
A Saturation Avoidance Technique for Peer-to-Peer Distributed Virtual
Environments∗

Silvia Rueda, Pedro Morillo, Juan M. Orduña
Departamento de Informática - Universidad de Valencia

Av. Vicent Andrés Estellés, s/n – 46100 Burjassot (Valencia), Spain
Silvia.Rueda,Pedro.Morillo,Juan.Orduna@uv.es

Abstract

The current expansion of multi-player online games has
promoted the growth of large scale distributed virtual envi-
ronments (DVEs). In these systems, peer-to-peer architec-
tures have been proved as the most scalable scheme for sup-
porting massively multi-player applications. Nevertheless,
the interactions among clients that can take place in this
type of systems can lead to the temporal saturation of some
of the clients. Since a client saturation has an effect on other
clients, these situations limit the performance of peer-to-
peer DVEs. In this paper, we propose an adaptive technique
for avoiding the saturation of the client computers in DVE
systems based on peer-to-peer architectures. This technique
is based on monitoring the client state and discarding some
of the messages received from other clients when the client
is close to saturation. The evaluation results show that the
proposed method improves the system performance without
having an effect on the awareness rate, regardless of the
movement pattern that avatars can follow. As a result, both
the performance and the scalability of peer-to-peer DVEs
are significantly improved.

1. Introduction

Nowadays, the extensive use of multi-player online ga-
mes has promoted the use of large scale distributed virtual
environments (DVEs). Users in these systems share a 3D
virtual world and can interact among them and with the ele-
ments of the virtual scene. Usually, each system user is re-
presented inside the virtual world by an entity called avatar.
Users control their avatars through a client computer, which
should render the images of the virtual 3D environment that
the user would see if he was located at that point of the vir-

∗This work has been jointly supported by the Spanish MEC and Eu-
ropean Commission FEDER funds under grants Consolider-Ingenio 2010
CSD2006-00046 and TIN2006-15516-C04-04.

tual world. Currently, large scale DVEs can simultaneously
support thousands and even hundreds of thousands clients.
Clients can connect to these systems through different net-
works, and usually through Internet. Although DVE sy-
stems are present in many different applications, [23],such
as civil and military distributed training [17] or collabora-
tive design [22], the most extensive example of DVE sy-
stems are commercial, massively multi-player online games
(MMOG)[25, 4, 15, 20, 2].

Peer-to-peer architectures were proposed some years ago
for DVE systems [6]. In classic peer-to-peer architectures,
each client computer is also a system server, and the control
of the simulation is distributed among all the client compu-
ters. In hybrid peer-to-peer architectures, only some of the
client computers act as system servers. Figure 1 shows an
example of a DVE system based on a peer-to-peer architec-
ture.

Figure 1. An example of a DVE system based
on a peer-to-peer architecture

Peer-to-peer architectures have been proved as the most
scalable scheme for supporting massively multi-player app-
lications [21]. However, during the last years most of DVE

systems have been implemented on networked-server archi-
tectures [19, 3]. In these architectures, there are a few in-
terconnected servers that control the simulation and all the
client computers should connect to one of these servers in
order to join the simulation. Figure 2 shows an example of
a DVE system based on a networked-server architecture, in
this case with three servers. The reason for the prevalence
of networked-server architectures over peer-to-peer archi-
tectures has been the awareness problem. It consists of en-
suring that each avatar (for the sake of shortness, in the rest
of the paper we will use the term avatar to denote the client
computer controlling that avatar) is aware of all the avat-
ars in its neighborhood [24]. Usually, the Area Of Interest
(AOI) [23] of an avatar is considered as the neighborhood
for that avatar.

Providing awareness to all the avatars is crucial for
MMOGs. For example, if two neighbor avatars are not
aware of such neighborhood, they will not exchange mes-
sages about their movements and/or changes, and therefore
they will not have the same vision of the shared environ-
ment. As a result, it could happen that an avatar not pro-
vided with a coherent view is killed by another avatar that
it cannot see. Even when using an awareness method that
determines at each moment which other avatars must each
avatar exchange messages with, time-space inconsistencies
can arise among different avatars because of clock drifts
and/or network delays inherent to any distributed system
[26]. Thus, although the awareness is a necessary condi-
tion to provide consistency (as defined in [26, 7]), it is not a
sufficient condition.

Figure 2. An example of a DVE system based
on a networked-server architecture

Although networked-server architectures easily provide
awareness to all avatars in a DVE system (all the servers
know at every instant the location of all avatars and they are
the responsible elements of propagating the messages sent
by each avatar [23]), the expansion of MMOGs has made
large scale DVE systems to become usual, and networked-

server architectures seem to lack scalability to properly ma-
nage the current number of avatars that these system can
support (up to some hundred thousands of avatars [4], [1]).
As a result, some studies have proposed again the use of
P2P architectures [13, 12], since these schemes are the most
scalable ones (each new client also becomes a new server,
thus proportionally increasing the computing bandwidth).
In DVE systems based on P2P architectures, the neighbor-
hood attribute of the different avatars must be determined
in a distributed manner. In this sense, several techniques for
providing awareness to avatars in P2P DVE systems have
been proposed, and some of them seem to provide a full
awareness rate [10, 18]. Therefore, peer-to-peer architectu-
res seem to be the most efficient and scalable scheme for
supporting large-scale DVE systems.

Nevertheless, the use of a peer-to-peer scheme does not
prevent client computers from reaching saturation. A re-
cent study shows that when the number of avatars in the
system increases and they move frequently, the density of
avatars in the virtual world requires some clients to process
a high number of messages, in order to achieve both the
100% of the awareness rate and an acceptable time-space
consistency. Depending on the computing power of these
clients, such requirements can lead to the client saturation,
decreasing the performance not only of that client, but also
of the clients controlling the surrounding avatars [21]. Since
the number of client computers that can reach saturation de-
pends on many factors (computing power of the client, num-
ber of neighbor avatars, movement rate of avatars, etc.) but
in general it is unbounded, these situations can seriously
affect the scalability and/or the performance of P2P DVE
systems.

In this paper, we propose an adaptive technique for avoi-
ding the saturation of client computers in P2P DVE systems.
This technique consists of monitoring the CPU utilization
of the client computer. When the CPU utilization exceeds a
threshold value (the client is reaching saturation), then the
proposed method consists of discarding the oldest updating
messages still not processed, since under such situation is
very likely that they contain obsolete information and some
of the most recent messages contain more updated informa-
tion. The evaluation results show that the benefits achieved
by preventing client computers from reaching saturation are
higher than the drawbacks of loosing information about the
current state of other client computers. Thus, the propo-
sed method avoids client saturation on DVE systems based
on P2P architectures while maintaining the awareness rate
close to 100%, regardless of the movement pattern and the
initial distribution of avatars. Therefore, this technique can
significantly improve the performance and the scalability of
P2P DVE systems.

The rest of the paper is organized as follows: Section
2 describes the proposed method for avoiding the satura-

tion of the client computers. Next, Section 3 shows the
performance evaluation results obtained with the proposed
method. And finally, Section 4 outlines some concluding
remarks.

2. Avoiding Client Saturation

The workload that a given avatar adds to a DVE system
basically depends on two factors, the movement rate of that
avatar and the number of neighboring avatars[19]. There-
fore, the computational workload that a given client compu-
ter should support in a P2P DVE system is directly related
to the number of neighbor avatars in the virtual world and
also to the movement rate of that avatar and its neighbors.
Additionally, the computational requirements of each client
computer also depends on the current state of the simulation
(computing requirements for updating and rendering the 3D
virtual environment, the time required for establishing new
connections, etc.).

In large-scale DVE systems, a given avatar a can be fre-
quently surrounded by a high number of neighbors. In such
situations (and depending on the awareness technique the
system uses) avatar a will receive a new message contai-
ning the updated location of its neighbors each time that
any of its neighbors moves. If the client computer control-
ling the avatar a supports a high load (its CPU(s) utilization
rate is (are) close to 100% due to the simulation state), it
cannot process such updating messages at the required rate,
and the processing of such messages is delayed (they are
saved in a FIFO buffer). As a result, the processing of these
messages becomes useless (since they provide obsolete in-
formation). Moreover, the delayed processing of such mes-
sages also requires some of the computational power, the-
refore contributing even more to the saturation of the client
computer. The basic idea of the proposed method is to dis-
card the oldest updating messages when the client is close
to saturation, and to process only the newest messages.

We have denoted the proposed method as DPMess, for
Discarding Pending messages. The DPMess technique con-
sists of checking the CPU utilization rate of the client com-
puter each time that the avatar hosted by that client moves,
in order to detect if the computer is close to saturation. In
that case, the client computer should check all the updating
messages that are pending from processing, and it should
discard those messages older than a certain threshold value
(by deleting them from the FIFO buffer). We have chosen
to execute this algorithm just prior to the movement of the
associated avatar because at that moment the client compu-
ter will have to send a new updating message to each of its
neighbor avatars, still increasing the workload that the client
computer supports. In order to prevent the client computer
to reach saturation, the useless workload is discarded be-
fore increasing the useful workload. The pseudocode of the

proposed algorithm could be the following one:

IF CPU_current > CPU_threshold
FOR ALL messages IN pending_msg_queue

IF msg.type = location_update
IF Time - msg.t_recv > t_threshold

discard(msg)
ENDIF

ENDIF
ENDFOR

ENDIF

It is worth mention that the DPMess technique only dis-
cards messages containing location updates of other avatars.
It does not discard any message containing information con-
cerning the awareness method. In this way, it provides an
awareness rate as high as possible.

The DPMess technique has two parameters that should
be tuned, the CPU threshold value and the t threshold
value. The first one defines the limit for considering a client
computer as saturated, and the second one defines the limit
for considering an updating message as obsolete. We have
chosen for the first parameter a CPU utilization of 90%, be-
cause this is the limit proposed in the literature for consi-
dering a server (in a DVE based on a networked-server ar-
chitecture) as saturated [19]. We have experimentally tuned
the second parameter. Although the results corresponding
to this tuning are not shown here due to space limitations,
we have obtained the best results for a tthreshold value of
0.005 seconds.

3. Performance Evaluation

We propose the evaluation of the proposed method by si-
mulation. We have used an evaluation methodology based
on the main standards for modeling collaborative virtual en-
vironments: FIPA [5], DIS [11] and HLA [14]. Concretely,
we have developed a simulator modeling a DVE system ba-
sed on a peer-to-peer architecture. The simulator is written
in C++ and it is composed of two applications, one mode-
ling the clients and the other one modeling the central loa-
der, to which the clients must initially connect with in order
to join the system. Both applications use different threads
for managing the different connections they must establish.
Such connections are performed by means of TCP sockets.

Each client has a main thread for managing the actions
requested by the user, and different threads for communi-
cating with its neighbor clients. For each neighbor, two
threads are executed, one for listening and the other one
for sending messages. Similarly, the central loader has two
threads for communicating with each client in the system
and also a main thread. It must be noted that once a client
has joined the system, it is not necessary for that client to
communicate with the central loader. However, since the
goal of this evaluation is to study how the system evolves
as clients move, rather than analyzing how new clients join

the system, in our simulator each client is initially provided
with the IP addresses of its initial neighbors.

A simulation consists of each avatar performing 100 mo-
vements. An iteration of the whole system consists of all
avatars making a movement. Each avatar notifies its neigh-
bors as well as the central loader when it reaches the 101th
iteration, and then it leaves the system. We have chosen the
number of 100 iterations (movements) for a simulation be-
cause it is the average number of movements that the most
distant avatar needs to reach the center of the virtual world
used for the performance evaluation. The virtual world is a
2D square whose sides are 100 meters long. Each time an
avatar moves, it sends a message to all its neighbor avatars
(the client computer controlling that avatar sends a message
to the client computers controlling the neighbor avatars).
These destination avatars then send back an acknowledg-
ment to the sending avatar, in such a way that when the
acknowledgments arrive to the sending avatar then it can
compute the round-trip delay for each message sent. We
have denoted the average round-trip delay for all the mes-
sages sent by an avatar as the Average System Response
(ASR) for that avatar (for that client computer). The neigh-
boring avatars of each avatar are determined by the awaren-
ess technique. We have used the COVER method, because
this technique provides an awareness rate of 100% [18].

In order to simulate a peer-to-peer DVE system in a fea-
sible way, we used 51 personal computers interconnected
by a fast Ethernet network. One of these PCs hosted the
central loader, and the rest of the 50 PCs hosted the avatars
in a uniformly distributed way.

We have implemented a monitoring algorithm to check
the awareness rate. This algorithm consists of each client
dividing its cycle time in two phases. In the first phase, cli-
ents move following a given movement pattern (described
below) and they communicate their new location to their
neighbors in the virtual space by exchanging messages. In
the second phase, each client sends a message to the cen-
tral loader containing both its new location and also which
other clients it considers as its neighbors. In this way, the
central loader can compute in real time the percentage of
avatars that have correctly computed which other avatars
are its neighbors (that is, the awareness rate). We used an
AOI size of 10 meters.

We have simulated a set of independent avatars in a ge-
neric DVE system based on a P2P architecture. These avat-
ars are located within a seamless 3D virtual world follo-
wing three different and well-known initial distributions:
uniform, skewed and clustered [19]. Starting from these in-
itial locations, in each simulation avatars can move into the
scene following one of three different movement patterns:
Changing Circular Pattern (CCP) [3], HP-All (HPA) [8] and
HP-Near (HPN) [16]. CCP considers that all avatars in the
virtual world move randomly around the virtual scene fol-

lowing circular trajectories. HPA considers that there exist
certain ”hot points” where all avatars tend to approach soo-
ner or later. This movement pattern is typical of multiuser
games, where users must get resources (as weapons, energy,
vehicles, bonus points, etc,) that are located at certain loca-
tions in the virtual world. Finally, HPN also considers these
hot-points, but only avatars located within a given radius of
the hot-points approach these locations. In order to illustrate
these movement patterns, Figure 3 shows the final distribu-
tion of avatars that a 2-D virtual world representing a square
would show if these movement patterns were applied to a
uniform initial distribution of avatars. In this Figure, avat-
ars are represented as grey dots. For evaluation purposes,
we have considered the nine possible combinations of the
three initial distributions of avatars in the virtual world and
the three movement patterns.

Figure 3. Movement patterns a) CCP, b) HPN,
and c) HPA

For evaluation purposes, we have used different metrics.
In order to measure the overall performance of the system,
we have used a well-known metric in distributed systems.
Concretely, we have used the round-trip delay of the messa-
ges sent by each client computer, instead of latency. In this
way, any possible clock skewing between the sending and
the receiving client computer is avoided, since the sending
and the receiving instants are both computed by the clock
of the sender computer.

Additionally, we have studied other parameters specific
from peer-to-peer DVE systems. Concretely, we have stu-
died the awareness rate achieved in each simulation and also
the delay between the instant when a new neighbor enters
the AOI of a given avatar and the instant when that avatar
knows about that neighbor. We have denoted this parameter
as the Awareness Delay. Finally, we have also studied the
percentage of discarded messages by the proposed method.

We have studied the behavior of the proposed algorithm
for the nine combinations of initial movement patterns and
initial distributions of avatars. Also, we have performed si-
mulations with different populations sizes (different num-
bers of avatars) and for different movement rates. Nevert-
heless, for the shake of shortness we only present here some
representative results for a population size of 100 avatars.
The results for the different possible configurations were si-

milar to the ones shown in this section.
In order to study the performance of the proposed me-

thod, we have studied the system behavior under both a high
and a low workload levels. Concretely, we have used a high
movement rate (all avatars performing a new movement
every 0.15 seconds) in order to generate a high workload,
and a lower movement rate (a new movement every 0.5 se-
conds) to generate a low system workload.

For comparison purposes, we show in this section the
simulation results for each DVE configuration when using
the DPMess technique and also the results obtained without
applying the DPMess. We have denoted the plots corre-
sponding to the former option as ”DPMess”, and the ones
corresponding to the latter option as ”Original”.

3.1. Latency

First, we have studied the system latencies (Average Sy-
stem Response) achieved with the proposed technique. Fi-
gure 4 shows the average ASR values obtained for a system
supporting a high workload (each avatar performing a mo-
vement every 0.15 seconds) when avatars move following
the combination of HPA movement pattern-skewed initial
distribution. This Figure shows on the X-axis the iteration
number, and on the Y-axis it shows the average ASR value
obtained for all the avatars in that iteration.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10 20 30 40 50 60 70 80 90

A
S

R
 (

se
cs

.)

Iteration

ORIGINAL
DPMess

Figure 4. Average ASR values obtained under
a high workload

The plot for the DPMess method in Figure 4 shows a flat
slope, keeping the average ASR values below 0.04 seconds,
far away from the latency values considered as acceptable
for users [9]. However, the plot corresponding to the si-
mulation without the proposed technique (Original) shows
a significant and constant slope, linearly increasing the ave-
rage ASR values as the simulation proceeds. These results

show that when the system is under a high workload then
preventing avatars from reaching saturation provides signi-
ficant benefits in term of the response time offered to avat-
ars.

Figure 5 shows the results for the same system but when
supporting a low workload. Concretely, it shows the results
for the same combination of initial distribution and move-
ment pattern of avatars, but in this case when avatars move
at a lower movement rate (each avatar makes a new move-
ment every 0.5seconds). In this figure, both plots are very
similar, showing a flat slope and average ASR values around
0.02 seconds. The plot corresponding to the DPMess tech-
nique does not significantly differ from the Original plot,
showing that the proposed method provides similar perfor-
mance (in terms of latency), when the system is under a low
workload.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 10 20 30 40 50 60 70 80 90

A
S

R
 (

se
cs

.)

Iteration

ORIGINAL
DPMess

Figure 5. Average ASR values obtained under
a low workload

3.2. Awareness

Additionally, we have studied how the proposed techni-
que affects to the awareness rate provided to avatars, since
providing a good awareness rate is a necessary condition for
achieving time-space consistency in DVE systems. On the
one hand, if an avatar becomes saturated and it does not re-
spond to its neighbors in time, then the awareness rate of its
neighbors could be affected. On the other hand, the impact
of rejecting messages could have an effect on the awareness
rate, and therefore it should be analyzed.

In order to measure the awareness rate, at each iteration
each avatar sends information about its position and which
other avatars it considers as its neighbors to the central loa-
der, as we described above. The central loader can deter-
mine from this information if each avatar must be aware or

not of all its neighbors. By means of the central loader, we
have measured the ratio between the number of neighbors
that each avatar should detect and the number of neighbors
that each avatar has actually detected. We have denoted this
parameter as the awareness rate Cs for each avatar.

Figure 6 shows the results for the awareness rate when
the system is under a high workload. In this Figure, the X-
axis shows the current iteration, whereas the Y-axis shows
the average value for the Cs parameter obtained in each
iteration.

 95

 96

 97

 98

 99

 100

 0 10 20 30 40 50 60 70 80 90

A
w

ar
en

es
s

ra
te

(%
)

Iteration

ORIGINAL
DPMess

Figure 6. Awareness Rates (%) provided un-
der a high workload

Figure 6 shows that preventing avatars from reaching sa-
turation (by discarding messages) does not have any signifi-
cant effect on the awareness rates provided to avatars when
the system is under a high workload. Although the awaren-
ess rate provided by the DPMess method is slightly lower in
some initial iterations, it reaches 100% and keeps on provi-
ding that rate for most of the iterations. The awareness rate
provided by this method is not lower than 99% in any case.

Figure 7 shows the equivalent results for the same DVE
configuration under a low workload. It can be seen that
both plots show a flat line on the 100 % value. As it could
be expected, this result shows that the use of the DPMess
method doesn’t have a significant effect on the awareness
rate provided by the system if it is under a low workload.

3.3. Awareness Delay

Another important parameter that could be affected by
the proposed method is the awareness delay. This para-
meter can be defined as the time interval from the instant
when an avatar i enters the AOI of an avatar j to the instant
when avatar i receives the acknowledgment from j as a new
neighbor. We have denoted this parameter as AD. This pa-

 95

 96

 97

 98

 99

 100

 0 10 20 30 40 50 60 70 80 90

A
w

ar
en

es
s

ra
te

(%
)

Iteration

ORIGINAL
FPMess

Figure 7. Awareness Rates (%) provided un-
der a low workload

rameter is crucial, since it determines the maximum time-
space inconsistencies that can arise in the system. We must
study if the use of the DPMess method has any significant
effect on this parameter.

Figure 8 shows the results for the awareness delay
when the system is under a high workload (combination
SKEWED-HPA and a new movement every 0.15 s.). This
Figure shows on the X-axis the iteration number, while it
shows on the Y-axis the average awareness delays (the ave-
rage AD value) obtained for all the avatars in that iteration.
The plots in this Figure (and also the plots in the next one)
only show forty iterations. The reason for this behavior is
the combination SKEWED-HPA. When using this move-
ment pattern, all the avatars tend to crowd on a single point
of the virtual world. From iteration 40, no avatar enters in
the AOI of another avatars, since all of them are so close
among them that they can only make small movements try-
ing to find alternative paths to their destination point. There-
fore, from that iteration these small movements are no large
enough to allow the avatars to enter or exit another avatars
AOI.

Figure 8 shows that if the proposed method is not used,
then some significant delays appear (two peaks arise in the
”Original” plot). Although these peaks do not last more
than several iterations, they reach an order of magnitude of
several seconds. Therefore, unacceptable time-space incon-
sistencies can occur during some iterations. These peaks
are due to the distribution of avatars and the movement pat-
tern in these experiments. A significative number of clients
reach saturation during some of the iterations, greatly incre-
asing the awareness delay. However, when using the DP-
Mess method (DPMess plot) these two peaks produced by
the momentary saturation of some clients dissappear. These

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80 90

A
D

 (
se

cs
.)

Iteration

ORIGINAL
DPMess

Figure 8. Awareness Delay values provided
under a high workload

results indicate that if clients are close to saturation, then
(when the messages are processed) they provide obsolete
information about the location of other avatars. If messages
are not processed within a given period, then it is a better
strategy to discard them in order to process faster the most
recent messages. In this way, the awareness delay is kept
below acceptable values during the whole simulation. The-
refore, the proposed method not only does not have an effect
on this parameter, but it improves the system behavior.

Figure 9 shows the results for the awareness delay when
the system is under a low workload (same combination
SKEWED-HPA and a new movement every 0.5 s.). The
plots in this Figure are very similar, and both of them show
values below 0.04 seconds. These results show that when
the system is far from saturation then the proposed method
does not have any significant effect on the awareness delay.

3.4. Discarding Rate

Another important parameter to be studied is the Discar-
ding Rate, that is, the percentage of received messages that
the proposed method discards. This parameter is important
in order to study how the network efficiency is reduced by
the DPMess method, because the more messages are discar-
ded, the more network bandwidth is wasted. This parameter
also shows the percentage of messages that should be dis-
carded in order to avoid the system saturation. Concretely,
we have defined the Discarding Rate DR as

DR =
Discarded Messages

Received Messages
(1)

Due to space limitations, we only present here the re-
sults for the combination SKEWED-HPA, that is the com-
bination whose results has been shown when studying the

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 10 20 30 40 50 60 70 80 90

A
D

 (
se

cs
.)

Iteration

ORIGINAL
DPMess

Figure 9. Awareness Delay values provided
under a low workload

rest of parameters. That is, the Figure below shows the per-
centage of messages discarded in order to obtain the results
shown in the previous subsections.

Concretely, Figure 10 shows the results obtained when
the system is under a high workload (a new movement every
0.15 seconds).In this Figure the X-axis shows the iteration
number and the Y-axis shows the average Discarding Rate
value obtained for all the avatars in that iteration.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 10 20 30 40 50 60 70 80 90

D
R

Iteration

ORIGINAL
DPMess

Figure 10. Average Discarding Rate values
provided under a high workload

Figure 10 shows that the percentage of discarded messa-
ges by the proposed method is very low (it does not reach
0.6%). Only by discarding such a small percentage of mes-
sages, the rest of performance parameters are improved as
shown above.

In this case, due to space limitations we have not shown

the results obtained under a low workload, because they are
trivial: no messages are discarded if the CPU utilization is
not high, so the proposed method has no significant effects
on the discarding rate.

4. Conclusions

In this paper, we have proposed an adaptive method (DP-
Mess) for avoiding the saturation of client computers in
peer-to-peer DVE systems. Unlike other proposals in the
literature, we have evaluated the proposed technique on ac-
tually distributed systems. We have measured the impact
of the proposed technique in regard to well-known perfor-
mance metrics in distributed systems. Also, we have mea-
sured some specific performance metrics for peer-to-peer
DVE systems.

The evaluation results show that when the system is un-
der a high workload then preventing client computers from
reaching saturation can significantly reduce the response
time offered to avatars without affecting the awareness rate,
regardless of the movement pattern that avatars follow in
the virtual world.

Additionally, the proposed strategy processes faster the
most recent messages, in such a way that the awareness de-
lay is kept below acceptable values. As a result, the propo-
sed method not only does not have an effect on this parame-
ter, but it improves the system behavior. All these impro-
vements are achieved by discarding a very small percentage
of the exchanged messages, thus not significantly wasting
network bandwidth.

Since the proposed method is dynamic, it does not have
any effect on system performance when the system is under
a low workload. As a result, both the performance and the
scalability of peer-to-peer DVEs are significantly improved.

References

[1] T. Alexander. Massively Multiplayer Game Development II.
Charles River Media, 2005.

[2] Anarchy Online: : http://www.anarchy-online.com.
[3] N. Beatrice, S. Antonio, L. Rynson, and L. Frederick. A

multiserver architecture for distributed virtual walkthrough.
In Proceedings of ACM VRST’02, pages 163–170, 2002.

[4] Everquest: http://everquest.station.sony.com/.
[5] FIPA. Fipa agent management specification, 2000. Availa-

ble at http://www.fipa.org/specs/fipa00023/.
[6] E. Frecon and M. Stenius. Dive: A scalable network archi-

tecture for distributed virtual environments. Distributed Sy-
stems Engineering Journal, 5(3):91–100, September 1998.

[7] R. M. Fujimoto and R. Weatherly. Time management in the
dod high level architecture. In Proceedings tenth Workshop
on Parallel and Distributed Simulation, pages 60–67, 1996.

[8] F. C. Greenhalgh. Analysing movement and world transi-
tions in virtual reality tele-conferencing. In Proceedings of

5th European Conference on Computer Supported Coopera-
tive Work (ECSCW’97), pages 313–, 1997.

[9] T. Henderson and S. Bhatti. Networked games: a qos-
sensitive application for qos-insensitive users? In Procee-
dings of the ACM SIGCOMM 2003, pages 141–147. ACM
Press / ACM SIGCOMM, 2003.

[10] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: a scalable peer-
to-peer network for virtual environments. IEEE Network,
20(4):22–31, 2006.

[11] IEEE. 1278.1 IEEE Standard for Distributed Interactive
Simulation-Application Protocols (ANSI), 1997.

[12] J. Keller and G. Simon. Solipsis: A massively multi-
participant virtual world. In Proceedings of Parallel and
Distributed Processing Techniques and Applications (PD-
PTA), pages 262–268, Las Vegas, USA, 2003.

[13] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer
support for massively multiplayer games. in IEEE Infocom,
March 2004., 2004.

[14] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Compu-
ter Simulation Systems: An Introduction to the High Level
Architecture. Prentice-Hall PTR, 1999.

[15] Lineage: http://www.lineage2.com.
[16] M. Matijasevic, K. P. Valavanis, D. Gracanin, and I. Lovrek.

Application of a multi-user distributed virtual environment
framework to mobile robot teleoperation over the internet.
Machine Intelligence & Robotic Control, 1(1):11–26, 1999.

[17] D. Miller and J. Thorpe. Simnet: The advent of simulator
networking. IEEE TPDS, 13, 2002.

[18] P. Morillo, W. Moncho, J. M. Orduña, and J. Duato. Provi-
ding full awareness to distributed virtual environments based
on peer-to-peer architectures. Lecture Notes on Computer
Science, 4035:336–347, 2006.

[19] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. Im-
proving the performance of distributed virtual environment
systems. IEEE Transactions on Parallel and Distributed Sy-
stems, 16(7):637–649, 2005.

[20] Quake: http://www.idsoftware.com/games/quake.
[21] S. Rueda, P. Morillo, J. M. Orduña, and J. Duato. On the

characterization of peer-to-peer distributed virtual environ-
ments. In Proceedings of the IEEE Virtual Reality 2007
(IEEE-VR07), Charlotte, NC, USA., pages 107–114. IEEE
Computer Society Press, 2007.

[22] J. Salles, R. Galli, and A. C. A. et al. mworld: A multiuser
3d virtual environment. IEEE Computer Graphics, 17(2),
1997.

[23] S. Singhal and M. Zyda. Networked Virtual Environments.
ACM Press, 1999.

[24] R. B. Smith, R. Hixon, and B. Horan. Collaborative Virtual
Environments. Springer-Verlag, 2001.

[25] World of warcraft: http://www.worldofwarcraft.com.
[26] S. Zhou, W. Cai, B. Lee, and S. J. Turner. Time-space

consistency in large-scale distributed virtual environments.
ACM Transactions on Modeling and Computer Simulation,
14(1):31–47, 2004.

