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Abstract

With the continuous improvement of computing power
and deep learning algorithms in recent years, the founda-
tion model has grown in popularity. Because of its power-
ful capabilities and excellent performance, this technology
is being adopted and applied by an increasing number of
industries. In the intelligent transportation industry, artifi-
cial intelligence faces the following typical challenges: few
shots, poor generalization, and a lack of multi-modal tech-
niques. Foundation model technology can significantly al-
leviate the aforementioned issues. To address these, we de-
signed the 1st Foundation Model Challenge, with the goal
of increasing the popularity of foundation model technol-
ogy in traffic scenarios and promoting the rapid develop-
ment of the intelligent transportation industry. The chal-
lenge is divided into two tracks: all-in-one and cross-modal
image retrieval. Furthermore, we provide a new baseline
and benchmark for the two tracks, called Open-TransMind.
According to our knowledge, Open-TransMind is the first
open-source transportation foundation model with multi-
task and multi-modal capabilities. Simultaneously, Open-
TransMind can achieve state-of-the-art performance on de-
tection, classification, and segmentation datasets of traf-
fic scenarios. Our source code is available at https:
//github.com/Traffic-X/Open-TransMind.

1. Introduction
In recent years, the foundation model has gained a lot of

attention in the artificial intelligence community and is one
of the key areas for future advancement. Large-scale neural
networks that have been trained on a massive amount of data
and may be utilized to tackle complex problems are often
the building blocks of foundation models. With deep learn-
ing’s ongoing development, larger and larger deep learn-
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Figure 1. Top: Track 1 consists of three tasks including classifica-
tion, detection and semantic segmentation. Bottom: Track 2 is a
text-image retrieval task, where Q represents the feature obtained
by text encoding, and I represents the images to be queried.

ing models are being trained using an increasing amount of
computing resources. This has sped up the development of
foundation model technology, which is now finding numer-
ous uses in areas like speech recognition, image and video
processing, machine translation, and natural language pro-
cessing.

Compared to small-scale models, foundation models
have many advantages. Foundation models can learn more
from larger-scale datasets and perform better overall be-
cause of their higher computing power and more parame-
ters. Furthermore, foundation models are capable of learn-
ing from data and adapting to new tasks, so they can better
adapt to various application contexts. However, foundation
models have some drawbacks, such as deployment and in-
ference costs, so many works have conducted extensive re-
search in this area [2, 15, 16].

Intelligent transportation is a field that integrates arti-
ficial intelligence technology and the transportation sec-
tor, focusing especially on autonomous driving, vehicle-
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infrastructure cooperation, traffic management, traffic in-
formation services, and other related topics. The following
challenges face artificial intelligence in the field of intelli-
gent transportation:

• Scenes with few shot problems have a weak effect;
• The data input, learning capacity, and generalization

capacity of small-scale models are constrained;
• The pace of multi-modal technology development is

slow, and industry applicability is restricted.
To address these issues, we designed the 1st Founda-

tion Model Challenge with the goal of increasing the pop-
ularity of foundation model technology in traffic scenarios.
This activity can help strengthen the application of artificial
intelligence technology in the transportation field and pro-
mote the rapid development of the intelligent transportation
industry. The foundation model challenge consists of two
tracks, as shown in Figure 1:

Track 1: All in One. When designing well-crafted neu-
ral network structures and loss functions, multi-tasking can
significantly improve model generalization. Using only one
task’s data for training may result in overfitting due to data
noise in specific tasks. Unified large models will combine
datasets from multiple tasks into unified training, allowing
them to average noise from different jobs and thus improve
their ability to learn better features. As a result, this track
hopes that the unified foundation model will outperform
multiple single-task models at the same time, allowing it
to explore its upper bound on capabilities.

Track 2: Cross-Modal Image Retrieval. In traffic sce-
narios, high-performance image retrieval technology is crit-
ical for security management. The traditional image re-
trieval method typically begins with image attribute recog-
nition and then achieves retrieval capability by comparing
the image to the expected attribute. However, as multi-
modal foundation model technology has advanced, text and
image representation unification and modality transforma-
tion have become commonplace. The use of this capability
can further improve the accuracy and flexibility of image re-
trieval. As a result, in this track, we created a text-image re-
trieval dataset that contestants can use to investigate multi-
modal technology research, thereby improving the accuracy
of text retrieval from images.

In this paper, we provide our baseline methodology,
Open-TransMind, and a detailed benchmark introduction,
including dataset compositions and evaluation strategies for
these two tracks. Open-TransMind is, as far as we are
aware, the first open-source foundation model for intelligent
transportation and achieve state-of-the-art performance on
detection, classification, and segmentation datasets of traffic
scenarios. The open-source URL is https://github.
com/Traffic-X/Open-TransMind. In the follow-
ing chapters, we will introduce related work in Chapter
2, benchmark details, including dataset setup and evalua-

tion strategies for each track, in Chapter 3, our baselines in
Chapter 4, experiment analysis and results in Chapter 5, and
the article conclusion in Chapter 6.

2. Related Work

2.1. Intelligent Transportation Public Datasets

Publicly available datasets have played a critical role in
advancing research in the field of intelligent transportation
systems and autonomous driving by providing researchers
with access to high-quality, diverse data to develop and test
algorithms and systems. These datasets are divided into
three task types: object detection, image classification, and
semantic segmentation.

Object Detection. KITTI [7] includes a large number
of real-world scenes captured from moving vehicles, with
data from various sensors such as cameras and LiDAR. An-
notations of 2D and 3D bounding boxes for various types
of objects, such as cars, pedestrians, and cyclists, are in-
cluded in the dataset. TT100K [22] is a large-scale traffic
sign detection benchmark comprised of 100,000 images of
road scenes and 30,000 traffic sign instances each annotated
with a class label, bounding box, and pixel mask. Other
datasets, in addition to frontal view with sensors mounted
on the vehicle, focus on roadside perception. Rope3D [17]
creates designs for 3D object detection tasks in the roadside
view. DAIR-V2X [19] is a 71,254 frame dataset of image
and point cloud data designed for comprehensive research
on 3D object detection in vehicle-infrastructure cooperative
autonomous driving.

Image Classification. The PA100K dataset [11] in-
cludes annotations for 26 different pedestrian attributes,
such as gender, age group, clothing color, etc. The anno-
tations are provided in the form of binary labels, indicat-
ing the presence or absence of each attribute in the corre-
sponding pedestrian image. The Stanford Cars dataset [10]
is a large-scale collection of car images collected for fine-
grained classification. It includes 16,185 images of 196 dif-
ferent car models taken in a variety of settings and condi-
tions.

Semantic Segmentation. The Cityscapes dataset [3]
contains 5,000 high-resolution images captured in various
weather and lighting conditions from 50 cities and provides
pixel-level annotations for semantic segmentation tasks.
Apolloscape [12] includes over 140,000 high-resolution
images with 2D pixel-wise and 3D point-wise semantic an-
notation.

However, annotations for multiple tasks within a sin-
gle image are not always present in the datasets mentioned
above. The BDD100K dataset [18] provides annotations
for multiple tasks, including object detection, semantic seg-
mentation, lane detection, and so on, to aid research on
multi-task learning in the field of autonomous driving and
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Task Datasets Perspective Modality
Roadside Vehicle Pedestrian Visual Language

Classification Stanford Cars ✓ ✓ ✓ ✓
Detection TT100K ✓ ✓ ✓

Segmentation BDD100K ✓ ✓
Text-Image Retrieval PA100K+BIT-Vehicle+Web data ✓ ✓ ✓ ✓ ✓

Table 1. Overview of the used datasets for Track1 and Track2.

intelligent transportation systems.

2.2. Foundation Models

Large, pre-built neural network models that have been
trained on massive amounts of data are referred to as pre-
trained foundation models. When applied to downstream
tasks, foundational models can exhibit strong generaliza-
tion capabilities with minimal customization. Foundation
models are classified into three types based on their modal-
ity: LLMs (Large Language Models), LVMs (Large Vision
Models), and VLMs (Large Vision-Language Models).

LLMs. Large language models like BERT [4] and
GPT-3 [1] have transformed natural language processing
(NLP) by producing astounding results on a wide range of
NLP tasks like language understanding, question answer-
ing, summarization, translation, and so on. LLMs usu-
ally adopt unsupervised learning techniques to pre-train
transformer-based models [14] on massive amounts of text
data.

LVMs. Previous large vision models were frequently
based on contrastive learning on CNN-based architecture.
However, given the enormous impact of transformer-based
models in the field of NLP, researchers wonder whether they
can apply the transformer concept to image data. ViT [6]
proposes modifying the transformer architecture to process
images as a series of patches. Because of its large model
capacity and generalizing capability, this transformer-based
architecture is widely used in LVMs. MAE [8] applies the
concept of reconstruction from BERT to the domain of com-
puter vision. UFO [16] proposes a feature optimization
paradigm that pretrains a large model on multiple tasks and
then trims the model to a moderate size for deployment on
specific tasks using NAS and Task-MoE.

VLMs. VLMs can perform both language and image-
related tasks by combining LLMs and LVMs, such as image
captioning, text-guided image generation, visual question
answering, and so on. CLIP [13] is made up of a visual en-
coder and a text encoder, and it trains the model using con-
trastive learning on a large dataset of image-caption pairs.
Following research has concentrated on the interaction of
the image encoder and the text encoder. Some studies treat
the two encoders as separate and independent models, while
others [9] try to integrate them into a single, unified model.
These studies seek to improve the model’s performance by

investigating various methods for combining and utilizing
the visual and semantic features learned by the image and
text encoders.

3. Benchmark
According to the perspective of data collection, the re-

search content of intelligent transportation mainly includes
vehicle perspective, roadside perspective, and pedestrian
perspective scene tasks. These tasks include image classi-
fication, object detection, segmentation, and text-image re-
trieval, and the modalities include image, text, point cloud,
etc. Considering the richness of tasks and resource occu-
pation, we selected four tasks in three categories: roadside,
vehicle, and pedestrian perspectives, which include image
classification, object detection, semantic segmentation, and
text-image retrieval (shown in Table 1). In view of the above
four tasks, we divide them into two tracks. Track 1 is com-
posed of three tasks: image classification, object detection,
and semantic segmentation. Track 2 is a cross-modal task of
text-image retrieval. The following is a detailed benchmark
description of Track 1 and Track 2.

3.1. Track 1: All In One

This track consists of three tasks: image classification,
object detection, semantic segmentation. To accommodate
as many perspectives and tasks as possible, we select three
datasets: Stanford Car [10], TT100K [22] and BDD100K
[18], which cover the vehicle, roadside, pedestrian perspec-
tive, and the three tasks listed above. Based on the chosen
datasets, we created a method for multi-task co-evolution.
We’ll discuss datasets and evaluation measures in the sec-
tions below.

Dataset. BDD100K is a diverse visual-driven scene
dataset gathered from vehicle perspectives that includes ten
different tasks such as detection, segmentation, and track-
ing. As our benchmark, we chose the semantic segmen-
tation task dataset with 720×1280 resolution; the dataset
contains geographic, environmental, and weather diversity,
as well as 7,000 and 1,000 finely annotated images for
training and testing, respectively. Tsinghua-Tencent 100K
(TT100K) is a large-scale traffic-sign detection and clas-
sification benchmark obtained from vehicle and pedestrian
perspectives, with 100,000 images containing 30,000 traffic



Figure 2. The framework of the large model. The red arrow rep-
resents the sub-framework of Track 1, and the blue represents the
sub-framework of Track 2.

sign instances annotated with a class label, bounding box,
and pixel mask. These images cover a wide range of light-
ing and weather conditions. We chose traffic-sign detection
as our task, which included 6,107 and 3,067 annotated im-
ages for training and testing, respectively. Stanford Cars
consists of 196 car classes with 360×240 pixels, including
8,144 training images and 8,041 testing images. It is com-
piled from vehicle, roadside, and pedestrian perspectives.
Brand, model, and year are used to categorize items.

Evaluation Metrics. This track hosts a collaborative
multi-task optimization competition with classification, de-
tection, and segmentation tasks. As a result, we include not
only the evaluation metric for each task, but also a global
metric that expresses the overall effect of the competition
task. The classification’s evaluation metric is Acc. mAP is
the detection evaluation metric. The semantic segmentation
evaluation metric is mIoU. As the global metric, this track
uses the average of all metrics.

3.2. Track 2: Cross-Modal Image Retrieval

This track focuses on multi-modal text-image retrieval
task involving two types of transportation participants:
pedestrians and vehicles. We generate the images for this
track using open-source datasets and internet data, and we
used a large language model to generate text for each image.
In terms of model design, we use a concise CLIP model
and mAP@k as the evaluation metric. Below is a detailed
description of the data construction and evaluation metric
calculation.

Dataset. For pedestrian data, we use the open-source
PA-100K [11], which is the largest dataset for pedestrian
attributes recognition task. It contains 90,000 training im-

Figure 3. The structure of Task-MoE with shared FFN and specific
FFN.

ages and 10,000 testing images with fine-grained attribute
annotations such as pedestrian gender, age, upper and lower
clothing style, whether or not they wear glasses and so on.
Using a large language model, we generate descriptive text
based on these attributes. As well as for vehicle data, we
use an open-source dataset, BIT-Vehicle [5] to construct
the test set. This dataset contains 9,850 vehicle images, with
each image annotated with vehicle type attributes. Based on
this dataset, we use a proprietary vehicle structured model
that has a high accuracy and credibility for vehicle color
and brand classification (98.84% for color and 96.48% for
brand), to annotate each image with additional vehicle color
and brand attributes. After filtering out rare vehicle brand
data and manually checking the accuracy of all attributes,
we utilize a total of 7,611 images from the dataset, with
each image annotated with vehicle color, brand, and type
attributes. After statistical analysis, the test set we have
constructed contains a total of 11 colors, 65 vehicle brands,
and 6 vehicle types. We use these attributes as keywords
to crawl 46,117 images from the internet as the training set,
and generate corresponding descriptive texts for each image
using a large language model based on the attribute cate-
gory. It is important to note that we have not cleaned the
web-scraped training set, which contains noise: certain im-
ages may have corresponding text with attribute errors.

After merging pedestrian and vehicle data, Track2 has a
total of 137,117 data for training and 17,611 data for testing.
Furthermore, in order to facilitate the validation of model
capabilities, we randomly select 10,000 data from the train-
ing set as the validation set.

Evaluation Metrics. The evaluation metric used in this
competition is the mean Average Precision (mAP@K),
where K is set to 10. mAP is a measure of the accuracy of
text-based image retrieval. The calculation of mAP@K is



Method Backbone Type Tasks Stanford Cars
(acc%)

TT 100K
(mAP%)

BDD100K
(mIoU%)cls det seg

CAP xception
single

✓ 95.70 - -
CABNet vgg16 ✓ - 78.00 -
NiseNet resnet101 ✓ - - 53.52

Open-TransMind vit-base single
✓ 82.78 - -

✓ - 76.27 -
✓ - - 52.55

Open-TransMind vit-base multi ✓ ✓ ✓ 91.64 76.90 55.13
Open-TransMind vit-base task-moe ✓ ✓ ✓ 93.34 76.70 56.81

Open-TransMind vit-huge single
✓ 95.85 - -

✓ - 82.10 -
✓ - - 63.41

Open-TransMind vit-huge multi ✓ ✓ ✓ 95.96 83.24 64.80

Table 2. Comparing our Open-TransMind approach based on the vit-huge backbone with other state-of-the-art methods and comparing
the performance of single-task trained models and multi-task trained models based on the Open-TransMind with vit-base backbone on
different task datasets.

as follows:

mAP@K =
1

m
×

K∑
i=1

p(i) ∗∆r(i)

where m is the total number of text queries in the evalua-
tion set, p(i) represents the precision of the topi retrieved
results, and ∆r(i) is calculated as:

∆r(i) = r(i)− r(i− 1)

where r(i) is the recall of the topi retrieved results and
r(0) = 0.

4. Baseline

In intelligent transportation scenarios, the types of tasks
mainly involve multiple fields such as classification, detec-
tion, and segmentation. We can usually solve the corre-
sponding problems by building a single-task model, but the
generalization ability of the model will be poor due to the
small size of the data. Considering the similarity between
different tasks in the traffic scene, we propose a multi-task
co-evolution model to promote mutual learning between
different tasks, of course, there may be conflicts. In addi-
tion, traditional image retrieval methods usually use image
attribute recognition to achieve retrieval capabilities. How-
ever, introducing cross-modal capabilities based on existing
models, such as image-text retrieval, can further improve
the flexibility of image retrieval applications. Therefore,
we can use a multi-task co-evolutionary model to build an
image model for text retrieval. Finally, we combine multi-
task co-evolution and multi-modal text-image retrieval into
a model called Open-TransMind.

4.1. Task-MoE

Our Open-TransMind model is built based on the
UFO [16] multi-task and multi-path training framework.
Due to the differences in the visual representation of the
data used by different tasks, there may be conflicts between
tasks. Further, we can alleviate conflicts by introducing
Task-MoE. As shown in the Figure 3, the multi-path FFN
module is set in the encoding module. Each task has two
different path options, that is, to choose shared FFN (state1
in Figure 3) or specific FFN (state2 in Figure 3). All tasks
will update the parameters of shared FFN, and specific tasks
will only update the specific FFN parameters to achieve col-
laborative optimization between different tasks, and greatly
improve the generalization ability of the model.

4.2. Model Design for All in One

The framework of the large multi-task model for this
track is shown in Figure 2. We select the backbone of the
transformer architecture as the multi-task feature encoder.
Based on this common feature, we respectively perform fea-
ture decoding for image classification, object detection, and
semantic segmentation tasks and predict the results of corre-
sponding tasks. The feature decoder for classification tasks
consists of a linear-projection layer and a full-connection
layer. The function of the linear-projection layer is to pro-
vide a layer of isolation between classification and multi-
task features; the object detection decoder refers to the de-
tection head of the DINO [20] model, and the semantic seg-
mentation decoder uses the progressive upsampling module
of the SETR [21] model.



Training Method Test Val
training from scratch 21.25 53.84

CLIP 28.11 16.44
CLIP finetune 50.96 72.26

CLIP finetune + All in One off-the-shelf 53.54 72.56

Table 3. The quantitative results of the cross-modal text-image
retrieval task on the test and validation sets we constructed.

4.3. Model Design for Cross-Modal Image Retrieval

The text-image retrieval model of this track is imple-
mented using the same method as CLIP, and the overall
framework is shown in the lower half of Figure 2. We use
the same transformer structure as Track 1 as the visual en-
coder, and use a text encoder to complete feature extraction
of text data. During the training process, visual encoders
and text encoders calculate visual and text features respec-
tively, and achieve comparative learning of picture text pairs
through contrastive training.

5. Experiments

5.1. All In One

Implementation Details. We chose vit-huge and vit-
base models of transformers with different sizes as the back-
bone of Open-TransMind and set different output heads for
the three different tasks of detection, segmentation, and
classification. We merged three tasks and used a unified hy-
perparameter, such as the AdamW optimizer with an initial
learning rate of 0.0001 and a weight decay of 0.0005. We
adopt CosineAnnealingLR to drop the learning rate and im-
plement different data augmentation methods for different
tasks, including random resize, random cropping, random
scaling in the range of 0.5 to 2.0, and random horizontal
flipping, etc. Finally, we trained 120 epochs based on the
ImageNet pre-training model with a batch size of 8 on eight
A100 GPUs.

Evaluation Results. Based on the above experimental
configuration, we conducted multiple sets of comparative
ablation experiments. We chose the state-of-the-art meth-
ods described on https://paperswithcode.com/
as baselines for comparison in order to confirm the effi-
cacy of our approach, such as CAP, CABNet, and NiseNet,
which are currently the best methods for classification, de-
tection, and segmentation datasets of this track. To begin,
we compared the performance of multi-task and single-task
large models using Open-TransMind based on the vit-base
backbone to validate the benefits of multi-task learning. As
shown in Table 2, the multi-task joint training large model
has significant advantages in the two tasks of segmenta-
tion and classification, which are respectively positive by
2.58% and 8.86%, and the detection task is slightly posi-

Figure 4. Visualization of similarity between different input texts
and pedestrians with different attributes. Note that bright yellow
represents high similarity, while dark blue represents low similar-
ity.

tive. At the same time, we compared the models trained
using Task-MoE method and found that the classification
and segmentation tasks performed better than multi-task
joint training, while the detection task performance was ba-
sically the same, indicating that this method can alleviate
conflicts between tasks. Multi-task joint training of large
models has been shown to have higher generalization abil-
ity than single-task large models. Second, we evaluated
state-of-the-art methodologies against our Open-TransMind
method built on the vit-huge backbone. Our vit-huge multi-
task large model outperforms the vit-huge single-task large
model and the vit-base large model, as can be observed.
Meanwhile, it can achieve the state-of-the-art performance
that is more advanced than baselines. Considering that large
models need to occupy more hardware resources and take
more training time, we provide Open-TransMind with vit-
base backbone as our challenge code base.

5.2. Cross-Modal Image Retrieval

Implementation Details. In the experiment, we use
a transformer-based vit-base model as the visual feature
encoder in the cross-modal Open-TransMind, and a naive
transformer as the text feature encoder. We use an AdamW
optimizer with an initial learning rate of 0.0001 and weight
decay of 0.0005, and we adopt piecewise decay to reduce
the learning rate. We only use basic resizing for data aug-
mentation. The entire training process is conducted on 8
A100 GPUs for 20 epochs with a batch size of 128 for each
GPU.

Quantitative Results. We conduct four comparative
experiments: (1) training from scratch; (2) directly load-
ing CLIP pre-training weights; (3) fine-tuning on the basis
of CLIP pre-training weights; and (4) loading CLIP pre-

https://paperswithcode.com/


Figure 5. Visualization of similarity between different input texts
and vehicles with different attributes. Note that bright yellow rep-
resents high similarity, while dark blue represents low similarity.

training weights for fine-tuning and using the All-in-One
model in Track 1 in an off-the-shelf manner, as an additional
visual feature encoder to provide richer semantic informa-
tion about the traffic scene.

As shown in Table 3 of the experimental results, we can
see that the CLIP pre-training weights already have good
multi-traffic participant text and image retrieval capabilities.
After fine-tuning with real traffic scene data, CLIP achieves
even better results. Among all the comparative experiments,
the “with All in One off-the-shelf” method achieves the best
results, which indicates that the All-in-One model has ex-
cellent traffic participant feature extraction ability through
learning a large amount of traffic scene data.

Qualitative Results. Figure 4 and Figure 5 show the
visualization of text-image retrieval, from which it can be
seen that our model can effectively distinguish fine-grained
differences in cross-modal information. In the pedestrian
retrieval example in Figure 4, the query text in the first and
second lines has the same attributes except for the different
bag attributes. Open-TransMind can effectively distinguish
this detailed attribute. The query text in the third and fourth
lines has slight differences in the sleeve length of the shirt,
and Open-TransMind can also provide correct retrieval re-
sults. In the vehicle retrieval example shown in Figure 5,
the keywords in the query text in the first line are “blue”,
“Dongfeng brand”, and “truck”. Although the remaining
three challenging query text changes the three attributes re-
spectively, Open-TransMind can provide correct retrieval
results. In addition, from this example, we can see that
our model has certain knowledge emergence capabilities:
there are three types of text and corresponding images in the
training data: “Blue Mercedes Benz”, “Dongfeng brand”,
and “Truck”, but there is no text and corresponding images
of “Blue Dongfeng Truck”. The trained Open-TransMind

can effectively complete the retrieval of “Blue Dongfeng
Truck”, as shown in the first column of row 1.

6. Conclusion
We propose a new baseline and benchmark for the first

foundation model challenge of intelligent transportation,
called Open-TransMind. Meanwhile, Open-TransMind
is the first open-source foundation model of intelligent
transportation with multi-task and multi-modal capabili-
ties that we are aware of. Furthermore, Open-TransMind
can achieve cutting-edge performance on traffic scenario
detection, classification, and segmentation datasets, while
also possessing cross-modal text-image retrieval capabili-
ties. Contestants and researchers can investigate new solu-
tions for multi-task co-evolution as well as the interrelation-
ships of cross-modal. In the future, we plan to add more
tasks, such as text recognition and point cloud detection.
More researchers are expected to join the investigation of
foundation model technology.
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