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Abstract—This paper aims to propose a method for geomet-
ric design, modelling and shape manipulation using minimum
input design parameters. Here, we address the method for the
construction of 3D geometry based on the use of Elliptic Partial
Differential Equations (PDE). The geometry corresponding to
an object is treated as a set of surface patches, whereby each
surface patch is represented using four boundary curves in the
3D space that formulate the appropriate boundary conditions
for the chosen PDE. We present our methodology using a plug-
in that was developed utilizing Maya API. The plug-in provides
the user with tools that could be used easily and effectively
for designing purposes. Maya is a popular 3D modelling
tool. Various types of shapes with different complexities are
presented here. Our proposed method allow the designer to
utilize the Maya functionality for sketching curves in the 3D
space that represents the outline of arbitrary shapes, construct
the corresponding model using the PDE method, deform and
sculpt these models interactively by editing the boundary
curves.
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I. INTRODUCTION

The two dominant 3D geometry modelling tools in geo-
metric modelling for representing graphic objects including
complex objects such as aircrafts, human faces are polyg-
onal based approaches and parametric patches. Polygonal
representation is simple and flexible but the amount of
data required is usually larger than those methods based on
parametric representation. In addition, for interactive design
polygonal approaches are not a suitable choice taking into
consideration that designing an object within an interactive
environment requires techniques which enable the user to
edit and manipulate these shapes intuitively. Another crucial
requirement in designing an object interactively is to keep
the number of input design parameters to minimum. More-
over, when creating such tool for modelling and designing,
implementation techniques have to be carefully designed to
ensure efficiency which allows users to perform tasks on real
time.

Parametric patch based techniques are dominantly based
upon the spline techniques. Of these, B-Splines or more
commonly referred as Non-Uniform Rational B-splines

(NURBS) [1], [2] are considered as one of the dominant
surface fitting techniques. The main reason why NURBS are
widely used is because it offers smooth, compact parametric
representation of data and at the same time it is widely
supported by many commercial Computer Aided Design
systems. Spline-based techniques were used extensively in
interactive design. For example, parametric B spline patches
have been used for modeling and animating a human face
[3]. Similarly Song et. al [4] has demonstrated the use of B-
Spline surface patches to construct parametric representation
of a human face using 3D point cloud data. Huang and
Yan [5] used NURBS curves and associated it with vertices
of the facial data for modeling and animating 3D human
face. Rappoport et al. [6] proposed a technique for inter-
active design of smooth objects using points displacement
constraints, where the user defines an arbitrary number of
control points and the system computes the object geometry
subject to constraints satisfaction.

Although the spline-based techniques appeared to be
promising from a computational point of view, they lack
the intuitive feeling for direct manipulation of surfaces
[7]. This is especially true if the user or the designer is
not familiar with the mathematics on which the chosen
geometric constraints are based.

In this paper we utilize the PDE-method for surface
design, whereby a surface is generated by finding a solution
to suitably chosen elliptic fourth order partial differential
equations that satisfy certain boundary conditions [8]. PDE
based modeling techniques has many advantages such as the
capacity in using single surface patch to define a complex
surfaces (e.g. human face), more powerful and flexible ma-
nipulation in shape control of surfaces. Furthermore, unlike
spline-based techniques, it is more intuitive as the designers
or users do not have to have a mathematical knowledge in
order to manipulate the shape, taking into consideration that
the boundary conditions (curves) are explicitly represented
in the solution. Hence, surfaces of practical significance can
be generated using a small se of design parameters.

Previous work using the PDE method has shown how
generating complex-geometric shapes based on PDE method



appeared to be powerful technique; examples include com-
plex objects such as marine propeller [9], ship hulls [10]
and aircraft [11]. In addition, graphical objects construction
and efficient parameterization with relatively small number
of design parameters was demonstrated using the PDE
method in various publications [7], [12], [13], [14], [15].
For example Ugail et. al. [7] utilized the PDE method
to demonstrate the creation and manipulation of complex
geometries interactively in real time. Similarly, they demon-
strated efficient parameterization and intuitive manipulation
of complex shapes using PDE method [13] by editing and
manipulating the boundary conditions.

The PDE method is used to generate graphical objects
based on solving suitably chosen partial differential equa-
tions through a set of boundary conditions. In geometric
design, it is common practice to define curves and surfaces
using parametric representation. In simple words, if we
consider X(u, v) being the definition of the surface in the
Euclidean 3-space in a finite domain Ω , with a boundary
∂Ω, on which boundary data is specified. Here we view the
u and v to be the mapping from the point in Ω , and X(u, v)
as a mapping from that point in WΩ to a point in the 3-space
such that R2(Ω)→ E3. To satisfy these requirements X is
regarded to be the solution of a partial differential equation
of the form

Dm
uv(X) = F (u, v) (1)

where Dm
uv is a partial differential operator of order m in

independent variable u and v, and F is a vector valued
function of u and v . Thus the PDE method provides the
user with tools by which she or he is able to specify regions
in terms of boundary conditions and then the chosen PDE
provides a mechanism to smooth the boundary data over
the u and v parameter space, resulting in a smooth surface
which is infinitely differentiable.

In this paper we aim to extend the existing work and show
how surfaces with any arbitrary number of boundary condi-
tions can be interactively constructed and manipulated in real
time. In addition, we implement our solution as a plug-in to
work within the Maya environment. This technique would
allow users to benefit from the existing Maya functionalities
to sketch and define 3D curves and utilize the PDE method
to construct, sculpt and deform the corresponding graphical
objects. It also provide a solid testing platform where real
objects could be compared against PDE ones. Moreover,
with this tool it modeling objects would be faster and more
efficient in terms of computation and storage needs.

The reset of this paper is organized as follows. In the
following section we briefly discuss the PDE method and
provide some illustrative example. The following section w
ill address the implementation of the solution within the
MAYA environment. Extensive use of examples and illustra-
tions will be provided and these examples have been created
and manipulated on real time within MAYA environment.

Finally conclusions will be drawn upon the discussion and
future work will be suggested for further improvement.

II. PDE METHOD

The PDE method regards the generation of the parametric
surface patch

X(u, v) = (x(u, v), y(u, v), z(u, v) (2)

as a solution to an elliptic partial differential equation. In
particular, the PDE chosen for the work described in this
paper is (

∂2

∂u2
+

∂2

∂v2

)2

X(u, v) = 0 (3)

In order to solve Equation (3) four boundary conditions
are required. Here, we take these boundary conditions in the
form of curves in the 3-space. These curves are taken to be
the positions containing the data from the original objects
whose geometry we wish to represent.

There is wide variety of methods for finding the solutions
of the elliptic PDE in Equation (3). These include elementary
separation of variables, Greens functions and numerical tech-
niques. For the work described in this paper, where graphical
objects need to be created, edited and recreated at real
time, therefore we utilized an analytical solution scheme.
We assume periodicity in the solution such that Ω is taken to
be a finite domain defined as {Ω : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}
such that

X(0, v) = P 0(v) (4)

X(1, v) = P 1(v) (5)

Xu(0, v) = d0(v) (6)

Xv(1, v) = P 1(v) (7)

where the boundary conditions P 0(v) and P 1(v) define
the edges of the surface patch at u = 0 and u = 1
respectively. Based on this formulation and using the method
of separation of variables, the analytic solution of Equation
(3) can be written as

X(u, v) = A0(u) +
∞∑

n=1

[An(u)cos(nv) +Bn(u)sin(nv)]

(8)
where

A0 = a00 + a01u+ a02u
2 + a03u

3 (9)

An = an1e
anu + an2e

anu + an3e
−anu + an4e

anu (10)

Bn = bn1e
anu + bn2e

anu + bn3e
−anu + bn4e

anu (11)



where an1, an2, an3, bn1, bn2, bn3 and bn4 are vector-valued
constants, whose values are determined by the imposed
boundary conditions at u = 0 and u = 1 . Often, Fourier
analysis is performed in order to define the various constants
for a given set of boundary conditions to identify the
various Fourier coefficients. When the boundary conditions
can be expressed exactly in terms of finite Fourier series,
the solution given in Equation (8) is also finite. However,
this is often not possible, in which case the solution will
be the infinite series given in Equation (8). In this case
an approximation technique is often deployed based (more
details about the method could be found in [16]) on the sum
of the first few Fourier modes and a remainder term i.e.

X(u, v) = A0(u) +
∞∑

n=1

[An(u)cos(nv)+

Bn(u)sin(nv)] +R(u, v)

(12)

Where N ≤ 6 and R(u, v) is a remainder function defined
as

R(u, v) = r1(v)ewu + r2(v)ewu+
r3(v)e−wu + r4(v)e−wu (13)

where r1, r2, r3, r4 and w are obtained by considering the
difference between the original boundary conditions and the
boundary conditions satisfied by the function

F (u, v) = A0(u) +
N∑

n=1

[An(u)cos(nv) +Bn(u)sin(nv)]

(14)
The above solution technique is considerably faster than
looking for a very accurate solution to Equation (3) using
numerical methods such as finite element or finite difference.
It is important to emphasize here, that although the solution
is approximate, it guarantees that the chosen boundary
conditions are satisfied by the function F (u, v).

Figure 1. PDE surface generated subject to the boundary conditions shown
in the image.

As an example consider the curves and the shape shown
in Figure 1. Here the curves define the necessary boundary

conditions for solving the Equation (3). It is important
to point out that the analytic solution discussed above is
applicable to periodic conditions and therefore, we restrict
the domain of the solution to {Ω : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}
which adequately describes the boundary conditions shown
in Figure 1. Although the boundary curves were deliber-
ately scaled to be outside the surface patch for illustrative
purposes in Figure 1 it should be noted that the resulting
PDE surface patch shown in here actually passes through the
boundary conditions p1, d1, d2 and p2 respectively whereby
the PDE enables a smooth interpolation of these curves. It
is also worth highlighting that the resulting PDE surface is
solely controlled by the four boundary curves as will be
further discussed in the following sections.

III. MAYA IMPLEMENTATION

From an implementation point of view, to construct one
surface patch, the designer/ user has to use four different
boundary curves. Nevertheless, when modeling complex
objects, four curves hardly provide sufficient information
to depict such objects precisely (i.e. human face, [17]). In
such cases more than one surface patch is needed, each of
which represented and controlled by a group of boundary
curves (four curves/ surface patch). Hence, surface genera-
tion becomes blending of the different surface patches, each
of which is generated by four consecutive boundary curves
and each two adjacent surface patches share a common
boundary curves at their edge to guarantee continuity and
smoothness along the blended surface patches. This means
that for instance to construct an object where five surface
patches are required, then five variant fourth order PDEs
have to be resolved. This means that efficiency and speed
to solve PDE surfaces is a very critical issue.

In order to take full advantage of the powerful functions
of MAYA [18], we implement the above mathematical
formulation at two stages. On the first stage, a set of objects
were designed and implemented to solve elliptic partial
differential equations. These classes were implemented us-
ing C++, where memory is allocated when it is required
dynamically and released once it is no more needed. This is
of paramount importance when solving PDE’s in real time,
where resources utilization is optimized.

At the second stage of implementing the PDE solution
we utilized MAYA 8.5 package through the API using C++.
The most important issue when constructing PDE surface
is the boundary conditions that defines the outline of the
object to be designed. In this case these conditions are
curves in the 3-Space. Here, MAYA tools for drawing 3-
space curves are used to generate any number of curves
that represent one or more surface patch to be constructed
using the PDE method. Taking advantage of the MAYA
Nodes, a node called PDENode was developed. The input
to this node is simple a set of 3-space curves (minimum
four curves required) and the output is a PDE surface. The



general structure of the MAYA implementation is shown in
Figure 2.

Figure 2. General structure of the MAYA implementation to solve PDE
surfaces.

In MAYA data are transferred between networks of nodes
in the dependency graph. Every node has a set of input
parameters and has an output. A node output could be simply
an input to another. Figure 2 shows the implantation of the
PDE node. Once the node receives an input which is a set
of input curves, it performs the necessary computations and
produces an output that is the PDE surface represented as a
node within the dependency graph of a MAYA scene. In a
practical scenario, the user would plot a set of curves that
defines that outline of a particular object, then he/she will
issue a command (magicCurves) resulting in contracting the
PDE node with its output as a PDE surface. Clearly any
changes to the boundary conditions will trigger the PDE
node compute method to recompute the surface subject its
adjusted boundary conditions. In addition, the resulting PDE
surface could be edited using the attribute editor, where a
set of parameters could be adjusted accordingly, such as the
u, v coordinates, the finite domain of the PDE solution Ω and
the number of control points on each boundary condition.

Figure3 demonstrates the use of the plug-in using simple
PDE surface composed of two surface patches, controlled by
7 boundary curves, whereby some of the surface attributes
have been edited using the attribute editor.

(a)

(b) (c)

(d)

Figure 3. constructing and editing PDE objects interactively using MAYA
plug-in and the attribute editor

Figure3 (a) shows the initial PDE surface controlled by 7
boundary curves and composed of two surface patches. Here,
a low resolution mesh made of 10 x 10 has been produced.
In Figure3 (b) using the attribute editor the resolution of
the mesh of the PDE surface has been increased to be 25
x 30, which result a smoother surface as shown without the
wireframe in Figure3 (c). It is also shown in Figure3(a), (b)
and (c) that the domain of the solution was restricted to be
between 0 and π while in Figure3 (d) the surface has been
resolved after adjusting the domain to 2π.

It is worth pointing out that the domain of the solution
could be adjusted to any arbitrary value between 0 and 2π
as shown in Figure4.



Figure 4. PDE surface restricted within the domain between 0 and
π

2
.

Editing the PDE surface properties interactively provide
the user with a flexible tool to design complex shapes by
just drawing the outlines of these shapes using.

IV. COMPLEX EXAMPLE

Here we consider the human face as a complex graphical
object to test our prototype. There is several ways to segment
the face into meaningful regions, whereby each region
represents a certain feature of the face e.g. eyes region, nose,
forehead, etc Here, we segment the face onto nine different
patches; each of them is controlled by a set of boundary
curves and represents certain characterizing feature of the
human face. These patches represents the forehead area
which is controlled by four boundary curves, the eyes area
controlled by 7 curves (e.g. two surface patches), the nose
area controlled by 4 curves, the mouth and the chin area,
controlled by 7 and 4 curves respectively. In total, 28 cross-
sectional curves represent the boundary conditions of the
facial image.

In this example we used a 3D scanned image, extract
a set of cross-sectional curves that represent the above
mentioned areas and then generate the PDE surface as a
surface composed of nine surface patches. Figure 5 (a) shows
the arrangement of the boundary conditions of the facial
data.

(a) (b)

Figure 5. PDE facial data representation, (a) boundary conditions, (b)
initial PDE surface representing a human face.

The PDE surface shown in Figure 5 (b) is an initial PDE
surface with low mesh resolution 10 x 10. Figure 6 shows an
improved surface by increasing the mesh resolution (edit the
uv dimensions via the plug-in attribute editor). It is important
to note here, that any changes to any of the surface attribute
would essentially trigger the PDE node to re-compute the
PDE surface.

Figure 6. PDE facial surface with an increased mesh resolution, the surface
is controlled by the same set of boundary curves shown in Figure 5 (a).

With the implementation of the mathematical formulation
of the PDE method within the MAYA environment it be-
comes possible and easier to compare an original surface
with its corresponding PDE as shown in Figure 7 and 8
respectively.

(a) (b)

Figure 7. comparing original 3D facial image, with a PDE image, (a)
original 3D image, (b) corresponding PDE image.



Figure 8. comparing original 3D facial image, with a PDE image, by
putting them on top of each other.

V. CONCLUSION AND FUTURE WORK

The prototype of the plug-in was tested on Pentium 4 ma-
chine, with 1 GB memory. All the editing and manipulation
of the PDE graphical objects were conducted on real time.
We have successfully utilized the PDE method to generate
complex graphical entities. These entities are composed of
one or more surface patch. In addition, we provided the user
with a graphical and user-friendly tool within the MAYA
environment to generate, edit and manipulate such complex
objects on real time.

The manipulation of the PDE surfaces is carried out by
editing the boundary curves using some of the existing
MAYA features (e.g. move, rotate, scale). This requires
editing the positional control points of the curves. As a
possible improvement on the current prototype, we intend to
make this task more intuitive by applying a local subdivision
scheme. Here, the user will be allowed to allocate two sets
of boundary curves. The first set is to control the PDE
surface, just as explained on the previous sections, while the
second set of curves will define a local PDE surface (that is
hidden from the user) which will be used to edit the surface
by establishing point correspondence between the local and
global PDE surfaces.
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