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Abstract—Surface level defect detection, such as detecting 

missing components, misalignments and physical damages, is an 

important step in any manufacturing process. In this paper, 

similarity matching techniques for manufacturing defect detection 

are discussed. We are proposing an algorithm which detects surface 

level defects without relying on the availability of defect samples for 

training. Furthermore, we are also proposing a method which 

works when only one or a few reference images are available. It 

implements a deep autoencoder network and trains input reference 

image(s) along with various copies automatically generated by data 

augmentation. The trained network is then able to generate a 

descriptor—a unique signature of the reference image. After 

training, a test image of the same product is sent to the trained 

network to generate a test image descriptor. By matching the 

reference and test descriptors, a similarity score is generated which 

indicates if a defect is found. Our experiments show that this 

approach is more generic than traditional hand-engineered feature 

extraction methods and it can be applied to detect multiple type of 

defects. 

Keywords—Defect Detection, AOI, Deep Learning, Autoencoders, 

Unsupervised Learning, Data Augmentation, Similarity Matching  

I. INTRODUCTION  

 During various stages of a manufacturing process, surface 
level defects may occur, such as missing and misaligned 
components, physical damages like scratches, cracks, holes, etc. 
To find these defects, either visual inspection is done by human 
experts, or Automatic Optical Inspection (AOI) is conducted 
using computer algorithms. AOI is becoming increasingly 
popular, and it is the focus of this paper. From the image 
processing point of view, the surface level defects can be defined 
as deviations in the test image compared to a given reference 
image. In this work we aim at detecting significant differences 
between a test and a reference images, i.e. at similarity matching 
of two images. Currently, most manufacturing defect detection 
systems use conventional image processing techniques. These 
techniques rely on hand-engineered features which are chosen by 
skilled people with good technical and domain knowledge. An 
alternative approach to conventional image processing is machine 
learning algorithms, which is gaining popularity very rapidly and 

have replaced many traditional techniques in various areas of 
applications.  

 
The conventional techniques of surface inspection rely on 

hand-designed features which have a problem of weak 
adaptability, i.e. for every new type of defect and product the 
feature extraction process needs to be redesigned. In contrast, 
machine learning algorithms have the capability to automatically 
extract powerful features with less prior domain knowledge. 
Supervised learning is by far the most common type of machine 
learning algorithm, and it requires a large number of training 
samples. Most machine learning-based defect detection 
algorithms use supervised learning method, and thus they need a 
large number of training images. This may not be however 
practical in many cases where defect samples may not be 
available at all during training. In this paper, we are proposing an 
unsupervised learning algorithm which does not require any 
defect image during training. 

 
The structure of this paper is organized as follows: Section II 

is the overview of the relevant works and studies done in the area 
of AOI-based defect detection using conventional and machine 
learning techniques. In Section III, we propose an approach to 
solve the problem of surface level defect detection. The 
implementation details are discussed in Section IV. In Section V, 
we analyze and compare the experimental results. We outline 
further integration plans in Section VI and conclude the paper in 
Section VII. 

II. RELEVANT STUDIES AND OUR WORK 

Surface analysis technique is an algorithmic attempt to inspect 
a surface for possible defects. Defects could be of various types 
and many different methods are used for inspection. We can 
broadly categorize the feature extraction techniques as traditional 
image processing based and machine learning based techniques.  

A. Traditional Image Processing Based Techniques 

A very simple similarity matching technique is to directly 
compare the pixel values of the two images by using some 
correlation measure. This method is rarely used since it is 



extremely sensitive to minor transformations due to imaging 
conditions, e.g., intensities. Therefore, more robust methods have 
been devised, e.g., one method is to compute a feature descriptor 
of each image and then to apply a distance measure on the two 
descriptors. Many techniques have been developed for various 
applications, and in the following paragraph we perform a survey 
of such traditional image processing methods found in literature.  

Work [1] classified the inspection techniques into statistical, 
structural, filter-based, and model-based. Statistical methods 
evaluate the spatial distribution of pixel intensities. The most 
popular statistical methods use first order statistics such as mean, 
variance, range, and other histogram-based computations together 
with the second order statistics. For example, [2] used Weibull 
distribution on local edges to detect texture anomaly in images. 
Based on structural similarity, the authors of [3] proposed an 
image comparison technique using statistical parameters instead 
of pixel-based similarity. Filter-based approaches often imply a 
bank of filters, such as gradient filters, Gabor filters, Fourier 
transform that are applied to the image, where the energy of the 
filter responses is used as a feature. In [4], an image matching 
technique was developed using Phase-Only Correlation technique 
which uses the phase components in Discrete Fourier Transforms 
of given images. If prior knowledge is available about the 
underlying process that generates the texture pattern, and if this 
pattern can be defined by a stochastic model, then the model-
based approaches naturally yield very accurate results in texture 
analysis. Texture classification techniques are used in various 
disciplines including biomedical [5, 6, 7], textile [8, 9], metal 
surfaces [10], wood [11], food product inspection [12], etc. Two 
very popular feature extraction techniques are Scale-Invariant-
Feature-Transform [13, 14] and Speed Up Robust Features [15], 
which have shown very good results in many pattern recognition 
applications. 

B. Machine Learning Based Techniques 

Selecting a feature extraction technique for a given 

application is a challenging task. Machine learning is an 

alternative technique that extracts the best features automatically 

from the given data, and it has already started finding its 

applications in the field of manufacturing defect detection. In 

[ 16 ], a feature extraction technique was proposed based on 

neural networks that works on any arbitrary textured images. 

Neural networks for supervised steel defect classification were 

applied in [17]. Work [18] used a neural network-based defect 

detection on DAGM dataset outperforming all the existing 

techniques applied so far.  

 
To our best knowledge, the machine learning techniques used 

in defect detections are basically supervised learning algorithms 
relying on large number of training samples. This poses a 
practical limitation in the defect detection applications where 
large number training samples may not be available. In some 
cases, even defect free samples are limited to one or very few 
samples. Algorithms have been developed that can learn from 

only one training sample, and are called one-shot learning 
algorithms. To our knowledge one-shot learning methods have 
been successfully used in object/pattern recognition applications. 
For example, [19] implemented an offline signature verification 
using Convolutional Siamese Network in which a neural network 
is trained using very large number of training samples, and after 
training it is able to extract a unique descriptor from any single 
signature image. Work [ 20 ] introduced a face recognition 
technique where only one image per person is available. The 
network is trained using a large face database, and after the 
training the network becomes capable of generating a descriptor 
for any given face image. This approach of generating descriptor 
has outperformed conventional hand-engineered descriptor 
algorithm. Transfer learning [21] was used to extract features 
from low volume training data, however, this required that the 
transfer domain had to be similar to the new domain.  

C. Problem Definition 

It can be concluded that since similarity matching techniques 
can be of various types, human expertise is needed to choose the 
best technique for a given application. Even though the best 
results have been obtained by machine learning techniques, they 
depend on availability of large training data. For example, in [22] 
it is shown how to directly learn features from image data using 
Convolutional Networks without resorting to manually designed 
features. Thus, we have to answer a question “can we learn best 
features automatically where no defect sample is available, and 
only one or very limited normal samples are available for 
training?” In this regard, we aim to implement a machine 
learning-based feature extractor which: 1) does not require 
domain knowledge and is portable to wide variety of products 
and defects, and 2) does not depend on the availability of defect 
samples for training. To that end, and also inspired by the recent 
advances in deep learning, we choose to represent such a feature 
extractor in terms of a deep neural network   

 
A deep learning network is able to generate a unique 

descriptor from a given input image by learning various 
geometric patterns. However, before a network is able to extract 
patterns, it must be trained (i.e. parameters have to be tuned). 
This process of parameter tuning needs a large number of training 
samples. We generate a large number of copies of the input 
image by applying data augmentation techniques, such as flipping 
and rotation. Furthermore, we consider autoencoders, which are 
neural networks used to find a compact representation of an input 
image. In [23] deep learning and autoenoders are used to generate 
a compressed representation for image features, and the last layer 
of the encoder is used as a compact descriptor of the input image 
representing its features. After the training, the network is able to 
generate a descriptor for a given test image with or without a 
defect. By comparing the reference and test image descriptors, we 
may decide about the presence of any possible defect.  



III. METHODOLOGY AND APPROACH 

A. Motivation and Background 

This work is a part of an industrial project involving the 
development of AOI techniques in a manufacturing environment 
as shown in Fig. 1. The set-up contains a high quality camera 
which sends images of components to a computer running defect 
detection algorithm. We aim at devising an algorithm which is 
flexible enough to be used with a wide range of products and 
defects, and is able to operate within the relatively limited 
resources of a typical embedded system. Our focus is on defects 
which can be visually checked by human experts (Fig. 2). 

B. Feature Extractor 

 Many AOI problems are essentially similarity matching 
problems, which require comparing two images to find a 
quantitative measure of similarity. Feature selection is probably 
the most important step in similarity matching. In order to 
compare two images, features vectors are extracted from each 
image and compared using some algorithm as shown in Fig. 3. 
This process consists of two steps, viz., a feature extractor (FE) 
algorithm and a matching algorithm. A FE algorithm extracts 
features from two images which are then compared using the 
matching algorithm to generate a quantitative measure of 
similarity between the two images.  

 

 
Figure 1.  Target AOI system (actual electronic components have been 

replaced with place-holder images). 

 

Figure 2.  Defects examples: (a) scratches, 
 (b) misplaced components, and (c) soldering defects. 

 

 

Figure 3. Similarity matching algorithm. 

 If we had many images of defect free and defected samples, 
then highly discriminative features can be extracted automatically 
via supervised learning, which is by far the most common method 
of machine learning. However, for small datasets or even cases 
where only a single reference image is available, it is challenging 
to learn generic features, which is why so far matching 
algorithms have mostly relied on supervised training methods. If 
sufficient training samples are not available, then traditional 
hand-crafted feature selection methods are employed. 

C. Research Hypothesis and Choice of Feature Extractor 

 Our hypothesis is that in contrast to conventional manual 
feature extraction methods, we can extract more robust features 
by using only defect free images, deep learning algorithms, and 
by creating data augmented copies of the image. 

 
We propose to use a deep Autoencoder network to extract 

features. An Autoencoder algorithm, also known as data 
compression algorithm, consists of two neural networks called as 
Encoder and Decoder which are connected in series as shown in 
Fig. 4. The encoder part extracts patterns from a given input 
image, and its last layer consists of fewer nodes than the input 
size. The reduced size output becomes a compressed 
representation of the input image. During training, the decoder 
takes this compressed representation as the input and tries to 
reproduce the original image as its output. Each node of the 
encoder output represents a certain pattern which is learnt from 
the input dataset. The process of feature extraction at various 
layers in a Neural Network is explained in [ 24 ] through a 
visualization technique. The lowest layer extracts more generic 
features like lines, curves, etc., whereas the nodes in the deeper 
layers may extract more specific shapes like semicircles, squares, 
etc., which are combination of the previous layer features as 
shown in Fig. 5. Each node in the last layer of the encoder 
represents a certain geometric pattern. So an encoder with N 
number of nodes in the last layer generates an N-size descriptor 
of an input image. A problem with autoencoder-based feature 
extractor is that it performs very poorly if used with only very 
few training images. Alternatively, the techniques like Siamese 
network have been used where training is performed by 
comparing a reference image with a similar image called positive 
image and a different image called negative image. 



 

Figure 4. An Autoencoder block diagram. 

 

Figure 5. Feature extractions at various layers. 

In Siamese networks, the optimization is performed using a 

loss function utilizing similarity of positive and difference of 

negative images. This optimization function is called triplet loss 

function [ 25 ]. However, during training this approach still 

requires a large number of images (with positive and negative 

pairs) from the same domain, and it has been used successfully 

in face recognition, digit recognition and signature verification. 

Once a network has been tuned, we can then capitalize on 

powerful discriminative features to generalize the predictive 

power of the network to new data.  

 
In our case, the challenge remains in the training phase so that 

the network should be able to generate features from samples 
never seen before. Therefore, we perform data augmentation of 
the input image by horizontal and vertical flipping followed by 
rotation in multiple steps. After training, the encoder is able to 
generate a descriptor for a given image of the same product. The 
reference and test images are passed through the same trained 
network to generate reference descriptor and test descriptor 
respectively. The feature vectors are normalized to unity 
magnitude and then are compared for similarity using L2-norm, 
which generates a similarity score between 0 and 1 representing 
identical or maximally different images respectively.  

D. Effect of Image Patch Size 

For defect localization, a large image is divided into smaller 
sub-images, and each sub-image has to be trained independently 
of one another. We presume that the ratio of the defect region and 
the total image region is important. If the ratio is too small, then 
the region of the defect will contribute less to the feature 
descriptor as shown in Fig. 6, and a generated score will remain 
close to the normal image score.  

 

E. Validation Plan 

We have chosen three different types of defects to ensure the 
generality of the proposed method. Firstly, we used scratch 
images from NEU dataset [26] (Fig. 2(a)). Good images were 
created by removing of the scratched areas using an inpainting 

algorithm [ 27 ]. Secondly, we created our own database of 
misplaced components from a research AOI platform (Fig. 2(b)). 
Thirdly, a dataset of soldering images was obtained from a 
professional PCB manufacturer (Fig. 2(c)).   

IV. IMPLEMENTATION DETAILS 

Background of the normal image could be smooth or texture-

based. Two different methods have been used to extract features 

using an autoencoder depending on the type of background. The 

number of required training samples is different for smooth and 

texture surfaces, as shown in Table I.  

TABLE I.  TRAINING SAMPLES NEEDED. 

Surface 

Type 

Training 

(Normal) 

Training 

(Defected) 

Data  

Augmentation 

Texture Large 0 No 

Smooth 1 or Few 0 Yes 

If the surface is smooth, then only one reference image may 

be used for feature extraction by creating various copies using 

data augmentation. For surfaces with textures, we need large 

number of good images for training that include most common 

texture patterns which are likely to appear on the surface. If 

components are placed on smooth surfaces, we may rely on data 

augmentation to generate large training dataset. In both cases, 

however, we do not need any defect image for training. 

A. Data Augmentation 

To ensure sufficient training iterations to extract features and 
avoid overfitting, we performed data augmentation on the 
reference input image. This was achieved by horizontal and 
vertical flipping followed by rotations. The original image, as 
well as its flipped copies, were rotated by various angles between 
–180 to +180 degrees in steps of 3 degrees. This generated 
sufficiently large number of images to perform training of the 
encoder. 

 

 
Figure 6. Effect of defect region selection on detection. 



B. Image Preprocessing 

Image preprocessing includes graying of input images  
(if needed), and data normalization. In applications where color 
information is important, such as solder images, graying is 
skipped. Data normalization is performed on each training sample 
and is described in Fig. 7. 

max = Maximum pixel value in the image 
min = Minimum pixel value in the image 
REPEAT for each pixel  
BEGIN 
 PixelValue= (PixelValue – min) / (max-min) 
END 

Figure 7. Data normalization algorithm. 

C. Creating Smaller Blocks from Input Image 

For better accuracy of defect detection and narrowing down 
the defect location, large input images are converted into small 
images by dividing them using horizontal and vertical grids, as 

shown in Fig. 8. For this experiment, we chose grid size of 6464 

pixels. Hence, if an input image is of size 640640 pixels, it is 

divided into 100 patches of 6464 pixels. Each sub-image is 
processed independently of others, and the training process is 
applied on each of the patches.  

D. Deep Autoencoders 

We created a deep autoencoder for training with three fully 
connected layers. Multiple hidden layers are able to learn 
complex geometric patterns from the training data.  The last layer 
of the encoder is used as a descriptor (feature vector). The 
decoder part was used only during training, and it is a mirrored 
image of the encoder part. The last layer in the autoencoder uses 
Sigmoid activation function, whereas all other layers use 
Rectifier Linear Unit (Relu) activation function.  

A loss function measures how close the reconstructed output 
vector y is to the original input vector x. We are choosing binary 
cross-entropy of reconstruction loss function, which calculates 
how many bits of information is preserved in the reconstruction 
as compared to the original. The loss function is defined as 

 
k

kkkk zxyxyxJ )]1log()1(log[),(  

ADAM optimizer [28] is used to optimize the loss function 
which is converging between 500 to 1,000 iterations. 

 

  

Figure 8. Creating sub-images using grids. 

E. Similarity Matching Algorithm 

 The last layer of the encoder is a 1D array, and it represents 
the feature vector. If X is a feature vector with N components as 
follows. 

X = x
1
,x

2
,x

3
,......x

N{ }  

Then, a unit vector of X is obtained by dividing each of its 
components by its Euclidean length as follows.  

x
i

' =
x
i

X
  [for every component i] 

where X = x
1

2 + x
2

2 + x
3

2 + ....x
N

2 . 

 Two vectors generated from two images are matched for 
similarity using L2-norm. For any two given vectors X and Y of 
length N, the distance is computed as follows.   

  



N

i

ii yxD
1

2         

which generates a similarity score between 0 (identical images) 
and 1 for two feature vectors X and Y. 

F. Training Algorithm  

Two slightly different methods have been used for texture and 
smooth backgrounds, which are shown in Fig. 9(a) and 9(b), 
respectively. Each training sample is flattened from 2D to 1D, 
and training is performed in batch mode using all the training 
images as shown in Fig. 10. 

 
(a) 

 
(b) 

Figure 9. Training process: (a) for texture background and 
(b) for smooth background. 

 

Figure 10. Training matrix (using M samples). 



G. Test Algorithm 

Test algorithm involves extracting features from a test image 
using the trained model and matching the test and reference (i.e. 
training) images feature vectors. Figures 11(a) and 11(b) show 
the algorithm used for matching the descriptors for texture and 
smooth backgrounds, respectively. Additionally, a test image also 
goes through the same image preprocessing steps as the training 
images, such as graying, normalization, and flattening. 

 

 

(a) 

 

(b) 

Figure 11. Test algorithms: (a) for texture background and 
 (b) for smooth background. 

V. EXPERIMENTAL RESULTS 

A. Evaluation Datasets 

For evaluation we have chosen three datasets with three 

different types of surface defects. Dataset 1 includes the images 

captured from an AOI research platform (Fig. 12). Dataset 2 

includes soldering images obtained from the manufacturing 

facility used in the project (Fig. 13). Dataset 3 includes NEU 

surface scratch images (Fig. 14). For training we used only 

defect-free images, and they were not used at the later stages. At 

the testing stage, we used both normal and defected images. 

Table II shows the number and types of sample images used for 

evaluation.  Datasets 1 and 3 contain images of larger size which 

were divided into patches of 6464 pixels. Dataset 2 contains 

images of smaller size of 35140 pixels, hence they were 

directly used in the experiment without creating any small 

blocks. 

 
Figure 12. Dataset 1: 

 (a) normal, (b) misaligned, (c) missing, (d) misplaced. 

 
Figure 13. Dataset 2:  

(a) normal, (b) defected(foreign element) and (c) defected(bridge). 

 
Figure 14. Dataset 3:  

scratch samples from NEU dataset. 

TABLE II.  IMAGES USED FOR EVALUATION. 

Dataset Training 

(Normal) 

Test 

(Normal) 

Test 

(Defected) 

Size & 

Type 

Internal 

 
1 (480 

augmented 

copies ) 

330 patches 330  

patches 
6464 

(Gray) 

Solder 

Defects 

200  

images 

100  

images 

79  

images 
35140 

(RGB) 

NEU 

Scratches 
659 patches 309 

patches 

3009 

patches 

6464 

(Gray) 

B. Detection Accuracy 

Defect detection accuracy depends on the chosen value of the 

threshold. Figs. 15 and 16 show a marked increase in the 

matching threshold in defected blocks as compared to normal 

blocks for datasets 1 and 3, respectively.  In Fig. 15, the defected 

region score is >0.3 as compared to normal region score which is 

<0.05. In Fig. 16, the defected region score is >0.25 as compared 

to normal region score which is <0.05. We generate ROC curves 



by thresholding the distance between the test and the reference 

image descriptors, as shown in Fig. 17. For dataset 1, we are 

able to use the defects with True Positive Rate (TPR) of over 

80% while the False Positive Rate (FPR) is 16%. For dataset 2, 

the TPR and FPR are 89% and 5%, respectively, and for dataset 

3, the TPR and FPR are 83% and 7%, respectively. 

 

 

Figure 15. Defected and normal blocks. 

  
(a) (b) 

Figure 16. (a) defected sample and (b) normal sample. 

 

 

 
(a)                (b) 

 
(c) 

 

Figure 17. ROC curves.    (a) Dataset 1. Missing/Misaligned Components.  
(Thresh = 0.15, TPR = 0.81, FPR = 0.16); (b) Dataset 2. Solder Defects.  

(Thresh = 0.24, TPR = 0.89, FPR = 0.05); (c) Dataset 3. Surface Scratches. 

(Thresh = 0.15, TPR = 0.83, FPR = 0.07). 

It should be noted that our objective is to find an automatic 

and generic feature extraction technique. It is possible that a 

manually crafted technique may be able to detect a certain defect 

(e.g., scratches) with the same or even better accuracy, but that 

technique may not be suitable for other type of defects (e.g., 

misplaced components). The ROC curves indicate that the 

technique is generic and can be applied to detect various 

different types of defects with good accuracy. 

 

VI. INTEGRATION PLAN 

In the next stages, this work is planned to be integrated in the 

manufacturing pipeline, as shown in Fig. 18. The target AOI 

system is an embedded system with memory and speed 

constraints. The training is to be performed offline on a more 

powerful system preferably containing a GPU. The trained 

model contains a few thousand parameters which can be easily 

fit into most embedded systems used for AOI. Some additional 

image processing steps, such as image segmentation and 

alignment, will also be included at the deployment stage.   

 

 
Figure 18. Integration setup. 

 

VII. SUMMARY AND FUTURE OUTLOOK 

An autoencoder-based feature extractor was proposed in this 

paper which is used as a defect detection algorithm. This 

technique has the advantage of automatic feature extraction, and 

it can be applied to detect various different types of defects 

without much domain expertise. Furthermore, it does not depend 

on the availability of defect images during training. We, 

however, must acknowledge that this method has certain 

limitations. For images with smooth background, data 

augmentation works well, but if the background is texture-based, 

then we still need a large number of defect-free training samples, 

and data augmentation is not a viable option. Large size images 

need to be divided into blocks of a proper size, hence the user 



needs to have some understanding about the size of the defect 

region.  

In our future work, we will divide a larger image into non-

uniform blocks instead of fixed size blocks, which may allow us 

to detect various different types of defects in one product by 

choosing proper block sizes where they are most likely to occur. 
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