the datasets available do not include vital cases like atrial fibrillation,

other forms of arrhythmia, low oxygen saturation levels (below 85%), high blood pressure,

etc. which could be focused eventually as the aim lies in developing a model which considers

the full spectrum of possible cases.
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Table 2.1: This table is a compilation of the different available datasets curated by multiple
research groups.

Dataset Name Public
(Y/N) No of participants No. of Videos Total duration Variation Ground Truth

PURE [41] N 10
(8 male, 2 female) 60 60 min

(1 min each)
Facial Expressions
Head Movements PPG

MMSE-HR [56] N 40
(58 male, 82 female) 102 -

Facial Expressions
Head Movements

Age and Ethinicity
HR and BP

VIPL-HR [27] N 107
(79 male, 28 female)

2378 (RGB)
752 (NIR) 30 sec. each

Facial Expressions
Head Movements

Illumination
HR and BVP

ECG-Fitness [40] N 17
(14 male, 3 female) 207 1 min each Facial Expressions

Head Movements ECG

MAHANOB-HCI [39] N 30
(13 male, 17 female) 527 - Facial Expressions ECG, EEG

Vicar PPG2 [42] N 10 20 90 sec. each

Facial Expressions
Head Movements

Illumination
Camera Types

Occlusion

PPG

DEAP [16] N 22 874 - Facial Expressions
Occlusion PPG

COHFACE [12] N 40
(28 male, 12 female) 160 1 min each Illumination PPG

LGI [32] Y
(not all)

25
(20 male, 5 female) 100 1 min each

ergometer session 5 min

Facial Expressions
Head Movements

Illumination
PPG

UBFC-rPPG [2] N 42 42 1 min each Facial Expressions
Head Movements PPG

UBFC-Phys [34] Y 56
(10 male, 46 female) 168 3 min each

Facial Expressions
Head Movements

Occlusion
Facial Hair

BVP and EDA



Chapter 3

Architecture and Approach

The direction in which we address this problem starts with a generalized approach for the

inclusion of the right data, which also is inclusive of extreme but acceptable cases. Since

we are working with the theoretical concept of Shafer’s Dichromatic Reflection model which

assumes every pixel considered is a skin pixel, to address this assumption we further work

with a skin segmentation model. Having this baseline, we finally work with our convolution

attention model which is a modification inspired by the work in the paper DeepPhys, to

retrieve the target BVP signals.

The data for addressing the problem related to BVP signal retrieval comes with a lot of

discrepancies, especially when it includes cases with extreme head and body movements and

to avoid the situation of garbage-in and garbage-out it needs significant preprocessing. As a

part of preprocessing we made sure we align the ground truth BVP signal samples as per the

number of frame samples for the respective video, but did not perform any extra smoothing

or realigning on the signal. This was followed by manually removing the garbage cases from

the data which would affect learning.

3.1 Extraction of Areas of Interest

The primary objective of this study is to incorporate natural variations in video data during

the training process. To achieve this, extreme cases including occlusion, spatial motion, par-

14
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Figure 3.1: Example outputs of some of the important cases using our ROI pipeline. The
system extracts the face region and detects skin while excluding major facial hair and diver-
gent factors such as reflections from eyeglasses.

tial frame visibility, and more than just angular movement, must be preserved. Traditional

face detection methods, such as center-crop, Haar cascade, and Seetaface, are insufficient for

identifying faces with racial variations or handling complex scenarios involving occlusion and

spatial movement. Hence, we used MTCNN based face tracking and detection method, which

as illustrated in Figure 1.1, helped in both addressing the spatial motion-based variation as

well as detection of faces in different angles and natural scenarios in general.
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Figure 3.2: Our skin segmentation model is an FCN-based encoder-decoder network. This
subsystem generates a face mask in which skin pixels have been detected.

3.2 Skin Segmentation Model

Skin segmentation is a crucial step in training models for remote photoplethysmography

(iPPG), as it directs learning toward the important areas of the face from where signals

could be recovered. While previous research has emphasized the importance of skin pixels

and proper skin detection, there has been less consideration given to the need for having a skin

detection algorithm that would avoid facial hair, heavy skin illumination based reflection,

glare, etc. Most existing ROI detectors do not have the capability to exclude these regions

during learning. Additionally, when employing attention-based networks, it is often assumed

that the regions being focused on are exclusively comprised of skin.

To address these problems, we have used a skin segmentation model as shown in Figure 3.2.

This is a fully convolutional network (FCN), with an encoder-decoder architecture. The

model was trained using the benchmark ECU dataset [31] using binary cross entropy loss

function and SGD optimizer. where the loss function could be represented as follows,

LSkin = −1/N
N∑
i=1

yi log(f(yi) + (1− yi) log(1− f(yi)) (3.1)
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where N represents the number of classes (here skin pixels and non-skin pixels), yi represents

labels, and f(yi) represents predicted probability.

This trained model gives a skin probability mask as the output which is used in our main

architecture to gain the output skin frame. To retrieve the skin frame, a thresholding op-

eration is performed on the mask generated from the FCN model such that 0 represented

non-skin pixels and 1 represented skin pixels. This computed mask is then multiplied with

the RGB channels of the original face frame thus giving us the required skin ROI from the

respective input video frame. While training the model along with the standard data aug-

mentation techniques variations like image color variation are also included to consider skin

segmentation during uncertain or extreme light effects.

The primary objective of this implementation is to focus on skin regions and eliminate areas

that include significant facial hair, heavy illumination points, and reflections from glasses

or skin in general. The architecture of the model is presented in Figure 3.2. Additionally,

Figure 3.1 illustrates some critical test cases from the UBFC-Phys dataset along with their

corresponding skin segmentation results, providing an intuition of how disregarding such

scenarios can lead to a lack of generality and natural scenario consideration in iPPG-based

model training.

3.3 Proposed Model

Our proposed architecture is based on Shafer’s dichromatic reflection model (DRM) and

the mathematical analogy introduced by DeepPhys [5]. We can represent the time-varying

function of the RGB values of the kth skin pixel in an image sequence as follows,
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Figure 3.3: The complete proposed architecture. Face extraction is performed by the
MTCNN module, and skin detection is performed on these areas of interest to recover the
required ROI’s. From a single frame difference, the system generates a single signal value
either for a BVP signal or for a temporal derivative of the BVP signal.

Ck(t) = I(t) · (vs(t) + vd(t)) + vn(t) (3.2)

where Ck(t) represents a vector of the RGB values, I(t) represents luminance intensity level,

vs(t) represents specular reflection, vd(t) represents diffuse reflection and vn(t) represents

camera quantization noise. Here to reduce the effects due to camera quantization error,

every frame is down-sampled to a size preferred by the model (72× 72 in our case). Then

bilinear interpolation for downsampling is used. This is in contrary to using conventional

bicubic interpolation, as it helps in avoiding excessive smoothing effects and influences better

learning from the face features for the BVP signal retrieval. So equation 3.3 is represented

as:

Cl(t) = I(t) · (vs(t) + vd(t)) (3.3)

where Cl(t) represents a vector of the RGB values for the lth skin pixel from the resized

frames. In previous modeling approaches, the lth pixel in an image sequence is naively

assumed to be a skin pixel. On contrary, we added an additional attention branch in the
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training pipeline (see Figure 3.3) that can improve the automatic selection of regions of

interest to skin areas.

As a result, we can update 3.3 as,

Cl(t) =


0, if Skin(l) < δ,

I(t) · (vs(t) + vd(t)), if Skin(l) ≥ δ

(3.4)

where Skin(l) represents the outcome of our skin detection model for the lth pixel and δ

represents the threshold for the binary cross entropy probabilities (0.5 in our case).

We use an MTCNN [55] based face tracking and detection to extract target face regions

from video frames. This helps spatial motion cancellation and our overall model focus on

the horizontal angular motion as well as yaw rotation as briefly highlighted in Figure 1.1

which shows the natural motion of the candidates within a camera frame, that is addressed

by our model. Considering previous work and the need of addressing motion changes we

use a normalized face frame difference of two consecutive face frames as the input to the

main branch of our convolution attention network, whose maxima are clipped to the third

standard deviation above the mean. The input normalized face frame difference can be

represented as,

Dip(t) = min(D(t), Dipmax) (3.5)

and,

D(t) =
Cl(t+ 1)− Cl(t)

Cl(t+ 1) + Cl(t)
(3.6)
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Dipmax(t) = µ(D(t)) + (3× σ(D(t))) (3.7)

where Cl(t) is the vector of the RGB values for the resized face frame, Dip(t) is the input

(clipped normalized face frame difference), D(t) is the normalized face frame difference

without clipping, Dipmax(t) is the maxima of the threshold for clipping, µ represents mean

and σ represents standard deviation.

The attention branch of our model which includes the skin segmentation model, helps us

retrieve the skin regions from the face which are then batch standardized and passed on to

the network further. As depicted in Figure 3.3 the architecture after the skin segmentation

model, in the attention branch, is the same as the one we have in the main branch of the

CAN network. In case of our model we use 72× 72 input frame size which is a signification

modification to the DeepPhys model which uses 36× 36 input frame size, as it changes the

complete feature size consideration for all the layer of the model. We use dropout layers,

with dropout rates of 0.5, before every average pooling layer and also before the last fully

connected layer which is followed by tanh activation function. The mask generated from

our attention branch uses sigmoid activation over the respective branch outcome which is

multiplied by the height and width of the respective layer prior to pooling layers and then this

outcome is divided by twice the L1 normalization on the output of the sigmoid activation.

Finally, for our feature extracting dense layers we consider 32 feature parameters in the

output layer, which has a tanh activation function to keep the outcomes bounded. We

trained our attention model using SGDM optimizer, a momentum of 0.9, a batch size of 128,

and a learning rate of 10−4.
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3.4 Implementation and Training Details

The implementation for our complete model after the required data cleaning and prepro-

cessing is divided into three parts. First we trained the skin segmentation model using the

ECU dataset and kept the trained weights ready for skin segmentation on the UBFC Phys

dataset. Next we implemented the face tracking and detection using MTCNN in order to

get the input video frames ready along with their corresponding BVP signal values. At our

final step we use the devised face frames and the pre-trained skin segmentation model to

compute the required face frame-difference normalization and skin ROI generation, which

was then passed to the main branch and attention branch respectively of our convolution

attention network.

In order to reduce the computation time for each run we also implemented GPU based par-

allel processing using NCCL backend based technique, under the Distributed Data Parallel

module available with PyTorch. The required human understandable metrics as well as the

metric required for authentication where then calculated based on the output BVP signals

retrieved from our model.

3.5 BVP Annotation and Loss Function

During training, the ground truth blood volume pulse (BVP) values are first resampled to

match the sampling rate of the video frames. The first derivative of these BVP signals is

computed and batch standardized to be used as the ground truth in one training pipeline.

We also use the original batch-standardized BVP signal as the ground truth, thus computing

outcomes on both the first derivative as well as the original BVP signals in two different

training pipelines. To compute the loss during training, we utilize the mean square error
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between the model outcome and the standardized ground truth. Hence, in the case of the

first derivative BVP signal retrieval, mathematically it could be represented as,

bder(t) = b(t+ 1)− b(t) (3.8)

bgt(t) =
bder(t)− µ(bder(t))

σ(bder(t))
(3.9)

LossCAN =
1

N

N∑
i=1

(bgt(t)− bpred(t))
2 (3.10)

where b(t) is the BVP value collected from the sensor at time t, bder(t) is the first derivative

signal, bgt(t) is the standardized first derivative BVP signal that we use as the ground truth

and bpred(t) is the predicted model outcome.

3.6 Signal morphology

The field of remote photoplethysmography (iPPG) has mainly focused on extracting average

cardiac pulse-based metrics. However, as physical sensor-based technology advances, the

potential for generating instantaneous physiological data also increases, highlighting the need

for more research in this area [22]. Though recovery of signal morphology is not specifically

focused by the previous research, but there has been significant discussion around it that has

led to notable contributions [6, 13, 17, 21]. Based on those studies we understood using first

derivative BVP signals was important but it was not evident enough on not using original

BVP signal based models. This led us to include model pipeline having both the approaches

one with original BVP ground truth and another with first derivative BVP ground truth.
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There on the objective was to have a qualitative proof of signal recovery as well as quantative

metric based signal recovery understanding based on which this section develops further.

This work is one of the first to tackle the challenges of detailed shape morphological features

and represent a morphology metrics. In this section, we present a set of metrics that can be

used to study conformity of the recovered signals.

For morphology-based metrics, we compute the mean of the normalized cross-correlation

between the model output signals and the ground truth BVP signals for every candidate

in the dataset. These metrics are computed for the respective signals in the time domain,

frequency domain as well as power domain, which are reported further giving us a complete

idea of how well the model could retrieve correct signal morphology.

The normalized cross-correlation is computed as:

ncr(xgt(n), xop(n)) =

∑N
i=1 xgt(ni)xop(ni)√∑N

i=1 xgt(ni)2
√∑N

i=1 xop(ni)2
(3.11)

where xgt(n) is the ground truth signal, xop(n) is the model output signal and N is the

number of signal samples.

The signal in the time domain is represented as xgt(t) and xop(t) where xgt(t) is ground truth

signal in time domain and xop(t) is model output signal in time domain.

Thus, the same signals in the frequency domain could be represented as follows,

xgt(f) = FFTmag(xgt(t)) (3.12)

xop(f) = FFTmag(xop(t)) (3.13)
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where FFTmag is the magnitude of the Fast Fourier Transform for a signal in the time

domain.

Similarly, the signals in the power domain will be as follows,

psd(x(n), fs) = lim
x→∞

1

T

∣∣∣∣ N∑
n=1

xne
−i2πfn

∣∣∣∣2 (3.14)

xgt(p) = psd(xgt(t), fs) (3.15)

xop(p) = psd(xop(t), fs) (3.16)

where psd is power spectral density, fs is sampling frequency and N is the number of signal

samples.

Thus based on this developed baseline we further compute our morphology metrics in the

time, frequency, and power domain denoted as smmt, smmf and smmp respectively, which

could be given as follows,

smmt =
1

C

C∑
i=1

ncr(xi(t)gt, xi(t)op) (3.17)

smmf =
1

C

C∑
i=1

ncr(xi(f)gt, xi(f)op) (3.18)

smmp =
1

C

C∑
i=1

ncr(xi(p)gt, xi(p)op) (3.19)

It is important to follow the normalized cross-correlation based approach in this case as

it helps us learn better the morphology of the signal. Generally cross-correlation is used

to address this kind of metrics computation but since we have to focus on systolic peak,

diastolic peak as well as dicrotic notch with that kind of approach a zero value in the signal
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is not taken into consideration, both metrics need to have a similar amplitude which takes

away the focus from morphology and it becomes difficult to understand the scoring value

because of the lack of a normalizing factor.

Through all our efforts the focus is to retrieve as much of morphology based details as possi-

ble. We make it a point to address the systolic peak, diastolic peak as well as dicrotic notch

because later these same signals are use to check the scope of human re-identification. It is

important to understand that since morphology is not focused-on traditionally, we have to

make sure we are not producing signals similar to just a sine wave addressing all the systolic

peaks, such that the averaged cardiac pulse based values are intact as per the expectation.

Later when we perform re-identification (covered in subsection 4.5) we use Pearson corre-

lation coefficient which helps us in keeping in track the rises and falls in the corresponding

signals thus performing the re-identification process correctly as well as addressing all the

required details in the signal shape.



Chapter 4

Experiments and Results

Since our implementation addresses the process of BVP signal recovery from face videos as

well as re-identification based on those recovered signals, we divided our experiments into

three parts, starting with the signal recovery forefront, followed by computation of standard

human understandable metrics and then computing re-identification procedure. For better

evaluation, we have two different pipelines covering both the recovery from ground truth

BVP signals as well as first derivative BVP signals.

4.1 Dataset

We evaluated our work on two different datasets UBFC-Phys as well as COHFACE. We can

see glimpse of the variation covered in the UBFC-Phys dataset in Figure 1.1 and because of

the kind of nuances introduced through the data it becomes tough to handle and hence not

used much in different research papers. The dataset covers all the different possible variations

including occlusion, facial hair, cases with glasses, as well as skin tone variation all of which is

added with significant body movements which makes it very challenging. Similarly in case of

COHFACE data samples presented in Figure 4.1 we can see significant illumination changes

as well as a good variation in terms of candidate age, gender and skin tone variation. The

more details on both the dataset are covered below explaining how challenging they are and

encouraging more research using such datasets, as well as motivating new dataset collection

26
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including all such variations together.

UBFC-Phys [34]: This dataset includes 56 candidates with a distribution of 10 males

and 46 females. The video frame rate is 35 FPS and has a resolution of 1024× 1024, BVP

signals are also provided in this dataset which are collected at a rate of 64 Hz using the E4

wristband. Each candidate is subjected to 3 tasks, which are rest, speech, and arithmetic

tasks, respectively, and a 3-minute RGB video is collected for each task. All the videos

were captured in a lab environment, with natural movements incorporated into all tasks.

Additionally, the dataset features natural translational and rotational movements, along

with various attributes such as facial hair, glasses, skin color, and occlusion. The annotated

labels in the UBFC-Phys dataset for tasks two and three are not suitable for training, and

hence we have only considered the data from the first task, which still encompasses all the

necessary variations in the video data.

COHFACE [12]: This dataset includes 40 candidates with a distribution of 28 males and

12 females. The videos were captured at a frame rate of 20 FPS and have a resolution

of 640× 480. The dataset also includes corresponding BVP signals collected at a rate of

256 Hz. Each candidate in the dataset was recorded for a duration of one minute, under

two different illumination scenarios, i.e., good lighting and low light conditions. All the

videos were collected in a lab environment. Though there are no intentional movements, the

challenge in this dataset is brought by the low illumination samples. The data also include

a considerable variation of skin tones which makes it even more useful.

4.2 Data Distribution and Training Details

Previously we have covered everything with respect to model details, training details and

dataset in sections 3.3, 3.4 and 4.1 respectively. In this section we bring it all together and
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Figure 4.1: Examples of the illumination variation covered in the COHFACE dataset. The
figure also represents the data sample variation in terms of age, gender and skin tone varia-
tion. Here we also try to present how the illumination varies accross the face and especially
in the cases with low illumination how there could be cases with almost partial illumination.
This form of illumination variation when combined with other discrepancies mentioned pre-
viously makes the overall dataset tough to train on.

highlight how our exact data distribution strategy as well training is carried out. It is very

important to understand that this is a time series domain based application area and hence

needs consistent data handling is much needed. Also, we need to make sure that the testing



4.2. DATA DISTRIBUTION AND TRAINING DETAILS 29

data is a representation of the whole dataset and shouldn’t be based on a few candidates from

the dataset. Hence generally approaches like cross validation are taken into consideration

when testing such applications.

As the size of the dataset increases the processing time for approaches like cross validation

also increases exponentially and hence is not considered the best approach to perform testing.

Hence to address this problem with large datasets as well as to have a all inclusive test data

we distribute our dataset such that for every 3 minutes candidate video 2 minutes of data is

used for training and the rest of the 30 seconds each from the remaining 1 minute, are used

for validation and testing respectively. In case of out model initially we tried using 36× 36

as the input frame size for our model with bicubic interpolation, but that introduced a lot

of blurring effect in the frames and insufficient features to perform better signal morphology

learning. Hence we work with 72× 72 as the input frame size along with linear interpolation

which introduces the model to more exploitative face features and hence better learning.

Additionally to address the changes that we have introduced in particular to the original

DeepPhys model, we start by more feature inputs by increasing the frame size, all the follow-

ing layers in the architecture are change because of that. We also used batch standardization

on the input frames which gave us better results, the number of output features is kept to

just 32 features, we have also tuned the dropout throughout the model to a value of 0.5 and

we used SGDM optimizer with momentum of 0.9, batch size of 128, and a learning rate of

10−4. We have trained two model pipelines one with BVP as the ground truth and another

with first derivative BVP as the ground truth as mentioned and explained earlier both of

these models were trained and test on the UBFC Phys as well as COHFACE dataset.
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4.3 Signal Morphology Recovery

This section reports results on the recovery of signal morphology. Here, we demonstrate our

model’s performance on the UBFC-Phys dataset quantatively using (3.17)-(3.19) as well as

using a visual depiction as shown in Figure 4.2. Table 4.1 presents the morphology metric

outcomes for our models with ground truth as the original BVP signal and first derivative

BVP signal, along with recovered signals from our implementation of the DeepPhys model

all without any form of the post-processing involved. Similarly, in Table 4.2, we present the

morphology metrics on the integrated signals after post-processing for the first derivative

ground truth BVP signal-based models. Based on the recovered signals we also show an

aggregated representation of same in Figure 4.3, as a visual comparison of the expected signal

outcome with the corresponding output signal from the model, along with its maximum and

minimum deviation.

Table 4.1: Domain-wise morphology metrics outcomes for our model pipelines and for Deep-
Phys without any post-processing of the output signals.

Metrics Our Model
(BVP)

Our Model
(First Der. BVP) DeepPhys

Time↑ 0.088 0.077 0.06

Frequency↑ 0.443 0.511 0.359

Power↑ 0.45 0.47 0.339

4.4 Standard Cardiac Pulse Metrics

The computation of the heart rate in beats per minute, is often performed by post-processing

the model’s output BVP signals using a bandpass filter. We have used a cutoff frequency

of 0.75 Hz and 2.5 Hz (since the expected range for heart rate is 45 beats/min to 150
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Table 4.2: Domain-wise morphology metrics outcomes for our BVP first derivative-based
model pipeline and DeepPhys after integrating output signals to get them in original BVP
signal format.

Metrics Our Model
(First Der. BVP) DeepPhys

Time↑ 0.120 0.118

Frequency↑ 0.670 0.645

Power↑ 0.594 0.472

beats/min). We next compute the power spectral representation of the band-passed signal

where the highest peak is considered as the estimated HR. We report root mean square error

(RMSE), mean absolute error (MSE), and Pearson correlation coefficient between the heart

rate for the ground truth BVP signal and the estimated BVP signal. The results are shown

in Table 4.3 for both UBFC-Phys and COHFACE.

Further, in Table 4.4 we present a comparison of the MAE-based outcomes for the aver-

age cardiac pulse-based measurements from our models with respect to the state-of-the-art

models previously published.

Table 4.3: Performance of our architecture pipelines on UBFC-Phys and COHFACE dataset,
in terms of heart rate measurements in beats per minute (HR bpm) [9, 11, 15, 40]. Compar-
isons have been made with literature using available metrics that are used in our study.

Methods
UBFC-Phys COHFACE

MAE↓ RMSE↓ r↑ SNR(dB)↑ MAE↓ RMSE↓ r ↑ SNR(dB)↑

ICA [33] 6.71 - - - 12.24 15.67 0.24 -4.43

CHROM [7] 4.39 - - - 7.80 12.45 0.26 -

POS [47] 5.98 - - - 13.43 17.05 0.24 -4.43

HR-CNN [40] - - - - 8.10 10.78 0.29 -

DeepPhys [5] 11.78 17.848 0.174 -7.676 6.60 10.788 0.524 -6.425

Our Model (BVP) 5.02 10.673 0.701 -1.792 4.02 6.799 0.80 -6.317

Our Model (1st Der. BVP) 4.05 8.438 0.828 -0.78 2.92 6.128 0.86 -2.685
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Figure 4.2: The two plots (a) and (b) are for two different individuals from the UBFC-Phys
dataset, representing the morphology recovery from our model (top) and from DeepPhys [5]
(bottom) in the respective images. This is a qualitative representation of how well our model
retrieves signal morphology and its comparison with signal recovery from a state-of-the-art
model that focuses on averaged pulse values.
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Figure 4.3: The figure represents the model’s ground truth signal (left half (a), (c)) and its
corresponding output from the model (right half (b), (d)) for the same candidate. The top
half (a), (b) represents an aggregated signal whereas the bottom half (c), (d) represents the
corresponding signal from the top half with its maximum deviation, minimum deviation and
mean. The figure shows how the over all shape of the signal is retained as well as how both
the systolic and diastolic peaks are recovered by our model. Though signal amplitude is a
variable factor and is not as important as the morphology, the intention here is to check
if the overall aggregated signal is not having large deviations for a constant amplification
factor of the signal.

4.5 Re-identification

As a part of our experiments, our aim was to evaluate the possible scope and extent of

re-identification using our devised architecture. Since we were focusing primarily on good
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Table 4.4: Performance (HR BPM-MAE) of our technique in comparison with previously
published state-of-the-art models on the UBFC-Phys and the COHFACE dataset [9, 11, 15,
40].

Methods UBFC Phys COHFACE

GREEN [45] 14.17 -

ICA [33] 6.71 12.24

CHROM [7] 4.39 7.8

POS [47] 5.98 13.43

1D-CNN [40] 5.41 -

LSTM-rPPG [4] 6.48 -

SQA-rPPG [9] 6.01 -

2SR [48] - 20.98

LiCVPR [19] - 19.98

HR-CNN [40] - 8.10

SAMC [43] - 6.23

DeepPhys [5] 11.78 6.6

Our BVP 5.02 4.02

Our BVP Der. 4.05 2.92

BVP signal shape retrieval and thereby performing computations based on the retrieved

BVP signals, hence instead of evaluating authentication based on an Inter Beat Interval

(IBI) or similar averaged cardiac pulse-based metrics which is the standard approach to

go about authentication/re-identification, we computed the Pearson correlation coefficient

between the ground truth and the output BVP signals for each candidate. So, the outcome

for every candidate was compared with the annotated BVP signals for every other candidate

in the test set and the one with the maximum correlation was acknowledged as the identified

candidate for the respective output signal. Considering rank 5, we could re-identify 14

candidates from a pool of 20 candidates from a diverse dataset such as UBFC-Phys. The
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Figure 4.4: The rank-wise distribution for re-identification is presented here, where the graph
in blue represents the re-identification results for the model trained using BVP signals, and
the graph in red represents the re-identification results for the model trained using first
derivative BVP signals. The variation in the rank improvement for the BVP as well as first
derivative BVP based model is explained more in 4.5.

rank-5 accuracy was therefore 70%, which demonstrates the potential of this approach.

The ratio of comparison for every candidate 1:20 and gives us an accuracy of 70%, thereby

supporting our idea of considering the scope of re-identification just by using raw BVP signal

outcomes for a small group of people. The rank-wise distribution is presented in Figure 4.4

where we show the rank-wise re-identification for both of our models including first derivative

BVP signal outcomes as well as integrated BVP signal outcomes. As seen the Figure 4.4

the re-identification accuracy is quite high initially for the raw BVP annotated model as

compared to the first derivative BVP annotated model, which is majorly because of the
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similarity between raw BVP signal and an output sine wave kind of signal where the actual

morphology in terms of systolic and diastolic peaks takes a step back and also because of

the noise introduced through the first derivative signal computation. Hence as we move on

with the ranks there is less significant improvement using the raw BVP based model and a

significant growth is seen with the first derivative BVP based model.



Chapter 5

Conclusion

This thesis has presented an iPPG method that can extract BVP signals from standard RGB

video of a person’s face. The primary emphasis has been to recover the shape (morphology)

of the BVP signal. We have shown that recovery of systolic and diastolic peaks is possible

through camera-based iPPG. Using large-scale benchmark datasets and a series of metrics, we

have demonstrated that our method performs better than previous state of the art methods

to extract the BVP signal.

A better understanding of BVP will help iPPG research in many ways. First, there is no

longer a need to place so much emphasis on recovering average heart rate only. Direct BVP

signal recovery will help in studying inter-beat intervals with greater accuracy than is now

possible. In turn, this work opens up the potential of iPPG in performing measurements

related to heart rate variability. We have shown that better recovery of BVP signals signif-

icantly reduces error associated with other HR metrics. Finally, we also demonstrated that

extracted BVP signals can be used for person reidentification.
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Discussion and Future Work

Based on our experiments we conclude that to retrieve better BVP signal shape and to have

a better visibility of the systolic peak, diastolic peak and dicrotic notch it is import to train

the model using the first derivative BVP signals which helps in better signal shape metric

learning. There is a lot of value in focusing on the retrieval of physiological signal shape as

it is the core to so many different averaged cardiac pulse metrics. As far as ROI selection

for this domain of work is concerned, it is very important to consider a generalized approach

and work on getting the models focus on the appropriate face regions, instead of naively

choosing general regions of interest. Finally, its a high time that more work on physiological

signal recovery be done instead of recovering just averaged cardiac pulse based metrics. At

the same time, it is important to start considering cases like dense facial hair, reflection from

glasses, extreme age as well as skin variation, heady-body movements and similarly, more

study with respect to the effect of health factors on ones physiological signals needs to be

done.

This thesis work could be further progressively extended by working with architectures like

vision transformer. The current presented work has exhausted the maximum potential of

this deep learning based model and has also included all the considerations for generalized

variation in the dataset. Now with the future work the focus should be more on incorporating

NLP and Computer Vision crossover ideas to progress the work in this domain. Since it is

more of a time series problem, so just like any logical sentence formation problem where
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every next word has a dependability on the words that occurred in the past, even here it has

large dependability on the physiological signal status that was in the near past. Thus using

architectures like vision transformer would rather help in better recovery of the physiological

signals where the model would consider the data from previous frames as well as the time

based variations in the annotated BVP signals. There is already some work in this direction

covered in [51, 54] but with the advancements in recent Generative AI based models this

could be a very good potential direction for future work as well recovery of good physiological

signals.
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Appendix A

Coverage of Edge Cases and Effect of

Skin Detection Model

In this section we dive in deep to study the effect on averaged cardiac pulse metric based

results due to the use of skin detection model. We implement two different architecture

pipelines, one with the inclusion of skin detection model and another without the inclusion

of the same. This is a good approach to conduct this ablation study since it also helps us

in proving the claims with respect to handling the different edge cases like facial hair, glair

from glasses, etc. as well as help us understand the improvements brought in just by using

the architectural additions without the skin detection model, as well as using the added

improvements with the use of our skin detection architecture.

Table A.1: Performance of our architecture using averaged cardiac pulse metrics with and
without the use of skin detection model. The values help us prove the effectiveness our
architectural changes on the UBFC-Phys dataset with as well as without the inclusion of
our skin detection model.

Metrics
With Skin Model Without Skin Model

Our Model (BVP) Our Model (1st Der. BVP) Our Model (BVP) Our Model (1st Der. BVP)

MAE (BPM)↓ 5.02 4.05 5.2 4.297

RMSE (BPM)↓ 10.673 8.438 10.624 8.623

r ↑ 0.701 0.828 0.813 0.671

SNR(dB)↑ -1.792 -0.78 -0.885 -1.623
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Appendix B

Study of Attention Maps and Future

Direction for ROI

In this part of the ablation study we have computed the attention maps based on our model

for the UBFC-Phys dataset. The purpose of this effort is to study what are the regions of

interest chosen by our model and further have our own conclusions for future ROI selection

based study.

Based on the attention map outcomes seen in Figure B.1 and Figure B.2 it is clear that the

model gives consistent outcomes and the additions as well as changes incorporated in the

proposed architecture help in handling the vast set of variations encountered in datasets like

UBFC Phys. As covered in literature skin area around cheek bone as well as forehead are

good regions for physiological signal recovery. This is also verified through our attention

map based outcomes but at the same time we can also conclude that for many cases the

upper as well as lower cartilage area on the nose is also a very good source for physiological

signal retrieval.

Based on this ablation study we can make sure that in future work if we consider face region

wise ROI selection we can avoid considering areas below eyelids, lip region, as well as extreme

edges on the face. Also as far as forehead is concerned central forehead as well as the area

just above eyebrows seems like a really active zone for physiological signal recovery.
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Figure B.1: Attention maps in cases with variation with hair color, facial hair and cases
like partial occlusion. We can see how the model focuses on the correct ROI’s as expected
irrespective of the physical variations.
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Figure B.2: Attention maps in cases with variation with skin color, glair reflection, physique
variation and cases like off-frame area of interest (face in our case). We can see how the
model incorporates all the variations and gives consistent attention maps even with variation
in skin color or off-frame cases.



Bibliography

[1] AliveCor, Inc. AliveCor for Physiological Measurements. Web page:

https://www.alivecor.com. Accessed January 2023.

[2] Serge Bobbia, Richard Macwan, Yannick Benezeth, Alamin Mansouri, and Julien

Dubois. Unsupervised skin tissue segmentation for remote photoplethysmography. Pat-

tern Recognition Letters, 124:82–90, 2019.

[3] Giuseppe Boccignone, Donatello Conte, Vittorio Cuculo, Alessandro d’Amelio, Giuliano

Grossi, and Raffaella Lanzarotti. An open framework for remote-PPG methods and their

assessment. IEEE Access, 8:216083–216103, 2020.

[4] Deivid Botina-Monsalve, Yannick Benezeth, Richard Macwan, Paul Pierrart, Federico

Parra, Keisuke Nakamura, Randy Gomez, and Johel Miteran. Long short-term memory

deep-filter in remote photoplethysmography. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition Workshops, 2020.

[5] Weixuan Chen and Daniel McDuff. DeepPhys: Video-based physiological measurement

using convolutional attention networks. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 349–365, 2018.

[6] Joaquim Comas, Adria Ruiz, and Federico Sukno. Efficient remote photoplethysmogra-

phy with temporal derivative modules and time-shift invariant loss. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2182–2191,

2022.

45



46 BIBLIOGRAPHY

[7] Gerard De Haan and Vincent Jeanne. Robust pulse rate from chrominance-based rPPG.

IEEE Transactions on Biomedical Engineering, 60(10):2878–2886, 2013.

[8] Fitbit, Inc. Fitbit Watch for Physiological Measurements. Web page:

https://www.fitbit.com. Accessed January 2023.

[9] Haoyuan Gao, Xiaopei Wu, Jidong Geng, and Yang Lv. Remote heart rate estimation

by signal quality attention network. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2122–2129, 2022.

[10] Marc Garbey, Nanfei Sun, Arcangelo Merla, and Ioannis Pavlidis. Contact-free mea-

surement of cardiac pulse based on the analysis of thermal imagery. IEEE Transactions

on Biomedical Engineering, 54(8):1418–1426, 2007.

[11] Amogh Gudi, Marian Bittner, and Jan Van Gemert. Real-time webcam heart-rate

and variability estimation with clean ground truth for evaluation. Applied Sciences,

10(23):8630, 2020.

[12] Guillaume Heusch, André Anjos, and Sébastien Marcel. A reproducible study on remote

heart rate measurement. arXiv preprint arXiv:1709.00962, 2017.

[13] Brian L Hill, Xin Liu, and Daniel McDuff. Learning higher-order dynamics in video-

based cardiac measurement. arXiv preprint arXiv:2110.03690, 2021.

[14] Rudi Hoekema, Gérard J.H. Uijen, and Adriaan Van Oosterom. Geometrical aspects

of the interindividual variability of multilead ECG recordings. IEEE Transactions on

Biomedical Engineering, 48(5):551–559, 2001.

[15] Min Hu, Dong Guo, Xiaohua Wang, Peng Ge, and Qian Chu. A novel spatial-temporal

convolutional neural network for remote photoplethysmography. In 12th International



BIBLIOGRAPHY 47

Congress on Image and Signal Processing, BioMedical Engineering and Informatics

(CISP-BMEI), pages 1–6. IEEE, 2019.

[16] Sander Koelstra, Christian Muhl, Mohammad Soleymani, Jong-Seok Lee, Ashkan Yaz-

dani, Touradj Ebrahimi, Thierry Pun, Anton Nijholt, and Ioannis Patras. Deap: A

database for emotion analysis; using physiological signals. IEEE Transactions on Af-

fective Computing, 3(1):18–31, 2011.

[17] Magdalena Lewandowska, Jacek Rumiński, Tomasz Kocejko, and Jędrzej Nowak. Mea-

suring pulse rate with a webcam—a non-contact method for evaluating cardiac activity.

In 2011 Federated Conference on Computer Science and Information Systems (FedC-

SIS), pages 405–410. IEEE, 2011.

[18] Lin Li, Chao Chen, Lei Pan, Jun Zhang, and Yang Xiang. SoK: an overview of PPG’s

application in authentication. arXiv preprint arXiv:2201.11291, 2022.

[19] Xiaobai Li, Jie Chen, Guoying Zhao, and Matti Pietikainen. Remote heart rate measure-

ment from face videos under realistic situations. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4264–4271, 2014.

[20] G. Lin, T. Nakajima, P. Rahul, and A. Hodge. Seamlessly embedded heart rate monitor.

U.S. Patent 8,615,290.

[21] Xin Liu, Brian L Hill, Ziheng Jiang, Shwetak Patel, and Daniel McDuff. Efficientphys:

Enabling simple, fast and accurate camera-based vitals measurement. arXiv preprint

arXiv:2110.04447, 2021.

[22] Xin Liu, Shwetak Patel, and Daniel McDuff. Camera-based physiological sensing: Chal-

lenges and future directions. arXiv preprint arXiv:2110.13362, 2021.



48 BIBLIOGRAPHY

[23] Giulio Lovisotto, Henry Turner, Simon Eberz, and Ivan Martinovic. Seeing red: PPG

biometrics using smartphone cameras. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops, 2020.

[24] Daniel McDuff. Camera measurement of physiological vital signs. ACM Computing

Surveys, 55(9):1–40, 2023.

[25] Daniel McDuff, Sarah Gontarek, and Rosalind Picard. Remote measurement of cognitive

stress via heart rate variability. In 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, pages 2957–2960, 2014.

[26] Seyedfakhreddin Nabavi and Sharmistha Bhadra. Design and development of a wrist-

band for continuous vital signs monitoring of COVID-19 patients. In 43rd Annual Inter-

national Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),

pages 6845–6850. IEEE, 2021.

[27] Xuesong Niu, Hu Han, Shiguang Shan, and Xilin Chen. Vipl-hr: A multi-modal

database for pulse estimation from less-constrained face video. In Asian Conference

on Computer Vision, pages 562–576. Springer, 2018.

[28] Xuesong Niu, Shiguang Shan, Hu Han, and Xilin Chen. Rhythmnet: End-to-end heart

rate estimation from face via spatial-temporal representation. IEEE Transactions on

Image Processing, 29:2409–2423, 2019.

[29] Xuesong Niu, Zitong Yu, Hu Han, Xiaobai Li, Shiguang Shan, and Guoying Zhao.

Video-based remote physiological measurement via cross-verified feature disentangling.

In European Conference on Computer Vision, pages 295–310. Springer, 2020.

[30] Omkar R. Patil, Wei Wang, Yang Gao, Wenyao Xu, and Zhanpeng Jin. A non-contact



BIBLIOGRAPHY 49

PPG biometric system based on deep neural network. In IEEE 9th International Con-

ference on Biometrics Theory, Applications and Systems (BTAS), pages 1–7, 2018.

[31] Son Lam Phung, Abdesselam Bouzerdoum, and Douglas Chai. Skin segmentation using

color pixel classification: analysis and comparison. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27(1):148–154, 2005.

[32] Christian S Pilz, Sebastian Zaunseder, Jarek Krajewski, and Vladimir Blazek. Local

group invariance for heart rate estimation from face videos in the wild. In Proceedings

of the IEEE conference on computer vision and pattern recognition workshops, pages

1254–1262, 2018.

[33] Ming-Zher Poh, Daniel J. McDuff, and Rosalind W. Picard. Non-contact, automated

cardiac pulse measurements using video imaging and blind source separation. Optics

Express, 18(10):10762–10774, 2010.

[34] Rita Meziati Sabour, Yannick Benezeth, Pierre De Oliveira, Julien Chappe, and Fan

Yang. UBFC-Phys: A multimodal database for psychophysiological studies of social

stress. IEEE Transactions on Affective Computing, 2021.

[35] Abhijit Sarkar. Cardiac signals: remote measurement and applications. PhD thesis,

Virginia Tech, 2017.

[36] Abhijit Sarkar, A. Lynn Abbott, and Zachary Doerzaph. Assessment of psychophys-

iological characteristics using heart rate from naturalistic face video data. In IEEE

International Joint Conference on Biometrics, pages 1–6, 2014.

[37] Abhijit Sarkar, A. Lynn Abbott, and Zachary Doerzaph. ECG biometric authentication

using a dynamical model. In IEEE 7th International Conference on Biometrics Theory,

Applications and Systems (BTAS), pages 1–6, 2015.



50 BIBLIOGRAPHY

[38] Abhijit Sarkar, A. Lynn Abbott, and Zachary Doerzaph. Biometric authentication using

photoplethysmography signals. In IEEE 8th International Conference on Biometrics

Theory, Applications and Systems (BTAS), pages 1–7, 2016.

[39] Mohammad Soleymani, Jeroen Lichtenauer, Thierry Pun, and Maja Pantic. A mul-

timodal database for affect recognition and implicit tagging. IEEE Transactions on

Affective Computing, 3(1):42–55, 2011.

[40] Radim Špetlík, Vojtech Franc, and Jirí Matas. Visual heart rate estimation with con-

volutional neural network. In Proceedings of the British Machine Vision Conference,

Newcastle, U.K., pages 3–6, 2018.

[41] Ronny Stricker, Steffen Müller, and Horst-Michael Gross. Non-contact video-based

pulse rate measurement on a mobile service robot. In The 23rd IEEE International

Symposium on Robot and Human Interactive Communication, pages 1056–1062. IEEE,

2014.

[42] H Emrah Tasli, Amogh Gudi, and Marten Den Uyl. Remote PPG based vital sign

measurement using adaptive facial regions. In 2014 IEEE international conference on

image processing (ICIP), pages 1410–1414. IEEE, 2014.

[43] Sergey Tulyakov, Xavier Alameda-Pineda, Elisa Ricci, Lijun Yin, Jeffrey F. Cohn, and

Nicu Sebe. Self-adaptive matrix completion for heart rate estimation from face videos

under realistic conditions. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2396–2404, 2016.

[44] Rik van Esch, Kambez Ebrahimkheil, Iris Cramer, Wenjin Wang, A. T. M. Kaandorp,

Carla Kloeze, Cindy Verstappen, Tomas van’t Veer, Marcel, Federica Sammali, and

Dierick van Daele. Remote PPG for heart rate monitoring: lighting conditions and



BIBLIOGRAPHY 51

camera shutter time. In 43rd Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), 2021.

[45] Wim Verkruysse, Lars O. Svaasand, and J. Stuart Nelson. Remote plethysmographic

imaging using ambient light. Optics Express, 16(26):21434–21445, 2008.

[46] Wenjin Wang and Albertus C. den Brinker. Camera-based respiration monitoring:

Motion and PPG-based measurement. In Contactless Vital Signs Monitoring, pages

79–97. Elsevier, 2022.

[47] Wenjin Wang, Albertus C. Den Brinker, Sander Stuijk, and Gerard De Haan. Al-

gorithmic principles of remote PPG. IEEE Transactions on Biomedical Engineering,

64(7):1479–1491, 2016.

[48] Wenjin Wang, Sander Stuijk, and Gerard De Haan. A novel algorithm for remote

photoplethysmography: Spatial subspace rotation. IEEE Transactions on Biomedical

Engineering, 63(9):1974–1984, 2015.

[49] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Frédo Durand, and

William Freeman. Eulerian video magnification for revealing subtle changes in the

world. ACM Transactions on Graphics (TOG), 31(4):1–8, 2012.

[50] Umang Yadav, Sherif N. Abbas, and Dimitrios Hatzinakos. Evaluation of PPG bio-

metrics for authentication in different states. In 2018 International Conference on

Biometrics (ICB), pages 277–282, 2018.

[51] Zitong Yu, Xiaobai Li, Pichao Wang, and Guoying Zhao. Transrppg: Remote pho-

toplethysmography transformer for 3d mask face presentation attack detection. IEEE

Signal Processing Letters, 28:1290–1294, 2021.



52 BIBLIOGRAPHY

[52] Zitong Yu, Xiaobai Li, and Guoying Zhao. Facial-video-based physiological signal mea-

surement: Recent advances and affective applications. IEEE Signal Processing Maga-

zine, 38(6):50–58, 2021.

[53] Zitong Yu, Wei Peng, Xiaobai Li, Xiaopeng Hong, and Guoying Zhao. Remote heart rate

measurement from highly compressed facial videos: an end-to-end deep learning solution

with video enhancement. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 151–160, 2019.

[54] Zitong Yu, Yuming Shen, Jingang Shi, Hengshuang Zhao, Philip HS Torr, and Guoying

Zhao. Physformer: facial video-based physiological measurement with temporal differ-

ence transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4186–4196, 2022.

[55] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and

alignment using multitask cascaded convolutional networks. IEEE Signal Processing

Letters, 23(10):1499–1503, 2016.

[56] Zheng Zhang, Jeff M Girard, Yue Wu, Xing Zhang, Peng Liu, Umur Ciftci, Shaun

Canavan, Michael Reale, Andy Horowitz, Huiyuan Yang, et al. Multimodal spontaneous

emotion corpus for human behavior analysis. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3438–3446, 2016.

[57] Yan Zhou, Panagiotis Tsiamyrtzis, Peggy Lindner, Ilya Timofeyev, and Ioannis Pavlidis.

Spatiotemporal smoothing as a basis for facial tissue tracking in thermal imaging. IEEE

Transactions on Biomedical Engineering, 60(5):1280–1289, 2012.


	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Main Contributions

	Literature Review
	Supervised Learning Based Approaches
	Unsupervised Learning Based Approaches
	Signal Processing
	Authentication
	Architectural Progressions
	Datasets

	Architecture and Approach
	Extraction of Areas of Interest
	Skin Segmentation Model
	Proposed Model
	Implementation and Training Details
	BVP Annotation and Loss Function
	Signal morphology

	Experiments and Results
	Dataset
	Data Distribution and Training Details
	Signal Morphology Recovery
	Standard Cardiac Pulse Metrics
	Re-identification

	Conclusion
	Discussion and Future Work
	Appendices
	Appendix Coverage of Edge Cases and Effect of Skin Detection Model
	Appendix Study of Attention Maps and Future Direction for ROI
	Bibliography

