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Abstract

In plant phenotyping, accurate trait extraction from 3D
point clouds of trees is still an open problem. For auto-
matic modeling and trait extraction of tree organs such as
blossoms and fruits, the semantically segmented point cloud
of a tree and the tree skeleton are necessary. Therefore,
we present CherryPicker, an automatic pipeline that recon-
structs photo-metric point clouds of trees, performs seman-
tic segmentation and extracts their topological structure in
form of a skeleton. Our system combines several state-of-
the-art algorithms to enable automatic processing for fur-
ther usage in 3D-plant phenotyping applications. Within
this pipeline, we present a method to automatically estimate
the scale factor of a monocular reconstruction to overcome
scale ambiguity and obtain metrically correct point clouds.
Furthermore, we propose a semantic skeletonization algo-
rithm build up on Laplacian-based contraction. We also
show by weighting different tree organs semantically, our
approach can effectively remove artifacts induced by occlu-
sion and structural size variations. CherryPicker obtains
high-quality topology reconstructions of cherry trees with
precise details.

1. Introduction

Digital plant phenotyping is a vital tool in the crop im-
provement process for breeders and farmers as it yields ob-
jective and precise plant traits to use for a variety of pur-
poses. For instance, it may help to find the breed with the
highest resistance to drought stress or help a farmer deter-
mine the optimum time for the harvest to maximize yields.
It is thus an increasingly important tool to help to enlarge
crop production for a growing world population despite the
worsening conditions caused by climate change. Plant phe-
notyping employs the use of sensors, cameras, and other
digital tools to collect data at plant level, field level, or even
from space. While field-scale phenotyping can generate in-

Figure 1. Visualization of the reconstructed point cloud Cb on the
left. It has been processed by CherryPicker from a set of images
I, aligned in space, de-noised, and segmented into both classes
trunk and branch. On the right is the extracted skeleton from our
proposed semantic Laplacian-based contraction algorithm.

formation about large crop areas in a short time, plant-level
phenotyping is the only way to extract detailed information
about each individual plant and every single organ of in-
terest. This data - in connection with additional environ-
mental information e.g. soil conditions - supports informed
decision-making regarding breeding, irrigation, pest con-
trol, or harvest. Moreover, controlled agricultural systems
enable the automation of tasks such as pruning [10] and
harvesting [40]. Significant advances were made recently,
particularly in the field of plant phenotyping and precision
farming. The use of terrestrial laser scanning [35, 39] or
photo-metric reconstruction techniques [14, 30, 38] for tree
modeling is an emerging research field. The focus of these
studies is to accurately quantify the intrinsic parameters of
trees, particularly geometry, photo-metric shape, and topo-
logical structure.

A tree’s geometric and photo-metric representation can
either be used for visual representation or transformed
into a topological structure using skeletonization algorithms
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[1,4,11,33]. In this way, annual shoots, branches, and inter-
sections can be identified unambiguously. This enables esti-
mation of inter- and intra-seasonal growth of trees regarding
the increase in length and thickness. In addition, spatial in-
formation of the location of annual shoots, branches, buds,
leaves, flowers, and fruits within a tree can be located and
individually tracked during their vegetative growth. With
CherryPicker, we present a pipeline that extracts the struc-
ture of cherry trees in form of skeletons, as depicted in Fig.
1. This enables straightforward navigation within a com-
plex network of branches. While the presentation of our
work is limited to the domain of cherry trees, the proposed
methods can be applied to trees in general or other specific
domains with similar-looking data, e.g apple trees or cot-
ton [26]. In summary, we make the following contributions:

• We present an automatic reconstruction pipeline for
extracting the topology of cherry trees from photo-
metric data.

• We extend the Laplacian-based contraction algorithm
[4] by using semantic point cloud information of
cherry trees and the code is made open-source1.

• We present an ArUco-marker-based scale factor esti-
mation to automatically overcome the missing scale
factor for dense and sparse point clouds. The code is
made open-source2.

2. Related Work
Tree Reconstruction. Photo-metric tree reconstructions
have become increasingly popular in recent years. [14]
generated a 3D point cloud from a severed and defoliated
tree to obtain digital ground truth. In a laboratory setup [38]
created a 3d reconstruction of a fruit tree in order to be
able to model its dynamic behavior. Using a deep learning
approach [17] reconstruct the tree structure from a single
image using a conditional generative adversarial network.
Similar to our approach, [30] presents a pipeline structure
that creates a graph representation from photo-metric 3D
point clouds of meadow orchard trees. Drawbacks of this
pipeline are the manual point cloud scaling, manual sky sil-
houette removal, and the removal of detailed tree structures.

Scale Factor Estimation. There are different approaches
for determining the scale factor of a monocular 3D recon-
struction. [18] covers the method of placing a calibration
object into the scene and manually scaling the model or by
taking different poses with known relative displacement.
Automated estimation of the scale factor is not well studied
in the literature, and further limited in its availability as
an open-source package. Only the reconstruction software

1PC-Skeletor: github.com/meyerls/pc-skeletor
2Aruco-Estimator: github.com/meyerls/aruco-estimator

AliceVision [9] mentions using CCtags [3] as a method to
obtain metric reconstructions.

Skeletonization. Many methods for extracting skeletons
from implicit (e.g. signed distance fields) and explicit
(point clouds and polygon meshes) representations are well-
studied in the literature. A comprehensive overview of
state-of-the-art algorithms to extract 3D skeletons is pro-
vided in [32].

The CAMPINO algorithm [1] processes a point cloud
by partitioning the set of points using an octree structure.
Drawbacks of this approach are the required manual selec-
tion of a proper octree cell size to avoid topological faults
and the susceptibility to incomplete point clouds. The latter
was improved in the follow-up work SkelTre [2] that ex-
tracts topologically correct skeletons from incomplete point
clouds by taking shape approximations into account.

ROSA [33] extracts curved skeletons from an oriented
point cloud in cases where the underlying shape is roughly
cylindrical. A strength of this algorithm is that, given the
point normals, it is able to make assumptions about the
cylindrical shape of point clouds with missing data. The
L1-Medial Skeleton algorithm [11] is another promising
approach for skeletonization on point clouds with signifi-
cant noise, outliers, and large areas of missing data. The
Point2Skeleton Network [15] is an unsupervised deep learn-
ing approach to extract a generalized skeletal representa-
tion. Laplacian-based contraction [4] is a method to extract
a curved skeleton of a point cloud. It iteratively applies
Laplacian smoothing and also maintains the global shape
characteristics. Our skeletonization algorithm is a modifi-
cation of Laplacian-based contraction and differs in its se-
mantic components by weighting different classes of a point
cloud according to their structural properties.

3. CherryPicker System Pipeline
This chapter covers the proposed system pipeline as de-

picted in Fig. 2.

3.1. Reconstructor

The recording of the cherry trees was conducted at a
research orchard facility, in Franconian Switzerland, Ger-
many, which has a wide range of cherry trees in differ-
ent age classes. For our measurement campaign, multiple
cherry trees were scanned and the pipeline will be demon-
strated using a single tree’s data set.

Image acquisition was performed using a Nikon D7100
DSLR camera [23] equipped with a lens with a focal length
of 35 mm. Time of day of the acquisition was between
sunrise and noon. In general, the ambient conditions for
all images can be described as slightly cloudy to sunny,
almost windless, and thus without undesirable object mo-
tion. Images were collected from both sides of the trees
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Figure 2. System Pipeline of CherryPicker. The pipeline is separated into six different working blocks Reconstructor, Point Cloud
Restorer, Scale Factor Estimator, Point Cloud Segmentor and Semantic Skeletal Processor. From a set of images I a dense point cloud is
reconstructed and afterward aligned, denoised, scaled, and segmented into different tree organs. With the information obtained from the
segmentation, it is possible to add semantic weighting to the Laplacian-based skeletonization algorithm.

at a constant distance at different heights. On average,
around 250 images were acquired for every single tree.
The input of our system pipeline is a set of images I =
{Ii | i = 1, ..., NI}, where NI indicates the total number of
images. We use state-of-the-art open-source reconstruction
software COLMAP [28, 29]. It extracts the camera poses
P = {Pi ∈ SE(3) | i = 1, ..., NI} and a dense point cloud
C ∈ RNC×3, where NC indicates the number of points.
Both, camera poses and the dense point clouds, were used
for subsequent processing.

3.2. Point Cloud Restorer

The resulting point cloud C is not oriented in space, is
arbitrarily scaled, and contains points of background struc-
tures as well as noise. Therefore, the restoration step, de-
picted as blue blocks in Fig. 2, aims to transform the point
cloud to a defined orientation, extract the region of interest,
and perform noise reduction.

3.2.1 Alignment

The objective of the alignment process is to rearrange the
point cloud C and poses P in order to achieve a defined ori-
entation. In other words, we aim to align the ground plane
of the reconstruction with the xy-plane in the local coordi-
nate system.This can be achieved by computing the rotation
matrix between the ground normal vector to the normal vec-

tor of the xy-plane. To determine the normal vector of the
ground plane, we utilized the RANSAC algorithm [19] to fit
a plane in Cartesian form into the given point cloud (during
the outdoor reconstruction the background gets densely rep-
resented). Afterward we determine the rotation by utilizing
Rodrigues rotation formula [31] and translation between the
ground plane’s normal vector and the normal vector of the
xy-plane. To align the local tree coordinate system with our
global coordinate system it is necessary to compute the z-
direction of the tree relative to the xy-plane. Therefore, we
determine the center of mass of the point cloud, and if the
center of mass lies in the negative z-direction a 180◦ rota-
tion is applied and we obtain an aligned point cloud Ca.

3.2.2 Region of Interest

The purpose of extracting the region of interest (ROI) is
twofold: to remove the background that appears in the out-
door reconstruction and to isolate the tree itself. To extract
the ROI from the oriented point cloud Ca it is assumed
that all camera positions are positioned around the tree and
that a bounding box around the camera origins encompasses
the entire tree. To achieve this, the positions of the cam-
era origin O = {tCam

i |i = 1, ..., NI} are utilized to create
an axis-aligned bounding box for the xy-direction that con-
tains only the points of the actual tree, resulting in a cropped
point cloud denoted as Cc.
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3.2.3 Denoising

The extracted tree point cloud of Cc still contains erroneous
points originating from different sources. The first source of
error are noisy depth values caused by an erroneous depth
estimation, which are manifested in the reconstructed point
cloud as isolated points scattered randomly in space. To
mitigate this issue, a statistical filter is employed to detect
and eliminate these points based on the number of neigh-
boring points within a range defined by the standard devi-
ation of the average Euclidean distances between all pairs
of points [41]. The second type of error is caused by im-
ages taken against the sky. Due to coarse depth maps based
on the selected window size of the stereo matching algo-
rithm, sky image colors are projected into the reconstructed
branches of the point clouds. Especially thin structures such
as annual shoots are particularly vulnerable to this error.
This phenomenon will be referred to as a sky silhouette in
the remainder of this paper.

The appearance of the sky in images can vary depending
on factors such as the direction of the sun, changes in light-
ing throughout the day, and changing weather conditions.
Based on [22], it can be stated that the patterns of the sky
and clouds are usually located within a specific subset of
the RGB color space. To remove the sky’s silhouette from
the reconstructed 3D point clouds a U-Net [25] based neu-
ral network was implemented. The network separates the
sky from the ground and afterward the RGB sky pixels are
clustered on their appearance, which subsequently allows
the identification of dominant sky colors.

For U-Net we chose a similar approach as [24] by using
the Scene UNderstanding (SUN) dataset [37] and search-
ing for images with class labels sky. This way ∼ 5000
images were gathered and then resized to 400px × 400px.
Using multiple augmentation methods, in particular scal-
ing, translation, and elastic transform, the dataset was arti-
ficially increased and split into 80% training data and 20%
validation data. The network was trained with a batch size
of 3 over 15 epochs, to minimize binary cross-entropy loss
using Adam [13] as an optimizer and a decaying learning
rate starting at 10−5. The resulting model achieved a DICE
loss of 0.830 on the validation dataset. The classes sky and
ground were predicted both with an F1-score of 0.877.

Using this network, we are able to extract the color val-
ues of the detected sky from the image set I. According
to [22], the color values of the sky and clouds should ex-
hibit a linear behavior and gather around the RGB diagonal.
We found that in several image sets, the color pattern curved
along the blue wall of the RGB cube. To extract the domi-
nant color range of the sky and to remove points with similar
color values, we utilized Density-Based Spatial Clustering
(DBSCAN) [6]. Since clustering does not work on rela-
tively large discretization distances between color values,
we added N (0, 1

256 ) to the color values beforehand.

3.3. Scale Factor Estimator

The determination of the scale factor is an essential part
of our application. Therefore, we elaborate in this section
on how to specify the scale factor to obtain a metric 3D
reconstruction automatically. In the literature only [9] men-
tions using CCTags for scaling and orientation of the scene
automatically. Therefore we developed an automatic scale
factor estimation, where only a single ArUco marker with a
known size has to be placed within the scene to determine
the scale factor.

Monocular multi-view stereo (MVS) suffers from scale
ambiguity because monocular systems are unable to deter-
mine the true scale of a scene. This is rooted in the un-
derlying epipolar geometry, which characterizes the math-
ematical relationship between two images of a scene cap-
tured from different viewpoints. This relationship can be
described using the Essential Matrix. It is a 3 × 3 matrix
that connects two image planes in a stereo pair, encoded
with five degrees of freedom (DoF). These include relative
rotation (3 DoF), translation (2 DoF), and intrinsic camera
parameters [31]. However, translation has only 2 degrees of
freedom and thus describes only the direction of translation
between the two cameras and not the scale.

The tree scene reconstructed from SfM (Structure from
Motion) is described by a set of input images I and the
computed poses P . The set I is scanned for markers and
outputs a set of images M = {Ij | j = 1, ..., NJ} with de-
tected markers whereby NJ indicates the number of images
containing an ArUco marker. However, as not every im-
age contains an ArUco marker the minimum requirement
for our scale factor estimation is NJ ≥ 2.

The detected 2D location of an ArUco marker within an
image Ij is a set of four corner points aj = {c1, c2, c3, c4}
with ck ∈ R2 with k = 1, 2, 3, 4. Given the camera origin
tj and the unit direction vector ujk, pointing to the corner
of an ArUco marker, a line can be cast through each of the
2D corners ck for every image Ij by

rjk(λ) = tj + λujk. (1)

The direction vector of the line is defined as the normalized
vector

ujk = Rj
K−1c̃jk

∥K−1c̃jk∥2
. (2)

K ∈ R3×3 is denoted as the intrinsic camera matrix that
is identical for all images. c̃jk = (cjk 1)⊤ is the 2D
image coordinate represented using homogeneous coordi-
nates. Rj ∈ SO(3) is the rotational part of the camera
extrinsic Pj .

Finally, we can group from the 3D lines Lk = {rjk | j =
1...NJ} from all images in the set M that intersect in the
same corner of the ArUco marker. Ideally the intersection
point x ∈ R3 can be computed by setting up a system of
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linear equations and solving it. Since all measurements are
noisy, it can be assumed that the lines do not intersect at a
unique point. Instead, we acquire the optimal solution in
the least-square sense by minimizing the sum of squared
distances [34]. The objective of this method involves find-
ing a feasible point x that minimizes the sum of the squared
distances from the point x to each line. The squared orthog-
onal distance from an arbitrary point p to a line is given by

D(x; t,u) =
∥∥(t− x)− ((t− x)⊤u)u

∥∥2
2
. (3)

By using all lines from our subset Lk for one corner k the
unique solution can be found by minimizing the sum of
squared distances of all corresponding lines with

D(xk;T,Uk) =

|Lk|∑
j

D(xk; tj ,ujk), (4)

where T ∈ R|Lk|×3 describes the camera origin for all cam-
eras observing an ArUco marker and Uk ∈ R|Lk|×3 is the
direction vector to the identical ArUco marker corner across
all involved images. With Eq. 4 as an objective function we
can minimize this function to find a feasible point xk ∈ R3

for one corner point. By solving the minimization problem
in the least squares sense for all four corner points we ob-
tain a set {x1,x2,x3,x4} of the ArUco marker corners in
3D space. Set A = {(x1,x2), (x2,x3), (x3,x4), (x4,x1)}
describes all pairs of neighboring corners. Thus, the mean
distance between neighboring corners can be calculated by

d̄scene =
1

4

∑
(xi,xj)∈A

∥xi − xj∥2 . (5)

Since the distance of the square ArUco marker daruco
is known the scale factor s can be computed by s =
daruco/d̄scene. Finally, the set of poses P and the denoised
point cloud Cd are scaled by s such that we obtain a set of
metric poses Pm and the metric point cloud Cm. In a pre-
ceding analysis [21] we showed that estimating the diame-
ter of the trunk (indicated by a white ring) at three different
locations is obtained with an accuracy of up to 6mm.

3.4. Point Cloud Segmentor

In this section, we briefly elaborate on the segmenta-
tion of the metric point cloud Cm. The goal is to seg-
ment the cherry trees into relevant semantic categories to
be able to differentiate between their plant organs. The
aligned, denoised, and scaled point clouds of 16 annotated
tree scans were used to create a dataset for the application
of 3D semantic segmentation via deep learning. To ac-
count for the varying sizes and densities the point clouds
are down-sampled to 4 million points each and then sub-
sampled using a slightly modified version of spherical sub-
sampling [27]. Every resulting data point contains RGB

values as well as global and normalized xyz-coordinates
that we used to train a Deep Graph Convolutional Neural
Network (DGCNN) [36] in order to map each individual
point to a corresponding target class. As network architec-
ture, we used the Pytorch-geometric [8] implementation of
DGCNN, which interprets point clouds as graph networks
to recover their topological information that is further pro-
cessed by a specifically designed operator called EdgeConv
[36]. Our best model was reached after training 35 epochs
with a batch size of 16 sub-spheres per step, with Adam
as an optimizer, negative log-likelihood loss, and a decay-
ing learning rate starting at 0.003. The resulting network
was able to predict 7 different target classes (ground, trunk,
branches, signs, marker, calibration units, and roof) with a
total IoU of 0.95 on validation data. The most relevant cat-
egories for our purpose: branch and trunk were predicted
both with an F1-score of 0.93. The result is a segmented
point cloud Cs as displayed in Fig. 3.

Figure 3. Visualization of the segmented point cloud Cs from
the validation dataset. The prediction classes are ground, trunk,
branches, signs, markers, calibration units, and roof. It is noted
that the supporting bar is annotated in the trunk class and separated
afterward.

4. Skeleton and Topology

In this chapter, we aim to extract the skeleton of the pro-
cessed point cloud and transform it into a simplified graph.

4.1. Point Cloud Contraction

We employed Laplacian-based contraction (LBC) [4] as
the skeletonization algorithm. This algorithm is a geomet-
ric skeletonization method that compresses a 3D input point
cloud C ∈ RNC×3, with NC being the number of points of
the tree, to a zero-volume point set. The contraction process
preserves the input model’s global geometric characteris-
tics by anchoring points and repeatedly applying Laplacian

5



smoothing. By solving the linear system of equations[
WLL
WH

]
C

′
=

[
0

WHC

]
(6)

iteratively the contracted point cloud C
′

can be computed.
WL ∈ RNC×NC and WH ∈ RNC×NC are sparse diagonal
weighting matrices to regulate the contraction and attrac-
tion constraints respectively. L ∈ RNC×NC is defined as
cotangent Laplacian matrix. By repeatedly solving the lin-
ear system of equations, the weight matrices WL and WH

are updated, and L is recalculated. This process is repeated
until the termination criterion is reached.

4.2. Semantic Point Cloud Contraction

Standard LBC is prone to mal-contraction in cases where
there is a significant disparity in diameter between trunk and
branches. In such cases fine structures experience an over-
contraction and leading to a distortion of their topological
characteristics. In addition, LBC shows a topologically in-
correct tree skeleton for trunk structures that have holes in
the point cloud. Holes appear frequently due to occlusions
and incomplete reconstructions. This incorrect contraction
is caused by points at borders of holes. For the computa-
tion of the mean curvature flow the normal vector does not
face perpendicular to the point surface but points in an al-
most vertical orientation. Due to the direction of the mean
curvature flow, the contraction force points in the wrong di-
rection, and elliptical artifacts appear in the skeleton. This
effect is demonstrated in the middle column of Fig. 4 and
also in Fig. 8 in the appendix.

In order to address these topological artifacts, we intro-
duce semantic Laplacian-based contraction (S-LBC). It in-
tegrates semantic information of the point cloud Cs into
the LBC algorithm presented in Sec. 3.4. Even though
the segmentation contains seven classes, we use only the
trunk and branch classes. They are represented as the trunk
point cloud CT and branch point cloud CB . In order to

(a) Original (b) LBC (c) S-LBC (Ours)

Figure 4. Comparison between Laplacian-based contraction
(LBC) and the semantic Laplacian-based contraction (S-LBC) al-
gorithm is shown on a real-world example with occluded areas in
the original reconstruction. It is evident that S-LBC has a more
plausible skeletonizing of the tree trunk than LBC. However, S-
LBC exhibits over-smoothing at the joint of the branches.

weight both classes differently, a semantic weighting ma-
trix S ∈ RNC×NC is defined. The matrix S has a structural
shape identical to that of the Laplacian matrix L. Using
the point-wise segmentation knowledge, we can efficiently
make use of the Laplacian matrix L by rearranging it as fol-
lows:

L =

[
LT LC

L⊤
C LB

]
. (7)

It can be seen that the Laplace matrix is divided into three
distinct blocks. LT ∈ RNT×NT , LB ∈ RNB×NB , and
LC ∈ RNB×NT contain the structural information about the
trunk, the branch, and the connections between both classes,
respectively. NT , NB define the number of points in the
trunk point cloud CT and branch point cloud CB , respec-
tively. A visualization of an example Laplacian matrix and
its adjacency representation is depicted in Fig. 5. The se-
mantic weighting matrix S has a similar structure. All con-
nections of the trunk point cloud (LT ) are weighted with
λT to exert an additional contraction force on the trunk.
The weighting for the branch point cloud must remain con-
stant and therefore we define λB = 1. Special attention
has to be paid to the points which have a connection in the
sub-Laplace matrix LC . These points are connecting pieces
between the trunk and the branches and therefore have a
connection with points from both classes. To get a topolog-
ically correct result all points sharing a neighboring point
of the opposite class have to be weighted equally. Other-
wise, the computation of the mean curvature flow is heavily
distorted. To achieve this, all points which share a connec-
tion via the sub-Laplace matrix LC are weighted uniformly
with λB . Furthermore, the point cloud CT and CB are now
transformed into the sets CT and CB . This results in the

Figure 5. Illustration of the Laplacian matrix of the segmented
point cloud Cs for both classes trunk and branch. The binary
representation of the Laplacian matrix can be interpreted as the
adjacency matrix of the point cloud. In this connectivity matrix
(representing the points and their local and spatial vicinity) both
submatrices for LT (trunk) and LB (branch) can clearly be sep-
arated. LC describes the connection edges between both classes.
For the semantic Laplacian-based contraction points having a con-
nection in this area must be excluded, as it would distort the direc-
tion of the mean curvature flow.
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(a) Original Point Cloud + Skeleton (b) Tree Topology (c) Original Point Cloud + Skele-
ton

(d) Tree Topology

Figure 6. Overlay of the skeleton and graph topology over real-world point cloud data. In both sub-figures Subfig. 6a and 6c the S-LBC
skeleton point cloud from real tree data is displayed. Subfig. 6b and 6d represents the graph obtained from the minimum spanning tree.

following weighting rule for the elements Sij of S:

Sij =

{
λT if pi ∈ CT ∧N (pi) ⊈ CB ,
λB otherwise

. (8)

This rule states that if a point pi is a trunk point and its
neighboring points N (pi) are not contained in the branch
point cloud it is weighted with λT . To integrate the semantic
weight matrix into the LBC Eq. 6, S has to be multiplied
element-wise with the right term WLL. Thus, the semantic
Laplacian-based contraction(S-LBC) results in[

S ◦WLL
WH

]
C

′
=

[
0

WHC

]
, (9)

where ◦ represents the Hadamard product. As a result the
contracted point cloud skeleton C

′
is obtained. It should be

mentioned that S-LBC is not limited to only two classes but
can be extended to any number of classes. Thus, different
contraction weights can be assigned adaptively for different
classes.

4.3. Graph Extraction

To decrease the number of skeletal points, we use far-
thest point sampling to down-sample the skeleton point
clouds. Then, a minimum spanning tree is applied to the
down-sampled skeletal points to obtain an undirected graph.
As we are solely concerned with the branch junctions and
endpoints, we simplify the graph by removing nodes with
only two edges, leaving only nodes with three or more edges
(representing junctions) and nodes with only one edge rep-
resenting the start/end of the trunk or the tip of a branch.
The output of this process is illustrated in Fig. 6b and Fig.
6d.

Although the result appears satisfactory from a visual
standpoint, close examination reveals that the graph may
contain false connections if there is a large gap between the
actual branch and the assigned branch. This issue is partic-
ularly prevalent at the treetop, where branches may touch
and thus create incorrect graph connections. To address this
problem, the point cloud density must be increased, which
necessitates acquiring a greater number of images.

5. Evaluation
A straightforward evaluation of real data is not possi-

ble, since no reference data of a tree skeleton can be col-
lected. In literature, the skeletons are evaluated based on
visual appearance [4,11] or on synthetic 3D models of trees
[12,20]. [16] published an open-source dataset for synthetic
trees with ground truth skeletons but only contains sparse
point clouds (∼ 3000 points).

Therefore we divide the evaluation of our approach into
two components: a visual and a systematic assessment.
The visual evaluation will demonstrate the performance
of S-LBC’s on real-world data from the CherryP-
icker pipeline, while the systematic evaluation will employ
metrics to assess its performance on a synthetic tree dataset.

Visual Evaluation. During vegetation dormancy, we
performed multiple 3D reconstructions of different cherry
trees. For this evaluation, we applied the S-LBC on two
different cherry tree data sets. The result for the skele-
tonization algorithm for the different trees is depicted in
Fig. 6. The visual assessment shows that the skeletons are
contracted with visually pleasing results. Missing data in
the original point cloud lead to incomplete reconstruction
and can only be eliminated by increasing the point cloud
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quality by using more images for the reconstruction.
Artifacts like missing data led to gaps in the skeleton
and might cause problems during the construction of the
topology and can only be corrected by manually editing the
created topology.

Systematic Evaluation. We generated a dataset of 50 trees
using Blender, a 3D modeling tool, and its integrated tree
generation tool [5]. While creating the dataset, we made
sure to generate trees resembling the structure of the cherry
trees at our cherry orchard, i.e. with relatively thick trunks
and thin branches. Therefore, templates were utilized for
Douglas fir, larch, and pine. Each extracted tree model con-
tains a mesh of the entire tree, a mesh of the tree trunk,
and the ground truth skeleton represented as a line set. The
meshes of the tree were uniformly sampled and we added
Gaussian noise N (0, 3σd), where σd represents the mean
distance between the points of the point cloud. For evalua-
tion, we computed the Chamfer distance (CD) [7]. The CD
finds for each point in the estimated point set X , the nearest
neighbor in the other ground truth set Y , and averages the
squared distances. The Chamfer distance is computed by

dCD(X ,Y) =
1

|X |
∑
x∈X

min
y∈Y

||x− y||22+

1

|Y|
∑
y∈Y

min
x∈X

||x− y||22
. (10)

In order to achieve a uniform density and realistic run
times, the point clouds were down-sampled on a voxel grid
with a size of 1.5 cm. For the first evaluation, the noisy data
set was processed by both algorithms. The visual results
are shown in the appendix in Fig. 7. and an evaluation of
both metrics is shown in Tab. 1. S-LBC performs better
on the tree dataset regarding the CD. This can be explained
by the fact that in the region of the tree trunk, the skeleton
is smoothed to a greater extent and thus lies closer to the
ground truth skeleton. In the second evaluation, we assessed
the performance of both algorithms on noisy and occluded
data. To simulate this scenario, we randomly selected mul-
tiple points on the tree trunk and inserted holes with a ra-

Table 1. Evaluation of LBC and S-LBC. S-LBC outperforms LBC
on noisy data with and without occlusions for both distance met-
rics. For comparison all parameters are set equally and only Lapla-
cian weighting λT = 10.

Skeleton Algorithm Chamfer

LBC with noise 37.555
S-LBC with noise 25.349

LBC with noise & occlusion 51.072
S-LBC with noise & occlusion 26.353

dius of 8 cm around them. The resulting point clouds with
holes are shown in the appendix in Fig. 8. The skeletons
generated from LBC, shown in the middle column of Fig.
8 in the appendix , artifacts appear on the skeleton at the
position of the occlusion. It can be seen that with S-LBC,
the artifacts disappear or will be attenuated due to semantic
weighting. The result of Tab. 1 reflects this improvement
and the Chamfer distance stays almost identical for S-LBC
compared to the noise-only evaluation. On the other side,
LBC suffers from occlusions which is reflected in the CD.

6. Conclusion & Future Work

This work presents CherryPicker, an automated system
pipeline for obtaining the topology of cherry trees. Within
this pipeline, we introduced an algorithm to automatically
determine the scale factor of a monocular 3D reconstruc-
tion by placing an ArUco marker with a known size into the
scene. To extract the tree’s topology, we proposed a seman-
tic Laplacian-based contraction algorithm that incorporates
semantic knowledge of segmented tree point clouds. In our
case, the weighting differs between branches and tree trunk.
However, the semantic weighting can be extended to multi-
ple classes with individual weighting. In a visual evaluation,
we showed that the algorithm produces high-quality skele-
tons. Additionally, the systematic evaluation showed im-
proved results regarding occlusions and structural disparity
variations.

One limitation of utilizing real data is the absence of
benchmarks to assess the efficiency and quality of the
algorithms. Therefore, we plan to create an artificial,
photo-realistic tree dataset containing comprehensive 2D
and 3D semantic information, depth maps, and skeleton
ground truths. This dataset can than be used to implement
a learning-based approach for extracting the point cloud
skeletons, inspired by the method introduced in [15]. An
additional constraint is that the current methodology only
permits the skeletonization of tree structures without leaves.
However, in future work, it may be feasible to conduct the
scan during vegetation dormancy and fit the skeleton into a
3D reconstruction with leaves. This approach would enable
the intra-seasonal use of the skeleton data, facilitate the as-
signment and thus allow the integration of leaves and fruits
into the existing skeleton.
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Figure 7. For the visualization of the advantages of semantic Laplacian-based contraction (S-LBC) over standard Laplacian-based con-
traction (LBC) we show different cases. With the larch, we chose balanced contraction WL and attraction weights WH for LBC. It is a
compromise for a good reconstruction of thin branches and thick trunks. Nevertheless, LBC struggles to properly reconstruct the bottom
of the trunk. S-LBC achieves the same results for the branches but tackles the artifact of the trunk. In the pine example, we increased
the contraction weights and decreased the positional weighting to tackle the trunk artifact within LBC. It can be seen that LBC eliminates
the trunk artifacts but introduces over-smoothing at the branches. For S-LBC the skeleton benefits from different weighting and has no
artifacts. At the last example executed at a fir, LBC weighting for WH increased and decreased for WL. At the branches, the topological
results are similar to the ground truth but the trunk suffers from an incorrect trunk skeleton. On the other side, S-LBC keeps the details of
the branch and additionally contracts the trunk properly.
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Figure 8. Visualization of the skeleton algorithms LBC and S-LBC on noisy and occluded tree point cloud data. In the region of holes, the
Laplacian-based contraction (LBC) shows circular artifacts. For the different tree types, we choose similar contraction WL and attraction
weights WH . At the top row with the larch example, it can be seen LBC shows elliptical errors at the bottom tree trunk. The green area
shows a curved skeleton for LBC and for S-LBC it is a straight line due to the additional trunk weighting. In the pine example, it can be
seen LBC shows erroneous skeletons in the trunk and additionally missing links appear. S-LBC is able to counteract these artifacts. Lastly,
in the Fir example, the holes produce different artifacts for LBC. The S-LBC is able to overcome these artifacts by enforcing stronger
contractions due to semantic weighting.
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