
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Unsupervised surface defect detection using deep
autoencoders and data augmentation

Abdul Mujeeb; Dai, Wenting; Erdt, Marius; Sourin, Alexei

2018

Abdul Mujeeb, Dai, W., Erdt, M., & Sourin, A. (2018). Unsupervised surface defect detection
using deep autoencoders and data augmentation. Proceedings of the 2018 International
Conference on Cyberworlds (CW), 391‑398. doi:10.1109/cw.2018.00076

https://hdl.handle.net/10356/137972

https://doi.org/10.1109/cw.2018.00076

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/CW.2018.00076

Downloaded on 29 Mar 2024 09:43:50 SGT

Unsupervised Surface Defect Detection Using Deep

Autoencoders and Data Augmentation
Abdul Mujeeb

School of Electrical and

Electronic Engineering, Nanyang

Technological University,

Singapore
amujeeb@ntu.edu.sg

Wenting Dai

 School of Computer Science and

Engineering, Nanyang

Technological Univeristy,

Singapore
daiw0004@e.ntu.edu.sg

Marius Erdt

Fraunhofer Research Center,

Nanyang Technological

Univeristy,

Singapore
marius.erdt@fraunhofer.sg

Alexei Sourin

School of Computer Science and

Engineering, Nanyang

Technological Univeristy,

Singapore
assourin@ntu.edu.sg

Abstract—Surface level defect detection, such as detecting

missing components, misalignments and physical damages, is an

important step in any manufacturing process. In this paper,

similarity matching techniques for manufacturing defect detection

are discussed. We are proposing an algorithm which detects surface

level defects without relying on the availability of defect samples for

training. Furthermore, we are also proposing a method which

works when only one or a few reference images are available. It

implements a deep autoencoder network and trains input reference

image(s) along with various copies automatically generated by data

augmentation. The trained network is then able to generate a

descriptor—a unique signature of the reference image. After

training, a test image of the same product is sent to the trained

network to generate a test image descriptor. By matching the

reference and test descriptors, a similarity score is generated which

indicates if a defect is found. Our experiments show that this

approach is more generic than traditional hand-engineered feature

extraction methods and it can be applied to detect multiple type of

defects.

Keywords—Defect Detection, AOI, Deep Learning, Autoencoders,

Unsupervised Learning, Data Augmentation, Similarity Matching

I. INTRODUCTION

 During various stages of a manufacturing process, surface
level defects may occur, such as missing and misaligned
components, physical damages like scratches, cracks, holes, etc.
To find these defects, either visual inspection is done by human
experts, or Automatic Optical Inspection (AOI) is conducted
using computer algorithms. AOI is becoming increasingly
popular, and it is the focus of this paper. From the image
processing point of view, the surface level defects can be defined
as deviations in the test image compared to a given reference
image. In this work we aim at detecting significant differences
between a test and a reference images, i.e. at similarity matching
of two images. Currently, most manufacturing defect detection
systems use conventional image processing techniques. These
techniques rely on hand-engineered features which are chosen by
skilled people with good technical and domain knowledge. An
alternative approach to conventional image processing is machine
learning algorithms, which is gaining popularity very rapidly and

have replaced many traditional techniques in various areas of
applications.

The conventional techniques of surface inspection rely on

hand-designed features which have a problem of weak
adaptability, i.e. for every new type of defect and product the
feature extraction process needs to be redesigned. In contrast,
machine learning algorithms have the capability to automatically
extract powerful features with less prior domain knowledge.
Supervised learning is by far the most common type of machine
learning algorithm, and it requires a large number of training
samples. Most machine learning-based defect detection
algorithms use supervised learning method, and thus they need a
large number of training images. This may not be however
practical in many cases where defect samples may not be
available at all during training. In this paper, we are proposing an
unsupervised learning algorithm which does not require any
defect image during training.

The structure of this paper is organized as follows: Section II

is the overview of the relevant works and studies done in the area
of AOI-based defect detection using conventional and machine
learning techniques. In Section III, we propose an approach to
solve the problem of surface level defect detection. The
implementation details are discussed in Section IV. In Section V,
we analyze and compare the experimental results. We outline
further integration plans in Section VI and conclude the paper in
Section VII.

II. RELEVANT STUDIES AND OUR WORK

Surface analysis technique is an algorithmic attempt to inspect
a surface for possible defects. Defects could be of various types
and many different methods are used for inspection. We can
broadly categorize the feature extraction techniques as traditional
image processing based and machine learning based techniques.

A. Traditional Image Processing Based Techniques

A very simple similarity matching technique is to directly
compare the pixel values of the two images by using some
correlation measure. This method is rarely used since it is

extremely sensitive to minor transformations due to imaging
conditions, e.g., intensities. Therefore, more robust methods have
been devised, e.g., one method is to compute a feature descriptor
of each image and then to apply a distance measure on the two
descriptors. Many techniques have been developed for various
applications, and in the following paragraph we perform a survey
of such traditional image processing methods found in literature.

Work [1] classified the inspection techniques into statistical,
structural, filter-based, and model-based. Statistical methods
evaluate the spatial distribution of pixel intensities. The most
popular statistical methods use first order statistics such as mean,
variance, range, and other histogram-based computations together
with the second order statistics. For example, [2] used Weibull
distribution on local edges to detect texture anomaly in images.
Based on structural similarity, the authors of [3] proposed an
image comparison technique using statistical parameters instead
of pixel-based similarity. Filter-based approaches often imply a
bank of filters, such as gradient filters, Gabor filters, Fourier
transform that are applied to the image, where the energy of the
filter responses is used as a feature. In [4], an image matching
technique was developed using Phase-Only Correlation technique
which uses the phase components in Discrete Fourier Transforms
of given images. If prior knowledge is available about the
underlying process that generates the texture pattern, and if this
pattern can be defined by a stochastic model, then the model-
based approaches naturally yield very accurate results in texture
analysis. Texture classification techniques are used in various
disciplines including biomedical [5, 6, 7], textile [8, 9], metal
surfaces [10], wood [11], food product inspection [12], etc. Two
very popular feature extraction techniques are Scale-Invariant-
Feature-Transform [13, 14] and Speed Up Robust Features [15],
which have shown very good results in many pattern recognition
applications.

B. Machine Learning Based Techniques

Selecting a feature extraction technique for a given

application is a challenging task. Machine learning is an

alternative technique that extracts the best features automatically

from the given data, and it has already started finding its

applications in the field of manufacturing defect detection. In

[16], a feature extraction technique was proposed based on

neural networks that works on any arbitrary textured images.

Neural networks for supervised steel defect classification were

applied in [17]. Work [18] used a neural network-based defect

detection on DAGM dataset outperforming all the existing

techniques applied so far.

To our best knowledge, the machine learning techniques used

in defect detections are basically supervised learning algorithms
relying on large number of training samples. This poses a
practical limitation in the defect detection applications where
large number training samples may not be available. In some
cases, even defect free samples are limited to one or very few
samples. Algorithms have been developed that can learn from

only one training sample, and are called one-shot learning
algorithms. To our knowledge one-shot learning methods have
been successfully used in object/pattern recognition applications.
For example, [19] implemented an offline signature verification
using Convolutional Siamese Network in which a neural network
is trained using very large number of training samples, and after
training it is able to extract a unique descriptor from any single
signature image. Work [20] introduced a face recognition
technique where only one image per person is available. The
network is trained using a large face database, and after the
training the network becomes capable of generating a descriptor
for any given face image. This approach of generating descriptor
has outperformed conventional hand-engineered descriptor
algorithm. Transfer learning [21] was used to extract features
from low volume training data, however, this required that the
transfer domain had to be similar to the new domain.

C. Problem Definition

It can be concluded that since similarity matching techniques
can be of various types, human expertise is needed to choose the
best technique for a given application. Even though the best
results have been obtained by machine learning techniques, they
depend on availability of large training data. For example, in [22]
it is shown how to directly learn features from image data using
Convolutional Networks without resorting to manually designed
features. Thus, we have to answer a question “can we learn best
features automatically where no defect sample is available, and
only one or very limited normal samples are available for
training?” In this regard, we aim to implement a machine
learning-based feature extractor which: 1) does not require
domain knowledge and is portable to wide variety of products
and defects, and 2) does not depend on the availability of defect
samples for training. To that end, and also inspired by the recent
advances in deep learning, we choose to represent such a feature
extractor in terms of a deep neural network

A deep learning network is able to generate a unique

descriptor from a given input image by learning various
geometric patterns. However, before a network is able to extract
patterns, it must be trained (i.e. parameters have to be tuned).
This process of parameter tuning needs a large number of training
samples. We generate a large number of copies of the input
image by applying data augmentation techniques, such as flipping
and rotation. Furthermore, we consider autoencoders, which are
neural networks used to find a compact representation of an input
image. In [23] deep learning and autoenoders are used to generate
a compressed representation for image features, and the last layer
of the encoder is used as a compact descriptor of the input image
representing its features. After the training, the network is able to
generate a descriptor for a given test image with or without a
defect. By comparing the reference and test image descriptors, we
may decide about the presence of any possible defect.

III. METHODOLOGY AND APPROACH

A. Motivation and Background

This work is a part of an industrial project involving the
development of AOI techniques in a manufacturing environment
as shown in Fig. 1. The set-up contains a high quality camera
which sends images of components to a computer running defect
detection algorithm. We aim at devising an algorithm which is
flexible enough to be used with a wide range of products and
defects, and is able to operate within the relatively limited
resources of a typical embedded system. Our focus is on defects
which can be visually checked by human experts (Fig. 2).

B. Feature Extractor

 Many AOI problems are essentially similarity matching
problems, which require comparing two images to find a
quantitative measure of similarity. Feature selection is probably
the most important step in similarity matching. In order to
compare two images, features vectors are extracted from each
image and compared using some algorithm as shown in Fig. 3.
This process consists of two steps, viz., a feature extractor (FE)
algorithm and a matching algorithm. A FE algorithm extracts
features from two images which are then compared using the
matching algorithm to generate a quantitative measure of
similarity between the two images.

Figure 1. Target AOI system (actual electronic components have been

replaced with place-holder images).

Figure 2. Defects examples: (a) scratches,
 (b) misplaced components, and (c) soldering defects.

Figure 3. Similarity matching algorithm.

 If we had many images of defect free and defected samples,
then highly discriminative features can be extracted automatically
via supervised learning, which is by far the most common method
of machine learning. However, for small datasets or even cases
where only a single reference image is available, it is challenging
to learn generic features, which is why so far matching
algorithms have mostly relied on supervised training methods. If
sufficient training samples are not available, then traditional
hand-crafted feature selection methods are employed.

C. Research Hypothesis and Choice of Feature Extractor

 Our hypothesis is that in contrast to conventional manual
feature extraction methods, we can extract more robust features
by using only defect free images, deep learning algorithms, and
by creating data augmented copies of the image.

We propose to use a deep Autoencoder network to extract

features. An Autoencoder algorithm, also known as data
compression algorithm, consists of two neural networks called as
Encoder and Decoder which are connected in series as shown in
Fig. 4. The encoder part extracts patterns from a given input
image, and its last layer consists of fewer nodes than the input
size. The reduced size output becomes a compressed
representation of the input image. During training, the decoder
takes this compressed representation as the input and tries to
reproduce the original image as its output. Each node of the
encoder output represents a certain pattern which is learnt from
the input dataset. The process of feature extraction at various
layers in a Neural Network is explained in [24] through a
visualization technique. The lowest layer extracts more generic
features like lines, curves, etc., whereas the nodes in the deeper
layers may extract more specific shapes like semicircles, squares,
etc., which are combination of the previous layer features as
shown in Fig. 5. Each node in the last layer of the encoder
represents a certain geometric pattern. So an encoder with N
number of nodes in the last layer generates an N-size descriptor
of an input image. A problem with autoencoder-based feature
extractor is that it performs very poorly if used with only very
few training images. Alternatively, the techniques like Siamese
network have been used where training is performed by
comparing a reference image with a similar image called positive
image and a different image called negative image.

Figure 4. An Autoencoder block diagram.

Figure 5. Feature extractions at various layers.

In Siamese networks, the optimization is performed using a

loss function utilizing similarity of positive and difference of

negative images. This optimization function is called triplet loss

function [25]. However, during training this approach still

requires a large number of images (with positive and negative

pairs) from the same domain, and it has been used successfully

in face recognition, digit recognition and signature verification.

Once a network has been tuned, we can then capitalize on

powerful discriminative features to generalize the predictive

power of the network to new data.

In our case, the challenge remains in the training phase so that

the network should be able to generate features from samples
never seen before. Therefore, we perform data augmentation of
the input image by horizontal and vertical flipping followed by
rotation in multiple steps. After training, the encoder is able to
generate a descriptor for a given image of the same product. The
reference and test images are passed through the same trained
network to generate reference descriptor and test descriptor
respectively. The feature vectors are normalized to unity
magnitude and then are compared for similarity using L2-norm,
which generates a similarity score between 0 and 1 representing
identical or maximally different images respectively.

D. Effect of Image Patch Size

For defect localization, a large image is divided into smaller
sub-images, and each sub-image has to be trained independently
of one another. We presume that the ratio of the defect region and
the total image region is important. If the ratio is too small, then
the region of the defect will contribute less to the feature
descriptor as shown in Fig. 6, and a generated score will remain
close to the normal image score.

E. Validation Plan

We have chosen three different types of defects to ensure the
generality of the proposed method. Firstly, we used scratch
images from NEU dataset [26] (Fig. 2(a)). Good images were
created by removing of the scratched areas using an inpainting

algorithm [27]. Secondly, we created our own database of
misplaced components from a research AOI platform (Fig. 2(b)).
Thirdly, a dataset of soldering images was obtained from a
professional PCB manufacturer (Fig. 2(c)).

IV. IMPLEMENTATION DETAILS

Background of the normal image could be smooth or texture-

based. Two different methods have been used to extract features

using an autoencoder depending on the type of background. The

number of required training samples is different for smooth and

texture surfaces, as shown in Table I.

TABLE I. TRAINING SAMPLES NEEDED.

Surface

Type

Training

(Normal)

Training

(Defected)

Data

Augmentation

Texture Large 0 No

Smooth 1 or Few 0 Yes

If the surface is smooth, then only one reference image may

be used for feature extraction by creating various copies using

data augmentation. For surfaces with textures, we need large

number of good images for training that include most common

texture patterns which are likely to appear on the surface. If

components are placed on smooth surfaces, we may rely on data

augmentation to generate large training dataset. In both cases,

however, we do not need any defect image for training.

A. Data Augmentation

To ensure sufficient training iterations to extract features and
avoid overfitting, we performed data augmentation on the
reference input image. This was achieved by horizontal and
vertical flipping followed by rotations. The original image, as
well as its flipped copies, were rotated by various angles between
–180 to +180 degrees in steps of 3 degrees. This generated
sufficiently large number of images to perform training of the
encoder.

Figure 6. Effect of defect region selection on detection.

B. Image Preprocessing

Image preprocessing includes graying of input images
(if needed), and data normalization. In applications where color
information is important, such as solder images, graying is
skipped. Data normalization is performed on each training sample
and is described in Fig. 7.

max = Maximum pixel value in the image
min = Minimum pixel value in the image
REPEAT for each pixel
BEGIN
 PixelValue= (PixelValue – min) / (max-min)
END

Figure 7. Data normalization algorithm.

C. Creating Smaller Blocks from Input Image

For better accuracy of defect detection and narrowing down
the defect location, large input images are converted into small
images by dividing them using horizontal and vertical grids, as

shown in Fig. 8. For this experiment, we chose grid size of 6464

pixels. Hence, if an input image is of size 640640 pixels, it is

divided into 100 patches of 6464 pixels. Each sub-image is
processed independently of others, and the training process is
applied on each of the patches.

D. Deep Autoencoders

We created a deep autoencoder for training with three fully
connected layers. Multiple hidden layers are able to learn
complex geometric patterns from the training data. The last layer
of the encoder is used as a descriptor (feature vector). The
decoder part was used only during training, and it is a mirrored
image of the encoder part. The last layer in the autoencoder uses
Sigmoid activation function, whereas all other layers use
Rectifier Linear Unit (Relu) activation function.

A loss function measures how close the reconstructed output
vector y is to the original input vector x. We are choosing binary
cross-entropy of reconstruction loss function, which calculates
how many bits of information is preserved in the reconstruction
as compared to the original. The loss function is defined as

k

kkkk zxyxyxJ)]1log()1(log[),(

ADAM optimizer [28] is used to optimize the loss function
which is converging between 500 to 1,000 iterations.

Figure 8. Creating sub-images using grids.

E. Similarity Matching Algorithm

 The last layer of the encoder is a 1D array, and it represents
the feature vector. If X is a feature vector with N components as
follows.

X = x
1
,x

2
,x

3
,......x

N{ }

Then, a unit vector of X is obtained by dividing each of its
components by its Euclidean length as follows.

x
i

' =
x
i

X
 [for every component i]

where X = x
1

2 + x
2

2 + x
3

2 +x
N

2 .

 Two vectors generated from two images are matched for
similarity using L2-norm. For any two given vectors X and Y of
length N, the distance is computed as follows.

N

i

ii yxD
1

2

which generates a similarity score between 0 (identical images)
and 1 for two feature vectors X and Y.

F. Training Algorithm

Two slightly different methods have been used for texture and
smooth backgrounds, which are shown in Fig. 9(a) and 9(b),
respectively. Each training sample is flattened from 2D to 1D,
and training is performed in batch mode using all the training
images as shown in Fig. 10.

(a)

(b)

Figure 9. Training process: (a) for texture background and
(b) for smooth background.

Figure 10. Training matrix (using M samples).

G. Test Algorithm

Test algorithm involves extracting features from a test image
using the trained model and matching the test and reference (i.e.
training) images feature vectors. Figures 11(a) and 11(b) show
the algorithm used for matching the descriptors for texture and
smooth backgrounds, respectively. Additionally, a test image also
goes through the same image preprocessing steps as the training
images, such as graying, normalization, and flattening.

(a)

(b)

Figure 11. Test algorithms: (a) for texture background and
 (b) for smooth background.

V. EXPERIMENTAL RESULTS

A. Evaluation Datasets

For evaluation we have chosen three datasets with three

different types of surface defects. Dataset 1 includes the images

captured from an AOI research platform (Fig. 12). Dataset 2

includes soldering images obtained from the manufacturing

facility used in the project (Fig. 13). Dataset 3 includes NEU

surface scratch images (Fig. 14). For training we used only

defect-free images, and they were not used at the later stages. At

the testing stage, we used both normal and defected images.

Table II shows the number and types of sample images used for

evaluation. Datasets 1 and 3 contain images of larger size which

were divided into patches of 6464 pixels. Dataset 2 contains

images of smaller size of 35140 pixels, hence they were

directly used in the experiment without creating any small

blocks.

Figure 12. Dataset 1:

 (a) normal, (b) misaligned, (c) missing, (d) misplaced.

Figure 13. Dataset 2:

(a) normal, (b) defected(foreign element) and (c) defected(bridge).

Figure 14. Dataset 3:

scratch samples from NEU dataset.

TABLE II. IMAGES USED FOR EVALUATION.

Dataset Training

(Normal)

Test

(Normal)

Test

(Defected)

Size &

Type

Internal

1 (480

augmented

copies)

330 patches 330

patches
6464

(Gray)

Solder

Defects

200

images

100

images

79

images
35140

(RGB)

NEU

Scratches
659 patches 309

patches

3009

patches

6464

(Gray)

B. Detection Accuracy

Defect detection accuracy depends on the chosen value of the

threshold. Figs. 15 and 16 show a marked increase in the

matching threshold in defected blocks as compared to normal

blocks for datasets 1 and 3, respectively. In Fig. 15, the defected

region score is >0.3 as compared to normal region score which is

<0.05. In Fig. 16, the defected region score is >0.25 as compared

to normal region score which is <0.05. We generate ROC curves

by thresholding the distance between the test and the reference

image descriptors, as shown in Fig. 17. For dataset 1, we are

able to use the defects with True Positive Rate (TPR) of over

80% while the False Positive Rate (FPR) is 16%. For dataset 2,

the TPR and FPR are 89% and 5%, respectively, and for dataset

3, the TPR and FPR are 83% and 7%, respectively.

Figure 15. Defected and normal blocks.

(a) (b)

Figure 16. (a) defected sample and (b) normal sample.

(a) (b)

(c)

Figure 17. ROC curves. (a) Dataset 1. Missing/Misaligned Components.
(Thresh = 0.15, TPR = 0.81, FPR = 0.16); (b) Dataset 2. Solder Defects.

(Thresh = 0.24, TPR = 0.89, FPR = 0.05); (c) Dataset 3. Surface Scratches.

(Thresh = 0.15, TPR = 0.83, FPR = 0.07).

It should be noted that our objective is to find an automatic

and generic feature extraction technique. It is possible that a

manually crafted technique may be able to detect a certain defect

(e.g., scratches) with the same or even better accuracy, but that

technique may not be suitable for other type of defects (e.g.,

misplaced components). The ROC curves indicate that the

technique is generic and can be applied to detect various

different types of defects with good accuracy.

VI. INTEGRATION PLAN

In the next stages, this work is planned to be integrated in the

manufacturing pipeline, as shown in Fig. 18. The target AOI

system is an embedded system with memory and speed

constraints. The training is to be performed offline on a more

powerful system preferably containing a GPU. The trained

model contains a few thousand parameters which can be easily

fit into most embedded systems used for AOI. Some additional

image processing steps, such as image segmentation and

alignment, will also be included at the deployment stage.

Figure 18. Integration setup.

VII. SUMMARY AND FUTURE OUTLOOK

An autoencoder-based feature extractor was proposed in this

paper which is used as a defect detection algorithm. This

technique has the advantage of automatic feature extraction, and

it can be applied to detect various different types of defects

without much domain expertise. Furthermore, it does not depend

on the availability of defect images during training. We,

however, must acknowledge that this method has certain

limitations. For images with smooth background, data

augmentation works well, but if the background is texture-based,

then we still need a large number of defect-free training samples,

and data augmentation is not a viable option. Large size images

need to be divided into blocks of a proper size, hence the user

needs to have some understanding about the size of the defect

region.

In our future work, we will divide a larger image into non-

uniform blocks instead of fixed size blocks, which may allow us

to detect various different types of defects in one product by

choosing proper block sizes where they are most likely to occur.

ACKNOWLEDGEMENT

This work was conducted within the Delta-NTU Corporate

Lab for Cyber-Physical Systems with funding support from

Delta Electronics Inc. and the National Research Foundation

(NRF) Singapore under the Corp Lab@University Scheme.

REFERENCES

[1] C. Tikhe and J. S. Chitode, “Metal surface inspection for defect

detection and classification using Gabor Filter,” International

Journal of Innovative Research in Science, Engineering and

Technology, vol. 3, no. 6, 2014

[2] F. Timm and E. Bartha, “Non-parametric texture defect detection

using Weibull features,” Proceedings of SPIE. SPIE-IS&T, vol.

7877, 2011, pp. 78,770j–78,770j
[3] Z. Wang and A. Bovik, “Image quality assessment: from error

visibility to structural similarity,” IEEE Transactions on Image

Processing, vol. 13, no. 4, 2004

[4] M. Miura, S. Sakai, S. Aoyama, J. Ishii, K. Ito, and T. Aoki,

“High-accuracy image matching using phase-only correlation and

its application,” SICE Annual Conference, pp. 307- 312, 2012.
[5] T. Wang and N. Karayiannis, “Detection of micro-calcifications

in digital mammograms using wavelets,” IEEE Transactions On

Medical Imaging, vol. 17, no. 4, pp. 498-509, Aug. 1998

[6] M. Melloul and L. Joskowicz, “Segmentation of micro-

calcification in X-ray mammograms using entropy thresholding,”

In Proceedings of the 16th International Congress on Computer-

Assisted Radiology and Surgery, pp. 490–495, 2002

[7] A. Papadopoulosa, D. Fotiadisb, and A. Likasb, “An automatic

micro-calcification detection system based on a hybrid neural

network classifier,” Elsevier Artificial Intelligence in Medicine,

vol 25, no. 2, pp.149–167, Jun.2002

[8] A. Bodnarova, M. Bennamoun, and S. Latham, “Optimal Gabor

filters for textile flaw detection,” Pattern Recognition-Elsevier,

vol. 35, no. 12, pp. 2973–2991, Dec. 2002

[9] M. A. Garcia and D. Puig, “Pixel classification by divergence-

based integration of multiple texture methods and its application

to fabric defect detection,” Joint Pattern Recognition Symposium

Springer, vol. 2781, pp. 132– 139, 2003

[10] K.Y. Song, M. Petrou, and J. Kittler, “Texture crack detection,”

Machine Vision Applications, vol. 8, no. 1, Jan. 1995, pp. 63-76

[11] I. Silven, M. Niskanen, and H. Kauppinen, “Wood inspection

with non-supervised clustering,” Machine Vision and

Applications, vol. 13, no. 56, pp. 275–285, Mar. 2003

[12] V. Leemans and M. Destain, “A real-time grading method of

apples based on features extracted from defects,” Journal of Food

Engineering, vol. 6, no. 1, pp. 83-89, Jan. 2004

[13] B. Suvdaa1, J. Ahn, and J. Ko, “Steel surface defects detection

and classification using SIFT and voting strategy,“ International

Journal of Software Engineering and Its Applications, vol. 6, no.

2, Apr. 2012

[14] D. Lowe, “Distinctive image features from scale-invariant

keypoints.” International Journal of Computer Vision, vol. 60, no.

2, pp. 91– 110, Nov. 2004

[15] R. Carro, J. Ahuactzi and E. Huerta, “Face recognition using

SURF,” International Conference on Intelligent Computing

Theories and Methodologies, Springer, vol. 9225, pp. 316-326,

ICIC 2015

[16] X. Wu, K. Cao, and X. Gu, “A surface defect detection based on

convolutional neural networks,” International Conference on

Computer Vision Systems, pp. 185-194, ICVS 2017

[17] J. Masci, U. Meier, and D. Ciresan “Steel defect classification

with max-pooling convolutional neural networks,” International

Joint Conference on Neural Networks, 2012

[18] T. Wang, Y. Chen, M. Qiao and H. Snoussi, “A fast and robust

convolutional neural network based defect detection model in

product quality control,” The International Journal of Advanced

Manufacturing Technology, vol. 94, pp. 3465-3471, Feb. 2018

[19] S. Dey, A. Dutta, J. Ignacio, S. Ghosh, J. Liados, and U. Pal,

“Signet: convolutional siamese network for writer independent

offline signature verification,” arXiv preprint arXiv:1707.02131,

2017

[20] Y. Guo and L. Zhang, “One-shot face recognition by promoting

underrepresented classes,” arXiv preprint arXiv:1707.05574, 2017

[21] M. Oquab, L. Bottou, I. Laptev and J. Sivic, “Learning and

transferring mid-level image representations using convolutional

neural networks,” IEEE International Conference on Computer

Vision and Pattern Recognition, 2014

[22] S. Zagoruyko and N. Komodakis, “Learning to Compare Image

Patches via Convolutional Neural Networks,” IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2015

[23] S. Petscharnig, M. Lux and S. Chatzichristofis, “Dimensionality

reduction for image features using deep learning and

Autoencoders,” Proceedings of the 15th International Workshop

on Content-Based Multimedia Indexing, Florence, Italy, pp. 23:1-

23:6, 2017

[24] M.D. Zeiler and R. Fergus, “Visualization and understanding

convolutional networks,” European Conference on Computer

Vision (ECCV), pp 818-833, 2014

[25] G. Koch, R. Zemel and R. Salakhutdinov, ”Siamese neural

networks for one-shot image recognition,” ICML Deep Learning

Workshop, 2015

[26] NEU Metal Surface dataset (date of citation: 7th May 2018)

http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.

html

[27] T. Alexandru, “An image inpainting technique based on the fast

marching method,” Journal of Graphics Tools, vol. 8, no. 1, pp.

23-34, 2004

[28] K. P. Diederik and B. Jimmy, “ADAM: A method for stochastic

optimization,” arXiv:1412.6980, Dec. 2014

