Artificial Folklore for Simulated Religions

Jason A. Hall, Benjamin Williams, and Christopher J. Headleand
School of Computer Science
University of Lincoln
Brayford Pool, Lincoln, UK
Email: cheadleand @lincoln.ac.uk

Abstract—In this paper we use grammar-directed procedural
content generation (PCG) techniques to develop folklore; based
on the seven basic story plots, for a simulated religion. A
hierarchy of values for a simulated community was first gen-
erated. Using these values, a variety of deities were procedurally
generated, each with their own reflected values and persona. A
Context-Free Grammar is then traversed in order to generate
fables appropriate for each deities persona. The intention of this
work is to generate fables which can be used to contextualize a
given simulated culture’s beliefs.

I. MOTIVATION

A realistic and contextually consistent virtual environment
is a crucial component in maintaining player immersion [1].
Typically this is achieved through a process of manual de-
sign, which provides the developers total creative control, but
limits the possible experiences a player can have. Procedural
Content Generation (PCG) provides an alternative approach,
by algorithmically generating variations in content. However,
maintaining contextual consistency becomes increasingly chal-
lenging due to the stochastic nature of the approach.

Video games often have an underlying story or lore which
structures many of the contextual elements in the game. This
provides contextual depth to the game world, and provides
underlying justification for core and ancillary content. A good
example of this is Fallout 4 and Elder Scrolls: Skyrim where
the lore is central to the game narrative. However, there are
very few examples where cultural and contextual content has
been embedded into a procedurally generated virtual world.

This paper presents early stage work towards procedurally
creating cultural context for a virtual world. We present a
system for generating shared parables and legends which could
act as the basis of simulated belief system.

II. BACKGROUND

Fictional religions are often used as a framing device for
contextual and thematic elements in games. This is often
explicit, structuring significant narrative elements. Wagner [2]
states that “Religion itself can work as a sort of game, shaped
by an agreed-upon set of rules, defining how we should act,
what’s possible, and what our goals are”. This structure could
be applied to non-player characters (NPCs), implementing
behavior that is culturally consistent within the game world.
Johnson [3] explores this concept in the design of the “Ultima
Ratio Regum” (URR) game, which rather than having religion
as a background element, it contributes to the procedural
generation of the NPCs. The algorithm used in URR is capable

of generating over a million detailed religions. Each religion
contains information about it’s beliefs, god(s), special events,
relationships with other religions, geographical areas of influ-
ence, altars, and worshipers. A commercial example, can be
found in the Elder Scrolls: Skyrim, where an in-game religion
provides a context to the behaviours exhibited by NPC’s. An
example of this is the conflict between the Imperials and Nords
which is of religious nature. In Black and White, the player
assumes the role of a god, with the ultimate objective of
defeating an opposing deity, in a good vs evil value narrative.
However, religious elements in games are often less explicit,
inferred through elements such as architecture and shrines [4].

However, while religions are often described in the broadest
sense, their value and belief system is often glossed over. At
the time of writing, we do not believe there are any games
which include detailed fables or parables in the context of
simulated religious literature. Aristotle, argued that a fable was
an “instrument of persuasion” [5], and many religious stories
express an underlying moral position central to the religions
belief system. As noted by Turner [6] fables are often used as
tools to pass down traditions and values down generations.

Tale-Spin [7] produces procedural short stories by gener-
ating descriptions regarding how each character goes about
completing a goal. The system is supplied with inputs such
as: characters, places and a objectives, by running these inputs
through a rule system, stories are generated.

Minstrel [6] follows a similar approach, describing the
process of which a character has gone through to solve a
problem. However, this system uses case-based reasoning to
produce new solutions to the challenges within the story.
In contract to Tale-Spin this approach doesn’t make any
inferences throughout the generation of the story, it instead
takes on an author-approach, manipulating all aspects of the
story in parallel.

III. CELT FABLE GENERATION SYSTEM

The purpose of the CELT (Character-Event Lore Time-line)
system is to procedurally generate appropriate parables for a
given simulated religion. These fables are based on the seven
basic plot types [8], and are intended to reflect the values of
a simulated culture.

The system is implemented as a pipeline of processes which
is illustrated in Fig. 1. The first stage of the pipeline involves
generating the values of the religion, establishing what is
considered to be virtuous and immoral behavior. Following the

— Generate Fable

h 4

Generate Values Generate deities

Aszzign fable to

«| Evaluate fable's
»

statistics included deitiez

F 3

Neo deities

azsigned == 1
story T

Fig. 1. Fable Generation Pipeline

generation of values, one or a number of deities is generated.
For the purpose of this system, each deity is generated to
reflect specific virtues or vices. Finally, the fables are created.
This is achieved by procedurally traversing a story grammar
that generates a time-line of fable events. The fable events
are the significant elements of the story, such as a specific
decision being made. The specific characters in the fable are
selected based on the values that are being represented. This
stage is repeated until all the deities have a minimum threshold
of stories assigned to them.

IV. GENERATING VALUES

For the purpose of this paper an illustrative two dimensional
array of values was created. The first dimension was populated
with a number of commonly accepted virtues, taken from
known codes of conduct and moral behavior including ‘The
Seven Heavenly Virtues® [9], ‘The Chivalric Code’ [10] and
‘Bushido’ [11], [12]. The second dimension was populated
with the antonym for each virtue creating a list of vices. For
example, the antonym for honest is deceitful. As there were
some overlap between the behavior codes that we sampled,
any duplicates or synonyms were removed. This resulted in
the final array which is highlighted in the “values” section
of Fig. 2. This array was then passed through two processes:
Filtration and Selection.

a) Filtration: In the filtration stage, an integer between
-1, and 1 was randomly assigned to each virtue/vice row in
the array. Value combinations which were assigned 0 were
removed from the list (See the “filtration” section of Fig. 2).
This process results in a new list which represents the values
that are specifically important to that culture. Each time the
process was run, a varying number and selection of values
would be kept in the system, simulating differences in values
between different cultures.

b) Value Selection: Cultures differ based on what they
consider to be morally good. This is often used as a plot device
in science fiction. For this reason the value array was created
to include extremes of a value belief (for example Diligent
and Slothful). In the previous stage, each remaining row was
assigned either a -1 or 1. If the row had been assigned a 1,
the left hand cell of the row was considered to be the virtue,
conversely, if the row was assigned a -1 the right hand cell
was used.

The array was then randomly shuffled. This created a list of
values, which were ordered from most to least important (see
“selection” section of Fig. 2). It is common to have a hierarchy

within a value system as this allows for moral conflicts to be
resolved through priority.

V. RELIGIOUS STRUCTURE

The establishment of the structure affects the number of
deities that exist in the system. In the CELT system, there are
two possible structures that can be generated:

o Monotheist: A community which worships and believes
in only one deity.

o Polytheist: A community which worships and believes in
2 or more deities.

For the purpose of the example in this paper the structure
is randomly selected. An atheist structure has also been
considered for future developments.

When the religion type is Polytheist, multiple deities will
be generated. In order to identify how many deities are to be
generated, a number between two and a maximum threshold
is randomly created.

1) Deity Name: The name of the deity is generated by
selecting a random prefix and suffix from a name database'
and concatenating them. In the polytheist structure a check is
made to ensure that all deities have a unique name.

2) Values: Each deity is given a persona based on the values
that they reflect. In the monotheist structure the sole deity is
assigned all the virtues established in the previous section.

In the polytheist structure we first establish whether each
generated deity represents either good or evil. Based on this
assignment a random number of values are assigned to that
deity to define its persona. If the deity is good, then it will
bias towards virtues, and if evil, it will bias towards vices. To
reduce the chance of generating deities with the same value
sets, once all of the values have been assigned to the deity,
the order of priority of these values is shuffled.

3) Relationships Between Deities: It is a common trope
within polytheistic stories that some deities have adversarial
relationships with each other [13]. With this in mind, the
system establishes if any of the deities have been generated
with opposing values. The more that two deities oppose, the
more likely they are to be adversarial.

The process of identifying potential disagreements among
deities is done for all of the deities once all of the deities
have been initially created. This is to ensure that all of
the other deities are considered when looking for potential
disagreements.

Uhttp://www.fantasynamegenerators.com/god-names.php

Values Filtration Selection
Chaste || Promiscuous Chaste || Promiscuous 1 Keep Virtue ‘ ‘ Importance
Abstemious || Gluttonous Abstemious | Gluttonous 1 Keep
Generous | | Greedy Generous || Greedy -1 Keep Abstemious | | Highest
Diligent || Slothful Diligent | Slothful 0 || Remove Pride
Patient | Impatient Patient || Impatient 1 Keep Chaste
Kind || Mean N Kind || Mean 0 || Remove || Patient
Modest || Pride) Modest || Pride -1 Keep ||~ | Treacherous
Honest | | Deceitful Honest || Deceitful 1 Keep Greedy
Honorable || Deplorable Honorable || Deplorable -1 Keep Deplorable
Courageous || Cowardly Courageous || Cowardly 0 || Remove Respectful
Respectful | Rude Respectful || Rude 1 Keep Honest || Lowest
Loyal || Treacherous Loyal || Treacherous | -1 Keep

Fig. 2. The value system generation pipeline

VI. FABLE GENERATION

The fables are generated through the use of a Context-Free
Grammar, and a refinement process.

A Context-Free Grammar is a set of recursive production
rules, containing terminal and non-terminal symbols which is
used to generate string patterns [14]. By passing different seed
values through the same production rules, different output can
be produced.

(P) == (X) (X)
<X> = “y’7|“zn

Fig. 3. A basic example of a Context-Free Grammar.

Figure 3 shows an example of a Context-Free Grammar
comprised of two non-terminal symbols ‘<P>’ and ‘<X>’, and
two terminal symbols y and z.

With ‘<P>’ being replaced with two instances of ‘<X>’

and each instance of ‘<X>’ being replaced with either a “y”

or a “z”, this grammar will result in one of the four following
outputs:

13 tL} (A1) 13 th) 113 tL)

LI'AY% o 77 e YyZ LIVA%

CELT works by implementing the 7 basic story types [8]
as context-free grammars. The grammar produces a story as a
set of parallel character time lines which captures significant
events in the narrative. This allows a basic story to be produced
with placeholder characters which can then be refined in the
second stage of the fable generation process using a state
machine of possible deities and heroes.

As previously described, each placeholder character is rep-
resented as a time-line of their actions in the fable. Each action
is scored based on the values it reflects, for example, defeating
a foe could represent the value of heroism.

Each placeholder character’s time-line is evaluated and
scored based on the values that have been reflected. If two
extremes of a value system are represented, then one is sub-
tracted from the other to produce a final score. For example, if
respectful was given a score of 5, and rude was given a score
of 3, then the resulting score would be respectful:2.

The values represented in each time line are then ordered
from highest to lowest value. A pattern matching exercise is
then conducted to evaluate which deity or hero should replace
the placeholder character.

At any stage an allocation check’s condition is satisfied, the
first deity to satisfy the allocation check replaces all instances
of that particular placeholder character in the fable. This deity
adds the fable to it’s list of fables and is then removed from
a list of possible replacements for the remaining placeholder
characters.

The first allocation check is to see if there are any deities
available which are a ‘perfect match’ to the placeholder
character being checked. A perfect match is when the deity
has the same values, with the same priorities.

A partial match allocation check is undertaken if a perfect
match is not found. This looks at the principle value reflected
by the placeholder, and replaces with one of the deities or
heroes that reflect that value strongly.

As an addition, a decision was made that deities (good or
evil) should be deflatable but not killable. For this reason, a
mortal hero with the values of the initially chosen deity would
be generated and selected if the placeholder character died
instead of the initially chosen deity.

Finally, the system can access the current state of variables
as the grammar is being parsed. This enables the appropriate
pluralization and punctuation to be applied before moving onto
the next portion of the fable. This also enables the maintenance
of story variation, and character consistency. If a hero is
killed in one story, they are removed from the state machine,
preventing their inclusion in future fables.

VII. CONCLUSION

In this paper we have described a method of procedurally
generating fables for a given simulated religion. Values and
deities were first procedurally generated. A fable template in
the form of character time lines is first generated through use
of a Context-Free Grammar. This output is then refined with
placeholders being replaced by appropriate characters though
a value comparison process.

This paper presents early-stage work in fable generation.
The next phase of this project will be to conduct a large scale
in-game evaluation.

For the next development of the system we aim to replicate
story variance between different non-player narrators. The
timeline system will be able to be passed through individual-
ized parsing processes when the story’s are retold by different
non-player agents, retelling the fables with different levels of
emphasis. As the perceived personality of non player char-
acters has been shown to influence player behavior [15], we
are interested in the role that personalized narrative elements
may play. Furthermore, the ultimate goal of this project is
to produce believable in-game religious organizations. These
generated fables will be used to contextualize the simulated
cultures beliefs.

REFERENCES

[1] P. Berger, “There and back again: Reuse, signifiers and consistency
in created game spaces,” in Computer Games as a Sociocultural Phe-
nomenon. Springer, 2008, pp. 47-55.

[2] R. Wagner, Godwired: Religion, ritual and virtual reality. Routledge,
2012.

[3] M. R. Johnson, “Modelling cultural, religious and political affiliation in
artificial intelligence decision-making,” 2015.

[4] G. P. Grieve and H. A. Campbell, “Studying religion in digital gaming.
a critical review of an emerging field,” Online-Heidelberg Journal of
Religions on the Internet, vol. 5, 2014.

[5] F. R. Adrados, History of the Graeco-Latin fable. Brill, 1999, vol. 201.

[6] S.R. Turner, “Minstrel: a computer model of creativity and storytelling,”
1993.

[7]1 J. R. Meehan, “Tale-spin, an interactive program that writes stories.” in
Ijcai, vol. 77, 1977, pp. 91-98.

[8] C. Booker, The seven basic plots: Why we tell stories. A&C Black,
2004.

[9]1 K. Dahlsgaard, C. Peterson, and M. E. Seligman, “Shared virtue: The
convergence of valued human strengths across culture and history.”
Review of general psychology, vol. 9, no. 3, p. 203, 2005.

[10] M. H. Keen, Chivalry. Yale University Press, 2005.

[11] T. Doi and J. Bester, The anatomy of dependence. Kodansha Interna-
tional Tokyo, 1973, vol. 101.

[12] O. Benesch, “Bushido: the creation of a martial ethic in late meiji japan,”
Ph.D. dissertation, University of British Columbia, 2011.

[13] I. Nielsen, “Cultic theatres and ritual drama in ancient greece,” Pro-
ceedings of the Danish Institute at Athens, vol. 3, no. 3, pp. 107-134,
2000.

[14] S. Ginsburg, The Mathematical Theory of Context Free Languages.[Mit
Fig.]. McGraw-Hill Book Company, 1966.

[15] C. J. Headleand, J. Jackson, B. Williams, L. Priday, W. J. Teahan,
and L. Ap Cenydd, “How the perceived identity of a npc companion
influences player behavior,” in Transactions on Computational Science
XXVIII. Springer, 2016, pp. 88-107.

