
An Appearance-Driven Method for
Converting Polygon Soup Building Models for

3D Geospatial Applications

Kan Chen Henry Johan Marius Erdt

Fraunhofer Singapore, Nanyang Technological University
{kchen1, henryjohan, merdt}@ntu.edu.sg

Abstract—Polygon soup building models are fine for visual-
ization purposes such as in games and movies. They, however,
are not suitable for 3D geospatial applications which require
geometrical analysis, since they lack connectivity information and
may contain intersections internally between their parts. In this
paper, we propose an appearance-driven method to interactively
convert an input polygon soup building model to a two-manifold
mesh, which is more suitable for 3D geospatial applications. Since
a polygon soup model is not suitable for geometrical analysis,
our key idea is to extract and utilize the visual appearance
of the input building model for the conversion. We extract the
silhouettes and use them to identify the features of the building.
We then generate horizontal cross sections based on the locations
of the features and then reconstruct the building by connecting
two neighbouring cross sections. We propose to integrate various
rasterization techniques to facilitate the conversion. Experimental
results show the effectiveness of the proposed method.

Keywords-3D building model conversion, polygon soup, two-
manifold, appearance, rasterization, 3D geospatial

I. INTRODUCTION

3D building models are widely used for visualization pur-

poses such as in architecture, virtual reality, 3D game, movie,

and driving simulator. They are also required for various 3D

geospatial analysis and simulation applications such as in ur-

ban planning/management, traffic simulation, noise/wind/flood

simulation, and building shadow analysis. Geospatial queries

and simulations usually require complete polygon (or vertex)

connectivity information of the 3D building models to conduct

geometrical analysis. Such analysis is usually performed based

on the exterior of the building. For example, geometrical

analysis is required for users to query all the polygons of

a wall of a building model. Similarly, in the case of flood

simulation, such analysis is also required to retrieve the correct

neighboring vertices, when the flood hits a vertex (point) of

a building model. In other words, geometry-wise, geospatial

applications require two-manifold, non-self-intersecting 3D

building models.

With the tremendous growth in digital entertainment, 3D

building models for visualization purposes are largely available

as shown in Figure 1. It would be beneficial if we can use these

models for geospatial applications. However, 3D building

models for visualization purposes are created with correct ap-

pearance, but most of them are in polygon soup representation.

As a result, they are not suitable for geometrical analysis. For

(a) Paris city scene in game: Assassin’s Creed Unity

(b) Los Angeles/Los Santos in game: Grand Theft Auto V

Fig. 1. 3D building models for visualization purposes are largely available.

example, for the model in Figure 2(a), the pillar is usually

modeled only once, then it is duplicated and simply placed

over the base floor. Although the model looks correct, the

pillars may penetrate through the base floor or the roof. This

also results in the lack of connectivity information between

the polygons of the pillars and the floor/roof. In other words,

geometry-wise, the 3D building models for visualization pur-

poses, can be polygon soup meshes, and they may be non-two-

manifold or containing intersecting parts internally. As such,

they cannot be directly used for geospatial applications. At

the same time, because of the lack of polygon connectivity

information, it is challenging to convert or repair them, such

processes usually require tedious manual efforts to fix the

intersections as well as incorrect polygon connectivity.

Furthermore, existing 3D geospatial building model gener-

383

2018 International Conference on Cyberworlds

978-1-5386-7315-7/18/$31.00 ©2018 IEEE
DOI 10.1109/CW.2018.00075



Intersection

(a) (b)

Fig. 2. (a) A non-two-manifold building model. (b) A building model which
cannot be generated by simply extruding the ground print to the roof.

ation may also lose some important features of the original

buildings. For example, CityGML is a popular data model

format to represent digital 3D models of buildings and cities.

However, besides conducting geometry processing for an input

3D building model, the most common method of CityGML

model generation is based on direct extrusion from a ground

print to the roof [1], [2]. This approach will not be able to

generate the arc in Figure 2(b). It is essential to be able to

preserve such features (e.g. arc), which can be important for

viewing and geospatial simulation.

In this paper, we propose a new approach to convert a

polygon soup 3D building model to a two-manifold model

suitable for 3D geospatial applications (e.g. in CityGML

format). By using our method, we can save the efforts

for re-creating existing building models again or manually

repairing them for 3D geospatial applications. Our proposed

method focuses on the exterior of the 3D building model. It

has the following main features:

• Observation 1: The visual appearance is the most

important attribute in a polygon soup 3D model.

Furthermore, it is difficult to perform geometrical

analysis for a polygon soup model due to the incomplete

polygon connectivity information. However, such model

has been created with correct visual appearance. In

other words, the rasterized images (rendering results)

are correct. Therefore, we propose to extract and utilize

the visual appearance to facilitate our model conversion

by employing computer graphics tools, in particular, the

rasterization methods.

We propose to extract and use three types of visual

appearance: silhouettes (side views), cross sections

(outer shell), and height map (top view).

• Observation 2: Our method is based on observation that

building models are usually standing upright, and there

are many similarities vertically among levels. As such,

one cross section of a building model can be used to

represent multiple similar vertical levels in the building

model.

Based on the computed the silhouettes of the model,

which are used to identify the features of the building,

we propose to compute horizontal cross sections parallel

to the ground and then connect them.

• Instead of geometrical processing using polygon connec-

tivity information, our method is based on rasterization

techniques. As a result, an arbitrary polygon soup 3D

building mesh can be converted to a two-manifold model

suitable for 3D geospatial applications (e.g. in CityGML

format). Our method also can be considered as a method

to repair an arbitrary 3D building mesh by resolving inner

self-intersections and ensuring two-manifold property.

II. RELATED WORK

In this section, we review the prior work: 3D building model

representation, generation, conversion and repair.

A. 3D building model representation and generation

3D building models are used for a wide spectrum of differ-

ent purposes. They can be mainly categorized as visualization,

computer aided design (CAD) and geospatial applications.

1) 3D building models for visualization: The common

visualization applications are games, virtual reality simulators

and movies. There are mainly three types of representation,

polygonal representation [3]–[5], volumetric representation

[6], imagery representation [7], [8].

3D polygonal mesh is the most commonly used representa-

tion in 3D visualization applications (e.g., OBJ, Collada and

FBX)). 3D polygonal buildings are usually created by 3D

artists using 3D modelling software, such as 3D Max [9],

Maya [10] and Blender [11]. There are also many existing

software plug-ins and automatic tools [6], [12]–[14], which

are usually based on procedural heuristics, were developed to

help the creation of 3D polygonal buildings. Muller et al. [12]

proposed a shape grammar to procedurally generate buildings.

Liu et al. [14] combined shape grammar and image processing

to automatically generate buildings. This procedural approach

is suitable to create a large scale of buildings, such as a

city, however, it is usually more artificial and less realistic.

Another common approach is based on 3D acquisition and

reconstruction via laser scanning or photogrammetry [6], [15].

Lafarge and Mallet [15]’s non-convex energy minimization

method models cities from unstructured point data. Toshev et

al. [16] proposed to detect and parse building structures from

unorganized 3D point clouds and construct a compact and

hierarchical representation. These approaches usually require

high computational costs and manual efforts to obtain a

building model from an acquired 3D point clouds.

3D building models for visualization are usually created

with the purpose of impressing viewers, for example, gamers,

with visually correct and immersive appearance. They are

not created for the ease of conducting geometrical analysis

or computation, therefore such models may have inner self-

intersections and limited polygon connectivity information.

In terms of representation, it is very common that they are

in the form of polygon soup. As such, in many real-time

384



Model alignment
and normal fixing

Input: a 3D polygon
soup model of 
a building

Section III-B

Computing
height map

Section III-F

Computing 
horizontal 
cross sections

Section III-D

Connecting 
horizontal
cross sections

Computing
silhouettes

Section III-C

Silhouettes

Height map

Roof 
refinement

Output: 
a two-manifold
building model

Cross sections

Silhouettes

Section III-E

...

Fig. 3. The steps of the proposed method.

applications such as games, the computations, such as game

physics computation and AI query, are usually performed on

another type of simplified representation, which is dedicated

for real-time computation [17], [18], e.g., spheres and boxes.

Because game and movie industries are huge and rapidly

evolving, 3D visualization models are largely available. Many

realistic 3D building and city models can be found in 3D

games, such as the Paris city in Assassin’s Creed Unity. There

are also many online 3D model databases and portals [19],

[20], making 3D building models easily accessible to the users.

2) 3D building models for CAD: CAD building models

are usually for architecture design and construction purposes.

They are created and used by professionals such as architects,

civil engineers and surveyors. 3D CAD buildings are usually

created using professional CAD software, such as AutoCAD

[21], SketchUp [22], Rhino [23] and etc.

For CAD building models, besides 3D geometry, detailed

and accurate architectural data are created and integrated

such as semantic meta data, measurement, building structural

information, piping, electrical information and etc. Building

information (BIM) models are widely used for architects [24],

[25]. Industry Foundation Classes (IFC) standard [26] is a

common format for BIM data.

3) 3D building models for geospatial applications: 3D

building models for geospatial applications require the com-

bination of 3D geometry and non-geometrical data, such as

semantic or geographical information. These models are usu-

ally created through 3D geometry generation and geographical

data integration. The 3D geometry is usually generated through

3D acquisition and reconstruction from laser scanned 3D point

clouds, photogrammetry, or LIDAR data [ [27]–[29]. The

geographical data will then be integrated, such as the building

semantic information (roof, wall), for example, CityGML

representation [30], [31]. The integration is usually performed

based on geographical references such as GPS, building foot-

prints and building IDs. Size-wise, they are usually in large

scale, such as in city-scale. 3D building models for geospatial

applications are usually required to have complete polygon

connectivity information to perform geometrical analysis, such

as flood simulation.

B. 3D model conversion

There are many existing conversion tools developed for

two-way conversion between CAD models (e.g. IFC models)

and geospatial data models (e.g. CityGML). CAD models

have semantic information and they usually have correct 3D

geometry, therefore CAD models are easier to be converted

for geospatial applications [32]–[36].

3D geometry can be directly fetched from geospatial models

(e.g. in CityGML format), and can be applied for visualization

applications. On the other hand, since polygon soup meshes

have limited polygon connectivity information, it is a challeng-

ing problem to convert them for geospatial applications. Less

work has been done to address this problem. Zhao et al. [37]

proposed to construct bounding surfaces to repair polygonal

meshes for CityGML. However, some visual appearance may

be lost. Donkers et al. [36] proposed a voxel based method.

However, the volumetric representation requires additional

computation and storage costs. This method may also intro-

duce sampling artifacts to the input model, thus it is difficult

to preserve the shape. A repair step is usually needed to clean

the model. Existing repairing methods basically directly detect

and repair artifacts on the surfaces of the input models ( [38]–

[40]). They can preserve the overall shape of the models.

However, these methods usually require local continuity, in

other words, they mainly handle smooth meshes. 3D building

385



xz

y

xz

y Align

(a)

Fix 
normal

(b)

Fig. 4. (a) An axis-aligned model. (b) A model with normals facing away.

models usually lack such continuity, for example, walls are

usually at 90 degrees. Therefore, the surface-based methods

are not suitable for 3D building models.

III. OUR PROPOSED METHOD

A. Basic idea and steps

Given a 3D polygon soup building model, we aim to convert

it for geospatial applications. In this paper, we do not handle

the interior of the building, we only focus on the exterior (outer

shell) of the building model.

As explained previously, 3D polygon soup building models

may have incomplete polygon connectivity information, which

makes it difficult to apply geometrical analysis on them. The

important and reliable information of the input polygon soup

model is the appearance that is perceived by viewers. Our

proposed method basically extracts the appearance, and we

propose to achieve this by computing the outer shell of the

building using rasterization techniques. By doing so, models

suitable for geospatial applications can be generated without

geometrical analysis.

The silhouettes S of a 3D building model capture its overall

shape that is perceived by viewers: the viewers can usually

tell the building based on the important features F on its

silhouettes. Furthermore, we also observe that different levels

of a building usually have many similarities. As such, for a

given input polygon soup building model B, we propose to

compute its outer shell Ω(B) by connecting the contours of

its horizontal cross sections Ω(C) that are derived from n
important silhouette features fi ∈ F , (0 ≤ i < n) at certain

heights from the ground.

Ω(B) ≈
⋃{

Ω(Cf0y
),Ω(Cf1y

), . . . ,Ω(Cfn−1y
)
}
, (1)

where fiy is the height of silhouette feature fi.
Our proposed method consists of the following main steps

as shown in Figure 3:

1) We align the input 3D model and fix its face normals

(Section III-B).

2) We compute the silhouettes of the model and extract

their features to determine the heights for computing

horizontal cross sections (Section III-C).

3) We compute horizontal cross sections parallel to the

ground (Section III-D) and then reconstruct the building

by connecting adjacent cross sections (Section III-E).

xz

y
Vertical cross sections
for one direction

Superimposing

...

Finding
contour

Fig. 5. Computing silhouettes: superimposing vertical cross sections and
computing the contours.

4) We compute the height map from the top view of the

model and use it to refine the roof of the building

(Section III-F).

We introduce these steps in the following subsections.

B. Model alignment and normal fixing

We perform the following preprocessing procedures:

1) We align the model to let the up direction of the

building model to align with the y axis and let the

back-front direction of the building to align with the

z axis. This is because we will compute the horizontal

cross sections, we therefore need to ensure the model is

standing upright.

2) We ensure the face normals are pointing outwards from

the model. Since our cross section computation is based

on face culling, faces should face away from the interior.

These two operations can easily be done in any common

modelling software, such as 3Ds Max [9]. One preprocessed

building model is shown in Figure 4.

C. Computing silhouettes

We compute the silhouettes in four directions: front to

back/back to front (along the z axis), and left to right/right to

left (along the x axis). For a regular or near-regular building

(a building whose shape is in general symmetrical and box-

like), four direction silhouettes are usually sufficient to capture

the important visual appearance of the building from side

views. In other words, the silhouettes represent the vertical

features of a building, e.g., from the silhouettes we can tell if

a building is standing up right or leaning. Many buildings

also exhibit symmetrical property, thus silhouettes from a

small number of directions is sufficient. If the building is

non-regular and contains important visual features in many

different directions, then we need to compute the silhouettes

from more directions. Our silhouette computation algorithm

for one direction consists of the steps (Figure 5) shown in

Algorithm 1.

1) Cross section computation method: To obtain the cross

sections, we employ the stencil buffer (to control if a pixel

is rasterized [41]) based algorithm that is commonly avail-

able in graphics APIs such as OpenGL and DirectX (our

386



Input: One 3D building model, one direction

Output: 2D silhouette with respect to the direction

1. We compute some vertical cross sections (in our

experiments, we compute 20 vertical cross sections

uniformly) from the input building’s center towards the

input direction.

2. We superimpose them to form the silhouette image in

this direction.

3. We compute the contour of the silhouette image and

regard it as the silhouette in this direction.

Algorithm 1: Silhouette computation

Fig. 6. Examples of silhouette features.

implementation is based on OpenGL 4.6). Note that all our

rendering based methods (Sections III-C, III-C1 and III-F) are

using orthogonal projection, thus no perspective distortion is

generated. The algorithm is shown in Algorithm 2. We use

FXAA to perform the postprocessing anti-aliasing [42]. This

operation is helpful to reduce the pixelation artifacts due to

rasterization. By doing so, there will be less noises in the

silhouettes.

2) 2D contour computation method: We compute the con-

tours (findContours() [43] in OpenCV library [44]) of a

2D cross section image. They are then approximated using

the Ramer-Douglas-Peucker algorithm (approxPolyDP() in

OpenCV library [44]) to get a smaller number of contour

points. A threshold in this algorithm can be specified to control

the number of contour points c (in our experiments, we use

1% of arc length as the threshold).

D. Computing horizontal cross sections

Our method is based on utilizing and retaining the visual

appearance. Conceptually, the computed silhouettes repre-

sent the vertical features, while the horizontal cross sections

represent the horizontal features. Assuming we extract m
silhouettes Sj(0 ≤ j < m), the set F of all feature points

is F =
⋃ {F0, ..., Fm−1}, where Fj(0 ≤ j < m) is the set of

feature points computed from silhouette Sj .

The silhouette feature points are computed as follows. For

each computed silhouette Sj (one for each direction), we

compute the features (corners) of the contour of this silhouette.

Some examples are shown in Figure 6. The set Fj of feature

points (corners) for silhouette Sj are computed by detecting

the change in slope (second derivative) around one pixel of the

contour of the 2D silhouette. If the change exceeds a threshold

Input: One 3D building model, clipping point, clipping

direction

Output: 2D cross section

1. To generate one cross section, we first define the

clipping plane using the clipping point and direction

(clipping plane’s normal is defined by the clipping

direction) and set the stencil test to always pass

(glStencilFunc(GL ALWAYS, 1, 0xff)).

2. We render the front faces of the model using this

clipping plane and increase the stencil values for the

rasterized pixels in the stencil buffer

(glStencilOp(GL KEEP, GL KEEP, GL INCR)).

3. We render again the back faces of the clipped model,

and decrease the stencil values for the rasterized pixels

in the stencil buffer (glStencilOp(GL KEEP, GL KEEP,

GL DECR)).

4. We render the front faces of the clipped model again,

and rasterize the pixels with a non-zero stencil value in

the stencil buffer (glStencilFunc(

GL NOTEQUAL, 0, ¬0)). Those pixels form the cross

section image of that cutting position.

Algorithm 2: Cross section computation

Horizontal
cross
sections

Connecting
cross
sections

...

Fig. 7. Generating and connecting horizontal cross sections.

(t), we consider there is a feature at this silhouette pixel.

Fj =

{
d2Sjy

d2Sjx

> t

}
(2)

Note that, Sj represents raw pixel values on the silhouette,

and Fj represents the feature on the silhouette. Using the

heights of the feature points computed from the silhouettes

(fiy , fi ∈ F ), we compute the cross sections (parallel to the

ground) along the y axis. We use the same cross section

computation method as explained in Section III-C1. If two

silhouette features have the same height, we separate them a

bit by a small ε value to make sure all important silhouette

features can be retained.

E. Connecting horizontal cross sections

We use the same method as in Section III-C2 to compute

the contours with a set of contour points for the horizontal

cross sections. For a building model, at one direction (with

387



respect to a silhouette, total four in our experiments, namely

x+, x−, z+ and z−), we compute the corresponding contour

points between two adjacent horizontal cross sections (a lower

one and an upper one) and connect them to form a closed

mesh as the final output (Figure 7). The point correspondence

computation is as follows.

We first normalize these two cross sections, by non-

uniformly scaling the upper cross section to align with the

lower one in four directions: x+, x−, z+ and z−. If a

cross section contains multiple subsections, the normalization

is performed by considering them as one whole section.

Note that this normalization is only performed for computing

correspondences, not for connecting points to form the output

mesh. The scaling factor to scale cross section Ca (with respect

to feature fa on the silhouette) to align with cross section Cb

(with respect to feature fb on the silhouette), in the direction

u ∈ {x+, x−, z+, z−}, is computed based on :

(ufb,max − ufb,min)

(ufa,max − ufa,min)
, (3)

where ufb,max ormin is the respective boundary’s (right or

left) u value (x or z value in the model coordinates) on the

silhouette associated with feature fb’s height. In other words,

we compute the widths of the silhouette at features fb’s and

fa’s heights, and scale cross section a accordingly.

Without loss of generality, we assume that cross section

Cb has a smaller number of contour points compared to

cross section Ca. For each contour point (cbi ∈ Ω(Cb)) of

cross section Cb, we apply spatial hashing to find the nearest

corresponding contour point on cross section Ca. If the nearest

distance is greater than a threshold γ, we project cbi onto

Ω(Ca). Similarly, for each unmapped point (caj ∈ Ω(Ca), we

project it onto Ω(Cb).

We introduce our projection method using the example of

projecting a point cbi onto contour Ω(Ca). We use spatial

hashing to find cbi ’s nearest corresponding contour point

caj
∈ Ω(Ca). From caj

’s two neighboring contour points

caj−1
, caj+1

, we compute and insert the corresponding point

cai′ in Ω(Ca):

cai′ = arg
k

mini′
∥∥cbixz

− pkxz

∥∥ , 0 � k � 1, (4)

pk ∈ {projcaj−1
caj

(cbi), projcaj
caj+1

(cbi)},

where projcaj−1
caj

(cbi) finds the closest point on line segment

caj−1caj to point cbi .

In the case that two cross sections are only separated by ε
in height, which means they are very close to each other and

exhibit a large change in the slope on the respective silhouette,

we simply project (simply using another cross sections’ height)

the contour points on the cross section with a smaller area

to the other cross section with a bigger area. This also can

be considered as extruding the smaller cross section onto the

bigger cross section. We also perform constrained Delaunay

triangulation for the bigger cross section to ensure the two

manifold property.

F. Roof refinement

We render from the top to get a depth (height) map of the

input 3D building model. We use this depth map to refine

the roof (top) of the connected cross sections since in many

geospatial applications, the roof plays an important role. This

step ensures that we can obtain a roof with vertices grouped

together instead of distributed among many cross sections.

Depth map is generated by rendering the model based on

a given viewpoint. It records the distance of the surfaces of

the model from a viewpoint. Since our rendering is based on

orthogonal projection, the depth value per fragment we get

in the fragment shader, is linearly interpolated between near

and far clipping planes. The resolution of our depth map is

32 bit, so it can encode 232 distance (depth) values which are

sufficient in our application.

From all computed silhouettes, we choose all feature points

at the top. Based on the feature point with the lowest height

(y) value, ftop,min, we apply a cut and ignore the rest features.

We duplicate the cross section corresponding to ftop,min, as

the roof. For each contour point on the roof cross section,

based on its (x, z) value, we sample from the depth map to

retrieve the corresponding roof height value and use this to

lift the roof contour point accordingly. In addition, the bottom

cross section is triangulated and labeled as the ground floor,

and the outer shells are considered as the walls.

IV. RESULTS AND DISCUSSIONS

We applied our method to convert 3D polygon soup build-

ings in OBJ format to a geospatial data format, CityGML.

We demonstrated the effectiveness of our method using some

challenging and representative building models: CCTV build-

ing in Beijing, China (Figure 3), Marina Bay Sands (MBS) in

Singapore, Arc de Triomphe in Paris, France, Ancient Greek

temple and East Gate building in Suzhou, China (Figure 8).

These models were created by 3D artists for games applica-

tions. Our results are visualized using the FZKViewer [45]

from KIT.

We tested our method on a workstation with Intel Xeon E5-

2650 2.6 GHz CPU, 16 G Memory and Nvidia Quadro K5000

GPU. The rendering parts of our method were implemented

using C++ and OpenGL, the other parts, such as image

processing and saving to CityGML format, were implemented

using Python. In our experiments, each building model con-

version took only 10 to 30 seconds. We evaluate our method

by comparing our results with the input building models. The

important visual appearance can be preserved in our results,

such as the shape of the gate and the unique shape of the MBS

building. It is usually difficult to preserve such shape using the

conventional geospatial 3D model (e.g. in CityGML format)

generation method, which is based on extrusion from ground

prints. Furthermore, our method does not rely on polygon con-

nectivity information to conduct geometrical analysis, thus our

method can handle problematic polygon soup buildings. For

example, we can handle the Ancient Greek temple model with

self-intersections. We also evaluate our method by checking

the two manifold property of our results using MeshLab [46].

388



Our method can ensure this property. The effectiveness of our

method allows it to be used as a practical tool for converting

arbitrary 3D building models for visualization to 3D models

(e.g. in CityGML format) for geospatial applications.

Limitations: Since our method is appearance-driven, and

based on computing silhouettes from a number of views,

some features which are not visible in these views may be

missed. In our experiments, we generated silhouettes from

four directions. This is usually sufficient for regular or near-

regular buildings. Increasing the number of views and more

silhouettes will be helpful to capture more features. Similarly,

users can also increase the number of horizontal cross sections

to capture more features. Moreover, the features in a horizontal

cross section can be complex, in this case, the correspondences

between adjacent cross sections are not easy to compute. Our

correspondence computation is based on nearest matching,

thus if the outer walls are twisted, our method may fail to

compute correct correspondences. A user interface can be

provided to the users to further refine the correspondences.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an appearance-driven

method for converting polygon soup building models, which

are originally created for visualization purposes, to two-

manifold models for 3D geospatial applications. We tackle

the challenging problem of handling polygon soup models

with limited connectivity information by utilizing their visual

appearance. Based on the silhouettes of a 3D building model,

we identify the feature points and compute a set of horizontal

cross sections accordingly. We then connect adjacent horizon-

tal cross sections to form a two-manifold mesh without inner

part intersections, which is suitable for geometrical analysis

thus 3D geospatial applications.

In the future, we plan to interactively generate and control

the levels of details for the geometry of 3D building models.

Another possible future work is to generalize our method to

handle more types of 3D objects such as furniture, terrain and

vegetation. Since they are also important components in a 3D

city, this can be beneficial to 3D city geospatial applications.

We also plan to apply our approach for 3D printing.

Acknowledgments: We gratefully thank the reviewers for

their constructive comments. This research is supported by

the National Research Foundation, Prime Ministers Office,

Singapore under the Virtual Singapore Programme.

REFERENCES

[1] H. Fan and L. Meng, “Automatic derivation of different levels of detail
for 3d buildings modeled by citygml,” in ICC’09: . In Proceedings of
24th International Cartography Conference, 2009, pp. 15–21.

[2] J. Xie and C.-C. Feng, “An integrated simplification approach for 3d
buildings with sloped and flat roofs.” ISPRS International Journal of
Geo-Information., vol. 5, no. 8, p. article number:128, 2016.

[3] H. Hoppe, “Progressive meshes,” in Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 99–108.

[4] N. Haala and M. Kada, “An update on automatic 3d building reconstruc-
tion,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65,
no. 6, pp. 570 – 580, 2010, iSPRS Centenary Celebration Issue.

[5] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1:1–1:22, Feb. 2013.

[6] I. Garcia-Dorado, I. Demir, and D. Aliaga, “Technical section: Au-
tomatic urban modeling using volumetric reconstruction with surface
graph cuts,” vol. 37, pp. 896–910, 11 2013.

[7] C. Poullis and S. You, “Photorealistic large-scale urban city model recon-
struction,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 4, pp. 654–669, Jul. 2009.

[8] N. Jiang, P. Tan, and L.-F. Cheong, “Symmetric architecture modeling
with a single image,” ACM Trans. Graph., vol. 28, no. 5, pp. 113:1–
113:8, Dec. 2009.

[9] Autodesk. 3D Max.

[10] ——. Maya.

[11] Blender Foundation. Blender.

[12] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Procedural
modeling of buildings,” ACM Trans. Graph., vol. 25, no. 3, pp. 614–623,
Jul. 2006.

[13] G. Kelly and H. Mccabe, “A survey of procedural techniques for city
generation,” vol. 14, 01 2006.

[14] K. Liu, J. Chen, S. Wang, and X. Zhu, “Procedural modeling of buildings
based on facade image segmentation,” in 2014 International Conference
on Audio, Language and Image Processing, July 2014, pp. 797–801.

[15] F. Lafarge and C. Mallet, “Building large urban environments from
unstructured point data,” in 2011 International Conference on Computer
Vision, Nov 2011, pp. 1068–1075.

[16] A. Toshev, P. Mordohai, and B. Taskar, “Detecting and parsing archi-
tecture at city scale from range data,” in 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, June 2010,
pp. 398–405.

[17] C. Ericson, Real-Time Collision Detection. Boca Raton, FL, USA:
CRC Press, Inc., 2004.

[18] J. Gregory, Game Engine Architecture, 2 edition. A K Peters/CRC
Press, 2014.

[19] Trimble Inc. 3dwarehouse.sketchup.com.

[20] Louisiana Entertainment. turbosquid.com.

[21] Autodesk. AutoCAD.

[22] Google. SketchUp.

[23] Autodesk. Rhinoceros 3D.

[24] T. H. Kolbe, “Bim, citygml, and related standardization,” in Proceed-
ings of the 2012 Digital Landscape Architecture Conference, Bern-
burg/Dessau, Germany, vol. 31, 2012.

[25] B. Atazadeh, M. Kalantari, A. Rajabifard, S. Ho, and T. Champion,
“Extending a bim-based data model to support 3d digital management
of complex ownership spaces,” International Journal of Geographical
Information Science, vol. 31, no. 3, pp. 499–522, 2017.

[26] R. Howard and B.-C. Bjork, “Building information models–experts
views on bim/ifc developments,” in Proceedings of the 24th CIB-W78
Conference, 2007, pp. 47–54.

[27] P. Dorninger and N. Pfeifer, “A comprehensive automated 3d approach
for building extraction, reconstruction, and regularization from airborne
laser scanning point clouds,” Sensors, vol. 8, no. 11, pp. 7323–7343,
2008.

[28] L. Malamboa and M. Hahnb, “Lidar assisted citygml creation,” AGSE
2010, vol. 13, 2010.

[29] A. Henn, G. Gröger, V. Stroh, and L. Plümer, “Model driven recon-
struction of roofs from sparse lidar point clouds,” ISPRS Journal of
photogrammetry and remote sensing, vol. 76, pp. 17–29, 2013.

[30] T. H. Kolbe, “Representing and exchanging 3d city models with
citygml,” in 3D geo-information sciences. Springer, 2009, pp. 15–31.

[31] G. Gröger and L. Plümer, “Citygml–interoperable semantic 3d city mod-
els,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 71,
pp. 12–33, 2012.

[32] R. de Laat and L. Van Berlo, “Integration of bim and gis: The
development of the citygml geobim extension,” in Advances in 3D geo-
information sciences. Springer, 2011, pp. 211–225.

[33] M. El-Mekawy, A. Östman, and I. Hijazi, “A unified building model for
3d urban gis,” ISPRS International Journal of Geo-Information, vol. 1,
no. 2, pp. 120–145, 2012.

[34] A. Geiger, J. Benner, and K. H. Haefele, “Generalization of 3d ifc
building models,” in 3D Geoinformation Science. Springer, 2015, pp.
19–35.

389



Input polygon soup models Our outputs in CityGML format

24 secs

30 secs

15 secs

15 secs
Fig. 8. Some results of the proposed method. Left: input polygon soup models in OBJ format. Right: our results in CityGML format using FZKViewer [45]
from KIT. From top to bottom: Marina Bay Sands in Singapore; Arc de Triomphe in Paris, France; Ancient Greek temple; East Gate building in Suzhou,
China. The conversion time is also shown.

[35] T. Kang and C. H. Hong, “Ifc-citygml lod mapping automation based
on multi-processing,” in ISARC. Proceedings of the international sym-
posium on automation and robotics in construction, vol. 32. Vilnius
Gediminas Technical University, Department of Construction Economics
& Property, 2015, p. 1.

[36] S. Donkers, H. Ledoux, J. Zhao, and J. Stoter, “Automatic conversion
of ifc datasets to geometrically and semantically correct citygml lod3
buildings,” Transactions in GIS, vol. 20, no. 4, pp. 547–569, 2016.

[37] Z. Zhao, H. Ledoux, and J. Stoter, “Automatic repair of citygml lod2
buildings using shrink-wrapping,” in 8th 3DGeoInfo Conference & WG
II/2 Workshop, Istanbul, Turkey, 27–29 November 2013, ISPRS Archives
Volume II-2/W1. ISPRS, 2013.

[38] T. Ju, “Robust repair of polygonal models,” in ACM Transactions on
Graphics (TOG), vol. 23, no. 3. ACM, 2004, pp. 888–895.

[39] T. Ju, “Fixing geometric errors on polygonal models: a survey,” Journal
of Computer Science and Technology, vol. 24, no. 1, pp. 19–29, 2009.

[40] M. Campen, M. Attene, and L. Kobbelt, “A practical guide to polygon
mesh repairing.” in Eurographics (Tutorials), 2012.

[41] John Kessenich, Graham Sellers, and Dave Shreiner, “The OpenGL
Programming Guide,” in The OpenGL Programming Guide. Addison
Wesley Professional, 2016.

[42] T. Lottes, “Fxaa,” in NVDIA White Paper, 2009.
[43] S. Suzuki and K. Abe, “Topological structural analysis of digitized

binary images by border following,” Computer Vision, Graphics, and
Image Processing, vol. 30, pp. 32–46, 1985.

[44] opencv.org. OpenCV Library.
[45] KIT, IAI. FZKViewer.
[46] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and

G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in
Sixth Eurographics Italian Chapter Conference. The Eurographics
Association, 2008, pp. 129–136.

[47] Ubisoft. Assassin’s Creed Unity.
[48] Rockstar Games. Grand Theft Auto V.

390


