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Abstract

MLP-based architectures, which consist of a sequence
of consecutive multi-layer perceptron blocks, have recently
been found to reach comparable results to convolutional
and transformer-based methods. However, most adopt spa-
tial MLPs which take fixed dimension inputs, therefore mak-
ing it difficult to apply them to downstream tasks, such
as object detection and semantic segmentation. More-
over, single-stage designs further limit performance in other
computer vision tasks and fully connected layers bear heavy
computation. To tackle these problems, we propose Con-
VMLP: a hierarchical Convolutional MLP for visual recog-
nition, which is a light-weight, stage-wise, co-design of
convolution layers, and MLPs. In particular, ConvMLP-
S achieves 76.8% top-1 accuracy on ImageNet-1k with
9M parameters and 2.4 GMACs (15% and 19% of MLP-
Mixer-B/16, respectively). Experiments on object detection
and semantic segmentation further show that visual repre-
sentation learned by ConvMLP can be seamlessly trans-
ferred and achieve competitive results with fewer param-
eters. Our code and pre-trained models are publicly avail-
able at https://github.com/SHI-Labs/Convolutional-MLPs

1. Introduction

Image classification is a fundamental problem in com-
puter vision, and most milestone solutions in the past
five years have been dominated by deep convolutional
neural networks. Since late 2020 and the rise of Vi-
sion Transformer [5], researchers have not only been ap-
plying Transformers [36] to image classification, but ex-
plored more meta-models other than convolutional neural
networks. MLP-Mixer [33] proposes token-mixing and
channel-mixing MLPs to allow communication between
spatial locations and channels. ResMLP [34] uses cross-
patch and cross-channel sublayers as the building block, fol-
lowing design of ViT. gMLP [22] connects channel MLPs
by adding spatial gating units. In essence, MLP-based mod-
els show that simple feed-forward neural networks can com-
pete with operators like convolution and attention on image
classification.
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Figure 1: Comparing MLP-Mixer to ConvMLP. ConvMLP
adopts a simple hierarchical multi-stage co-design of convo-
lutions and MLPs and achieves both more suitable represen-
tations as well as better accuracy vs computation trade-offs
for visual recognition tasks including classification, detec-
tion and segmentation.

However, using MLPs to encode spatial information re-
quires fixing dimension of inputs, which makes it difficult
to be deployed on downstream computer vision tasks — such
as object detection and semantic segmentation — since they
usually require arbitrary resolutions of input sizes. Fur-
thermore, single-stage design, following ViT, may constrain
performances on object detection and semantic segmenta-
tion since they make predictions based on feature pyramids.
Large consecutive MLPs also bring heavy computation bur-
den and more parameters, with high dimension of hidden
layers. MLP-Mixer was only able to slightly surpass ViT-
Base with its large variant, which is over twice as large
and twice as expensive in terms of computation. Similarly,
ResMLP suffers from over 30% more parameters and com-
plexity, compared to a transformer-based model of similar
performance.

Based on these observations, we propose ConvMLP:
A Hierarchical Convolutional MLP backbone for visual
recognition, which is a combination of convolution lay-
ers and MLP layers for image classification and can be
seamlessly used for downstream tasks like object detection
and segmentation as shown in Figure 1. To remove con-
straints on input dimension in other MLP-like frameworks,
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Figure 2: Overview of ConvMLP framework. The Conv Stage consists of C' convolutional blocks with 1 x 1 and 3 x 3 kernel
sizes. The MLP-Conv Stage consists of Channelwise MLPs, with skip layers, and a depthwise convolution. This is repeated
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we first replace all spatial MLPs with channel MLPs for
cross-channel connections and builds a pure-MLP baseline
model. To make up spatial information interaction, we add
a light-weight convolution stage on top of the rest MLP
stages and use convolution layers for down-sampling. Fur-
thermore, to augment spatial connections in MLP stages,
we add a simple 3 x 3 depth-wise convolution between the
two channel MLPs in each MLP block, hence calling it a
Conv-MLP block. This co-design of convolution layers and
MLP layers builds the prototype of ConvMLP model for im-
age classification. To make ConvMLP scalable, we extend
ConvMLP model by scaling both the depth and width of
both convolution and Conv-MLP stages. It achieves com-
petitive performances on ImageNet-1k with fewer param-
eters compared to recent MLP-based models. On object
detection and semantic segmentation, we conduct experi-
ments on MS COCO and ADE20K benchmarks. It shows
that using ConvMLP as a backbone achieves better trade-off
between performance and model size.
In conclusion, our contributions are as follows:

* We analyze the constraints of current MLP-based mod-
els for image classification, which only take inputs of
fixed dimensions and are difficult to be used in down-
stream computer vision tasks as backbones. Single-
stage design and large computation burden further
limit their applications.

e We propose ConvMLP: a Hierachical Convolutional
MLP backbone for visual recognition with co-design
of convolution and MLP layers. It is scalable and can
be seamlessly deployed on downstream tasks like ob-
ject detection and semantic segmentation.

* We conduct extensive experiments on ImageNet-1k
for image classification, Cifar and Flowers-102 for

transfer learning, MS COCO for object detection and
ADE20K for semantic segmentation to evaluate the ef-
fectiveness of our ConvMLP model.

2. Related Work

Convolutional Methods Image classification has been
dominated by convolutional neural networks for almost a
decade, since the rise of AlexNet [18], which introduced a
convolutional neural network for image classification, and
won the 2012 ILSRVC. Following that, VGGNet [3 1] pro-
posed larger and deeper network for better performance.
ResNet [9] introduced skip connections to allow training
even deeper networks, and DenseNet [ 14] proposed densely
connected convolution layers. In the meantime, researchers
explored smaller and more light-weight models that would
be deployable to mobile devices. MobileNet [13, 30] con-
sisted of depth-wise and point-wise convolutions, which re-
duced the number of parameters and computation required.
ShuffleNet [26] found channel shuffling to be effective, and
EfficientNet [32] further employs model scaling to width,
depth and resolution for better model scalability.

Transformer-based Methods Transformer [36] was pro-
posed for machine translation and has been widely adopted
in most natural language processing. Recently, researchers
in computer vision area adopt transformer to image clas-
sification. They propose ViT [5] that reshapes image
to patches for feature extraction by transformer encoder,
which achieves comparable results to CNN-based mod-
els. DeiT [35] further employs more data augmentation
and makes ViT comparable to CNN-based model with-
out ImageNet-22k or JFT-300M pretraining. DeiT also
proposes an attention-based distillation method, which is
used for student-teacher training, leading to even better
performance. PVT [37] proposes feature pyramids for vi-



Stage ConvMLP-S ConvMLP-M ConvMLP-L
1x1 Conv 1x1 Conv 1x1 Conv
Conv 3x3Conv | X2 [ 3x3Conv | X3 [ 3x3Conv | X3
1x1 Conv 1x1 Conv 1x1 Conv
Scale C; =64 C; =64 C; =96
Channel MLP Channel MLP Channel MLP
Conv-MLP 3x3 DW Conv 1 x 2 3x3DW Conv | X3 3x3DW Conv | X4
Channel MLP Channel MLP Channel MLP
Scale Cy =128, R=2 Cy =128, R=3 Cy=192,R=3
Channel MLP Channel MLP Channel MLP
Conv-MLP 3x3DW Conv | x4 l 3x3DW Conv | X6 [ 3x3DW Conv | X8
Channel MLP Channel MLP Channel MLP
Scale Cs =256,R =2 Cs =256,R=3 C3=384,R=3
Channel MLP Channel MLP Channel MLP
Conv-MLP 3x3DW Conv | X2 l 3x3DW Conv | X3 [ 3x3DW Conv | X3
Channel MLP Channel MLP Channel MLP
Scale Cy=512,R=2 Cy=512,R=3 Cy=T68,R=3

Table 1: Detailed model architecture of ConvMLP in different scales. R denotes scaling ratio of hidden layers in MLP.

sion transformers, making them more compatible for down-
stream tasks. Swin Transformer [24] uses patch-level multi-
headed attention and stage-wise design, which also increase
transferability to downstream tasks. Shuffle Swin Trans-
former [15] proposes shuffle multi-headed attention to aug-
ment spatial connection between windows. CCT [7] pro-
poses a convolutional tokenizer and compact vision trans-
formers, leading to better performance on smaller datasets
training from scratch, with fewer parameters compared with
ViT. TransCNN [23] also proposes a co-design of convolu-
tions and multi-headed attention to learn hierarchical repre-
sentations.

MLP-based Methods MLP-Mixer [33] was recently pro-
posed as a large scale image classifiers that was neither con-
volutional nor transformer-based. At its core, it consisted of
basic matrix multiplications, data layout changes and scalar
nonlinearities. ResMLP [34] followed a ResNet-like struc-
ture with MLP-based blocks instead of convolutional ones.
Following that, gMLP [22] proposed a Spatial Gating Unit
to process spatial features. S2-MLP [39] adopts shifted spa-
tial feature maps to augment information communication.

ViP [11] employs linear projection on the height, width
and channel dimension separately. All these methods have
MLPs on fixed spatial dimensions which make it hard to be
used in downstream tasks since the dimensions of spatial
MLPs are fixed. Cycle MLP [2] and AS-MLP [19] are con-
current works. The former replaces the spatial MLPs with
cycle MLP layers and the latter with axial shifted MLPs,
which make the model more flexible for varying inputs
sizes. They reach competitive results on both image clas-
sification and other downstream tasks. Hire-MLP [6] is an-
other concurrent work that uses Hire-MLP blocks to learn
hierarchical representations and achieves comparable result
to transformer-based model on ImageNet.

3. ConvMLP

In this section, we first introduce overall design and
framework of our ConvMLP. Then, we follow that design
pattern including convolutional tokenizer, convolution stage
and Conv-MLP Stage. We also explain how model scal-
ing is applied to ConvMLP on convolution and Conv-MLP
stages.



Conv Stage  Conv Downsampling Depth-Wise Conv

Epochs | #Params (M) GMACs Top-1 Acc (%)

NN NN
NN NN
S NRNENE N

100 7.88 1.47 63.29
100 7.89 1.59 66.69
100 8.71 1.65 69.56
100 791 1.59 73.84
100 8.73 1.65 74.04
300 8.73 1.65 76.33
300 9.02 2.40 76.81

Table 2: Ablation study on ImageNet-1k validation set. All experiments are based on ConvMLP-S. 1 denotes slightly
modified Conv Stage with improved accuracy in the long run which is used in our final ConvMLP-S model.

3.1. Overall Design

The overall framework of ConvMLP is illustrated in Fig-
ure 2. Unlike other MLP-based models, we use a convolu-
tional tokenizer to extract the initial feature map F} (% X
% x (1 dimensional). To reduce computation and improve
spatial connections, we follow tokenization with a pure con-
volutional stage, producing feature map F» (% X % x Cy
dimensional). Then we place 3 Conv-MLP stages, generat-
ing 2 feature maps F3 and F) (1% X % x C3 and % X % xCy
dimensional respectively). Each Conv-MLP stage includes
multiple Conv-MLP blocks and each Conv-MLP block has
one channel MLP followed by a depth-wise convolutional
layer, succeeded by another channel MLP. Similar to pre-
vious works, we include residual connections and Layer
Normalization applied to inputs in the block. Each channel
MLP consists of two fully connected layers with a GeLU
activation [10] and dropout. We then apply global average
pooling across to the output feature map, Fy, and send it
through the classification head. When applying ConvMLP
to downstream tasks, the feature maps Fy, Fs, F3 and F}
can be used to generate feature pyramids with no constraints
on input size.

3.2. Convolutional Tokenizer

As stated, we replace the original patch tokenizer with
a convolutional tokenizer. It includes three convolutional
blocks, each consisting of a 3x3 convolution, batch nor-
malization and ReLU activation. The tokenizer is also ap-
pended with a max pooling layer.

3.3. Convolution Stage

In order to augment spatial connections, we adopt a
fully-convolutional first stage. It consists of multiple
blocks, where each block is comprised of two 1x1 convo-
lution layers with a 3x3 convolution in between.

3.4. Conv-MLP Stage

To reduce constraints on input dimension, we replace all
spatial MLPs with channel MLPs. Since channel MLP only
share weights across channels which lacks spatial interac-

tions, we make up it by adding convolution layers in early
stage, down-sampling and MLP blocks.

Convolutional Downsampling In the baseline model, we
follow Swin Transformer [24] that uses a patch merg-
ing method based on linear layers to down-sample feature
maps. To augment adjacent spatial intersection, we replace
patch merging with a 3x3 convolution layer under stride 2.
It improves the classification accuracy while only brings a
few more parameters.

Convolution in MLP block We further add a depth-wise
convolution layer between two channel MLPs in one MLP
block and name it Conv-MLP block. It is a 3x3 convolu-
tion layer with the same channel to the two channel MLPs,
which is also used in recent Shuffle Swin Transformer [15]
to augment neighbor window connections. It makes up the
deficiency of removing spatial MLPs, which improves the
performance by a large margin while only brings few pa-
rameters.

3.5. Model Scaling

To make ConvMLP scalable, we scale up ConvMLP on
both width and depth of convolution stages and Conv-MLP
stages. We present 3 ConvMLP variants. Our smallest
ConvMLP-S starts with only a two convolutional blocks,
and has 2, 4 and 2 Conv-MLP blocks in the three Conv-
MLP stages respectively. ConvMLP-M and ConvMLP-L
start with three convolutional blocks. ConvMLP-M has 3,
6 and 3, and ConvMLP-L has 4, 8 and 3 Conv-MLP blocks
in the three Conv-MLP stages. Details are also presented in
Table 1. Experiments show that the performance of image
classification and downstream tasks improves consistently
with model scaling.

4. Experiments

In this section, we mainly introduce our experiments
on ImageNet-1k, CIFAR, Flowers-102, MS COCO and
ADE20K benchmark. We first show ablation studies on dif-
ferent convolution modules in our ConvMLP framework to
evaluate their effectiveness. Then, we compare ConvMLP
to other state-of-the-art models on ImageNet-1k. We then



Model ‘ Backbone  #Params (M) GMACs Top-1 (%) ‘ Acc/GMACs  Acc/MParams
Small models (5M-15M)

ResNetl8 [9] Convolution 11.7 1.8 69.8 38.8 6.0
Mobilenetv3 [12] Convolution 54 0.2 75.2 376.0 13.9
EfficientNet-BO [32] Convolution 5.3 04 77.1 192.8 14.5
ResMLP-S12 [34] MLP 15.3 3.0 76.6 25.5 5.0
CycleMLP-B1 [2] MLP 152 2.1 78.9 37.6 5.2
ConvMLP-S (ours) | ConvMLP 9.0 2.4 768 | 320 8.5
Medium-sized models (16M-30M)

ResNet50 [9] Convolution 25.6 4.1 76.1 18.6 3.0
EfficientNet-B4 [32] 1380 | Convolution 19.0 4.2 82.9 19.7 4.4
ViT-S [5] t Transformer 22.1 4.6 79.9 17.4 3.6
DeiT-S [35] Transformer 22.1 4.6 81.2 17.7 3.7
PVT-S [37] Transformer 24.5 3.8 79.8 21.0 3.3
CCT-14t [7] Transformer 22.4 5.1 80.7 15.8 3.6
MLP-Mixer-S/16 [33] MLP 18.5 3.8 73.8 19.4 4.0
ResMLP-S24 [34] MLP 30.0 6.0 79.4 13.2 2.6
gMLP-S [22] MLP 194 4.5 79.6 17.7 4.1

AS-MLP-Ti [19] MLP 28.0 44 81.3 18.7 2.9
ViP-Small/7 [11] MLP 25.1 6.9 81.5 11.8 3.2
ConvMLP-M (ours) | ConvMLP 17.4 3.9 790 | 20.3 45

Large models (>30M)

ResNet101 [9] Convolution 44.6 7.8 78.0 10.0 1.7
RegNetY-8GF [28] Convolution 39.2 8.0 79.0 9.9 2.0
RegNetY-16GF [28] Convolution 83.6 15.9 80.4 5.1 1.0
ViT-B [5] T Transformer 86.6 17.5 81.8 4.7 0.9
DeiT-B [35] Transformer 86.6 17.5 83.4 4.8 1.0
PVT-L [37] Transformer 61.4 9.8 81.7 8.3 1.3

Swin Transformer-B [24] Transformer 87.8 154 83.5 5.4 1.0
Shuffle Swin-B [15] Transformer 87.8 15.6 84.0 5.4 1.0
MLP-Mixer-B/16 [33] MLP 59.9 12.6 76.4 6.1 1.3

S2-MLP-wide [39] MLP 71.0 14.0 80.0 5.7 1.1

ResMLP-B24 [34] MLP 115.7 23.0 81.0 3.5 0.7
gMLP-B [22] MLP 73.1 15.8 81.6 5.2 1.1

ViP-Large/7 [11] MLP 87.8 24.4 83.2 34 0.9
CycleMLP-B5 [2] MLP 75.7 12.3 83.2 6.7 0.9
AS-MLP-B [19] MLP 88.0 15.2 83.3 5.4 1.0
ConvMLP-L (ours) ‘ ConvMLP 42.7 9.9 80.2 8.1 1.9

Table 3: ImageNet-1k validation top-1 accuracy comparison between ConvMLP and state-of-the-art models. Comparing to
other MLP-based methods, ConvMLP achieved the best Acc/GMACs and Acc/MParams in different model size ranges. f:
reported from DeiT for fairer comparison; ViT-S was not proposed in the original paper. 1 specifies image resolution, if different from
224%224.



Model | # Params (M) | ImageNet-1k (%) | CIFAR-10 (%) CIFAR-100 (%) Flowers-102 (%)

ConvMLP-S | 9.0 | 76.8 | 98.0 87.4 99.5
ResMLP-S12 [34] 15.4 76.6 98.1 87.0 97.4
ConvMLP-M 17.4 79.0 98.6 89.1 99.5
ResMLP-S24 [34] 30.0 79.4 98.7 89.5 97.4
ConvMLP-L 42.7 80.2 98.6 88.6 99.5
ViT-B [5] 86.6 81.8 99.1 90.8 98.4
DeiT-B [35] 86.6 834 99.1 91.3 98.9

Table 4: Top-1 accuracy when pre-trained on ImageNet-1k and fine-tuned on CIFAR-10, CIFAR100 and Flowers-102. It
reaches best performance on Flowers-102 among different model sizes.
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Figure 3: Comparisons between ConvMLP, Pure-MLP and ResNet as backbones of RetinaNet, Mask R-CNN on MS COCO
and Semantic FPN on ADE20K. ConvMLP-based models show consistent improvements under different evaluation metrics
and tasks.

show transferring ability on CIFAR and Flowers-102. On cay of 0.05. The initial learning rate is 0.0005 with batch
MS COCO and ADE20K benchmark, we use ConvMLP as size of 128 on each GPU card. We use 8 NVIDIA RTX
backbones of RetinaNet, Mask R-CNN, Semantic FPN and A6000 GPUs to train all models for 300 epochs and the to-
it shows consistent improvements on these different down- tal batch size is 1024. All other training settings and hyper-
stream models. parameters are adopted from Deit [35] for fair comparisons.

For those results in ablation study, we train these models
4.1. ImageNet-1k for 100 epochs with batch size 256 on each GPU and use 4

ImageNet-1k [18] contains 1.2M training images and GPUs with learning rate at 0.001.

50k images on 1000 categories for evaluating performances

of classifiers. We follow standard practice provided by 4.2. Ablation Study

timm [38] toolbox. We use RandAugment [4] Mixup [42], Our baseline model Pure-MLP Baseline is composed of
and CutMix [41] for data augmentation. AdamW [25] is one patch converter and a sequence of channel MLPs in
adopted as optimizer with momentum of 0.9 and weight de- following stages. In Table 2, the baseline model reaches
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Figure 4: Visualization of feature maps in different stages of ResNet50, MLP-Mixer, Pure-MLP Baseline and ConvMLP-M.
Visual representations learned by ConvMLP-M show both semantic and low-level information.

63.29% top-1 accuracy on ImageNet-1k and we first replace
the first stage of MLPs into a convolution stage. Then, we
replace the down-sampler from patch merging into a sin-
gle 3 x 3 convolution layer with stride 2, which further im-
proves top-1 accuracy to 69.56%. To further augment spa-
tial information communication, we add 3 x 3 depth-wise
convolution between two channel MLPs and extends train-
ing epochs to 300. Finally, we modify the convolution stage
with successive 1 x 1, 3 x 3, 1 x 1 convolution blocks and
builds ConvMLP-S model.

4.3. Comparisons with SOTA

In Table 3, we compare ConvMLP to other state-of-
the-art image classification models on ImageNet-1k. We
include Convolution-based, Transformer-based and MLP-
based methods under different scales. We also present num-
ber of parameters and GMACs of these models.

4.4. Transfer learning

Dataset We use CIFAR-10/CIFAR-100 [17] and Flowers-
102 [27] to evaluate transferring ability of ImageNet-
pretrained ConvMLP variants. Each model was fine-tuned

for 50 epochs with a learning rate of 3e-4 (with cosine
scheduler), weight decay of 5e-2, 10 warmup and cooldown
epochs. We used the same training script and therefore aug-
mentations as the ImageNet-1k experiments. We also re-
sized all images to 224x224.

Results The results are presented in Table 4. We report
results from ResMLP, ViT and DeiT as well.

4.5. Object Detection

Dataset MS COCO [21] is a widely-used benchmark for
evaluating object detection model. It has 118k images
for training and Sk images for evaluating performances
of object detectors. We follow standard practice of Reti-
nalNet [20] and Mask R-CNN [&8] with ResNet as backbones
inmmdetection [1]. We replace ResNet backbones with
ConvMLP and adjust the dimension of convolution layers
in feature pyramids accordingly. We also replace SGD op-
timizer with AdamW and adjust learning rate to 0.0001
with weight decay at 0.0001, which follows the configs in
PVT [37]. We train both RetinaNet and Mask R-CNN for
12 epochs on 8 GPUs with total batch size of 16.

Results We transfer ResNet, Pure-MLP and ConvMLP



variants to object detection on MS COCO and the results
are presented in Figure 3. It can be observed that Con-
vMLP achieves better performance on object detection and
instance segmentation consistently as backbones of Reti-
naNet and Mask R-CNN compared with Pure-MLP and
ResNet. More details of the results are presented in Ap-
pendix.

4.6. Semantic Segmentation

Dataset ADE20K [43] is a widely-used dataset for se-
mantic segmentation, which has 20k images for train-
ing and 2k images for evaluating the performance of
semantic segmentation models. = We employ standard
practice of Semantic FPN [16] implemented based on
mmsegmentation [3]. Following PVT in semantic seg-
mentation, we train ConvMLP-based Semantic FPN on 8
GPUs with total batch size of 16 for 40k iterations. We
also replace optimizer from SGD to AdamW with learning
rate at 0.0002 and weight decay at 0.0001. The learning
rate decays with polynomial rate at 0.9 and input images
are randomly resized and cropped to 512 x 512.

Results All experimental results on ADE20K are presented
in Figure 3. Similar to the results of object detection, it
shows that visual representations learned by ConvMLP can
be transferred to pixel-level prediction task like semantic
segmentation. More details of the results can be found in
Appendix.

4.7. Visualization

We visualize feature maps of ResNet50, MLP-
Mixer-B/16, Pure-MLP Baseline and ConvMLP-M under
(1024, 1024) input size (MLP-Mixer-B/16 under (224, 224)
due to dimension constraint) in Figure 4 to analyze the dif-
ferences in visual representations learned by these models,
and similar feature maps of transformer-based model are
presented in T2T-ViT [40]. We observe that representations
learned by ConvMLP involve more low-level features like
edges or textures compared with ResNet and more seman-
tics compared with Pure-MLP Baseline .

5. Conclusion

In this paper, we analyze the constraints of current MLP-
based models for visual representation learning: 1. Spa-
tial MLPs only take inputs with fixed resolutions, making
transfer to downstream tasks, such as object detection and
segmentation, difficult. 2. Single-stage design and fully
connected layers further constrain usage due to the added
complexity. To tackle these problems, we propose Con-
VMLP: a Hierarchical Convolutional MLP for visual repre-
sentation learning through combining convolutional layers
and MLPs. The architecture can be seamlessly prepended
to downstream networks like RetinaNet, Mask R-CNN and
Semantic FPN. Experiments further show that it can achieve

competitive results on different benchmarks with fewer pa-
rameters compared to other methods. The main limitation
of ConvMLP is that ImageNet performance scales slower
with model size. We leave this to be explored in future
works.
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A. Salient Maps, Bias, and OverFitting

In an effort to analyze the differences in ConvMLP we
investigate the salient maps of MLP-Mixer, ResMLP, and
ConvMLP. We created salient maps based on the final out-
put. We then selected a random sample of images from
the network and investigated what they looked like. For
the most part images had fairly similar maps, but in some
images there were stark differences that we believe high-
light major differences in the networks. While these images
are hand selected we note that there are some counter ex-
amples. Though the counter examples exist we found that
there exists a trend within the biases, which we try to high-
light here. We show these selected images in Figure 5. To
the left we label each network. At the top of the column we
provide the ground truth label for the image and underneath
each image we provide the network’s corresponding pre-
dicted label. Specifically we show salient maps where the
MLP-Mixer model contains 59.9M params, ResMLP con-
tains 30M params, and we use ConvMLP-L with 42.7M
params. Additionally, we note that the MLP-Mixer and
ResMLP models are both versions that were trained from
scratch on ImageNet, making for a more fair comparison.
The first aspect that should be noted is that MLP-Mixer and
ResMLP have more “pixelated” looking salient maps. We
can clearly see the effect of ResMLP’s smaller patches and
subsequently finer resolutions to where the network sees in-
formation.

Starting with the left most image, Binoculars, we notice
some interesting things. For one, a human would likely not
label this image as an example of binoculars. We should
note that several labels within the dataset exist within this
image. The second thing to notice is the salient maps. MLP-
Mixer pays attention to almost everything except the car and
predicts the correct label. ResMLP highlights the hares and
a little bit of the person (near the face) but predicts the in-
correct label of car wheel. Lastly, ConvMLP also pays at-
tention to the hares but incorrectly classifies the images as
hare. This presents an interesting phenomena when analyz-
ing results. We have a clue that MLP-Mixer and ResMLP
might be overfitting the data. While ConvMLP makes the
misclassification, we note that it is at least paying attention
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to the part of the image that closely corresponds to the label
that it predicts. MLP-Mixer and ResMLP offers more suspi-
cious behavior as they pay attention to different parts of the
image than what they predict. This may suggest overfitting.

In the second image all three networks correctly identify
the image as a ballpoint pen, but there are interesting things
to note in the salient maps. MLP-Mixer and ConvMLP both
ignore the rubix cube and we can see their salient maps out-
line the pens (possibly pencils). Between MLP-Mixer and
ConvMLP we notice that ConvMLP pays slightly more at-
tention to the pens, though MLP-Mixer pays more attention
to the rest of the scene. Additionally, we note that ResMLP
pays more attention to the rubix cube that the other two net-
works.

In the third image we see a worrying problem in MLP-
Mixer. Ribeiro et al[29] showed how huskies can be mis-
classified as wolves due to the presence of snow within the
image. That is, if an image contains snow then it would
be far more likley to be classified as a wolf, showing the
bias that the network learned. What is worrying here is
that the areas MLP-Mixer pays significant attention don’t
contain dogs, such as the bottom center image and center
left. This actually gets worse with the larger Mixer model,
not shown, and it exclusively pays attention to sub-images
without dogs. This suggests that the network may be biased
from the background in the image, which is likely given that
images of malamutes are likely to have snow within the im-
age. Again, this suggests potential for overfitting. ResMLP
and ConvMLP do not make these same mistakes. Both
ResMLP and ConvMLP pay more attention to the dogs in
the right most column, which are more centered in their re-
spective sub-pictures, but ConvMLP also pays attention to
the dogs in the top row. Neither of these networks pay any
significant attention to sub-images without dogs in them,
which is a good sign. Despite ResMLP and ConvMLP mis-
classifying the image, the labels they provide are accept-
able, being very close to the true labels. Both Canadian Es-
kimo Dogs and Malamutes look very similar in appearance
and humans commonly call both Huskies. We note here
that ImageNet contains exclusively images of Canadian Es-
kimo Dogs and does not contain images of American Es-
kimo Dogs, which are more easily distinguishable.

With the last column we see a similar story. None of the
networks get the classification correct. MLP-Mixer again
pays significant attention to the majority of the image and
specifically the background. While all three models pay at-
tention to the top left background of the image it is clear that
MLP-Mizxer is focused less on the animals than the other
two networks. Again we note that Gazelles, Impalas, and
Hartebeests have very similar appearances, and that all three
networks predict reasonable labels.

We found many similar examples of these patterns while
analyzing salient maps for these networks and saw these



Binoculars

MLP-Mixer-B/16

ResMLP-B24

ConvMLP-L

Ballpoint

Gazelle

Figure 5: Salient Maps of selected ImageNet images, comparing MLP-Mixer-B/16, ResMLP-B24, and ConvMLP-L. The
labels at the top represent the ground truth label and the smaller labels below the images show the network’s prediction.

RetinaNet Backbone | # Params | AP APY  APY | AP, AP AP}
ResNet18 [9] 213M | 31.8 49.6 336 | 163 343 432
Pure-MLP-S 17.6M | 27.1 442 283 | 13.6 292 364
ConvMLP-S 187M | 372 564 398 | 20.1 407 504
ResNet50 [9] 377M | 363 553  38.6 | 193 400 488
Pure-MLP-M 259M | 280 456 290 | 145 299 378
ConvMLP-M 27.IM | 394 587 420 | 215 432 525
ResNet101 [9] 56.7M | 385 57.8 412 | 214 426 511
Pure-MLP-L 50.IM | 28.8 468 299 | 150 31.0 384
ConvMLP-L 529M | 402 593 433 | 235 438 533

Table 5: Comparison between ConvMLP and ResNet as RetinaNet backbones on MS COCO.

Mask R-CNN Backbone | # Params | AP® AP APY | AP™ AP} APR
ResNet18 [9] 312M | 340 540 367 | 312 510 327
Pure-MLP-S 27.5M | 251 451 251 | 250 428 260
ConvMLP-S 287M | 384 598 418 | 357 5677 382
ResNet50 [9] 442M | 38.0 586 414 | 344 551 367
Pure-MLP-M 358M | 258 461 258 | 256 435 265
ConvMLP-M 37.1IM | 406 617 445 | 372 588 398
ResNet101 [9] 632M | 404 61.1 442 | 364 5777 388
Pure-MLP-L 595M | 265 450 274 | 267 475 268
ConvMLP-L 622M | 417 628 455 | 382 599 411

Table 6: Comparison between ConvMLP and ResNet as Mask R-CNN backbones on MS COCO.

patterns worsen with the larger models, despite that they
achieve significantly higher accuracy scores. We believe
that this type of analysis suggests that these networks show
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significantly different biases.
analysis supports claims that MLP-Mixer is overfitting the
dataset and that scale is not all one needs to perform well.

We also believe that this



Semantic FPN Backbone | # Params | mloU

ResNet18 [9] 15.5M 329
Pure-MIP-S 11.6M 239
ConvMLP-S 12.8M 35.8
ResNet50 [9] 28.5M 36.7
Pure-MIP-M 19.9M 25.2
ConvMLP-M 21.1M 38.6
ResNet101 [9] 47.5M 38.8
Pure-MIP-L 43.6M 26.3
ConvMLP-L 46.3M 40.0

Table 7: Comparison between ConvMLP and ResNet as Semantic FPN backbones on ADE20k.

Rather that scale harms performance, but not in the way that
we are evaluating models. With this analysis we believe that
there is significant evidence that MLP-Mixer and ResMLP
overfit the ImageNet dataset and that accuracy cannot be the
only score used to evaluate a model’s performance. With
this analysis we encourage the reader to use Occam’s ra-
zor when selecting models and encourage practitioners to
perform similar and more inclusive analyses when evaluat-
ing models. This analysis highlights that just because one
does well on accuracy does not mean that is has low bias or
will generalize well to the real world. With this it becomes
important to analyze models and understand the biases that
they have as well as the biases within the dataset.

B. Object Detection & Semantic Segmentation

We provide details of results on MS COCO and
ADE20K benchmarks as reference to Figure 3. For MS
COCO, we use ResNet, Pure-MLP and ConvMLP as back-
bone of RetinaNet and Mask R-CNN. The results are shown
in Table 5 and Table 6. For ADE20k, we use ResNet, Pure-
MLP and ConvMLP as backbone of Semantic FPN and the
result is shown in Table 7.
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