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Abstract—While machine learning applications are getting
mainstream owing to a demonstrated efficiency in solving com-
plex problems, they suffer from inherent vulnerability to adver-
sarial attacks. Adversarial attacks consist of additive noise to an
input which can fool a detector. Recently, successful real-world
printable adversarial “patches” were proven efficient against
state-of-the-art neural networks. In the transition from digital
noise based attacks to real-world physical attacks, the myriad
of factors affecting object detection will also affect adversarial
patches. Among these factors, view angle is one of the most
influential, yet under-explored. In this paper, we study the effect
of view angle on the effectiveness of an adversarial patch. To
this aim, we propose the first approach that considers a multi-
view context by combining existing adversarial patches with a
perspective geometric transformation in order to simulate the
effect of view angle changes. Our approach has been evaluated
on two datasets: the first dataset which contains most real
world constraints of a multi-view context, and the second
dataset which empirically isolates the effect of view angle.
The experiments show that view angle significantly affects the
performance of adversarial patches, where in some cases the
patch loses most of its effectiveness. We believe that these
results motivate taking into account the effect of view angles
in future adversarial attacks, and open up new opportunities
for adversarial defenses.

Keywords-Adversarial Attacks; Perspective Geometric
Transformations; View Angles; Adversarial patches; Multi-
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I. INTRODUCTION

Artificial intelligence and machine learning are getting
mainstream owing to their efficient problem-solving, and
motivated by the need for automatically analyze increasingly
larger amounts of data. More specifically, deep neural net-
works have shown impressive results in image classification
and object detection tasks, with many architectures such as
Faster R-CNN [1] and YOLO [2] achieving high accuracy
and/or real time processing speeds [3]. However, with the
increased popularity came increasing scrutiny into the safety
and reliability of the results against possible tampering.
These suspicions were confirmed by Szegedy [4] and Good-
fellow [5] who were able to manipulate the results of deep
neural networks with nearly imperceptible adversarial noise.
In the hands of a malicious actor, these attacks can be used

to fool neural networks, raising security concerns in safety
critical applications such as surveillance cameras and self-
driving vehicles [6], [7].

Recent work involving adversarial attacks is focusing on
applying these attacks in real-world scenarios, and find-
ing defenses against such threats. Since adding noise to
an image in real world conditions is impractical, current
research is trending towards physical “adversarial patches”
[8], [9], [10], that can fool detectors and are easy to add to
existing objects such as clothing or road signs. Compared to
laboratory settings, several factors increase the difficulty of
attacking a detector, such as illumination variations, distance
from the obstacle and view angles [11]. Moreover, several
applications of object detection such as surveillance cameras
[12] and collaborative transportation systems [6] are using
multi-view camera systems. With such settings, the current
state-of-the-art [13], [14] is reaching impressive results even
on the most challenging of multi-view datasets [15].

Although multi-view settings are showing very promising
results, very few adversarial attacks consider its effect on
their proposed attacks. In fact, patch testing on current state-
of-the-art multi-view datasets is still limited to each isolated
view. To the best of our knowledge, there is no extensive
study in the literature that investigates the impact of multi-
view on real-life adversarial attacks.

In this paper, we study the impact of angle on the
effectiveness of adversarial patch attacks. Specifically, we
undertake an empirical characterization by generating a
patch and applying a perspective geometric transformation
to simulate the effects of view angles on the patch. To obtain
accurate results, we evaluate our approach on a real-world
multi-view dataset, we also introduce a new dataset where
the effect of view angle is isolated as much as possible.

The contributions of our paper can be summarized as
follows:

• We investigate the effect of view-angle on adversarial
patches efficiency using geometric transformations.

• We introduce a new dataset in which the factor of angle
is isolated.
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Figure 1. Diagram of the proposed exploration method

• We empirically evaluate different patches on both our
proposed dataset and a multi-view dataset in real-world
conditions.

Section 2 of our paper presents our attack approach and
setting, Section 3 showcases our experiments and results and
discusses the implications of angle on attack effectiveness
and we conclude in Section 4.

II. PROPOSED METHODOLOGY

The aim of our paper is to study the effect of angle on
adversarial patches effectiveness. For this goal, we propose
an attack setting in which we train an adversarial patch
on a multi-view pedestrian detection dataset, then apply
the patch to only a single view of the dataset. In the next
step, we use perspective geometric transformations to infer
the patch on the different views. Finally, we evaluate the
patch’s effectiveness by applying a pedestrian detector to the
new dataset obtained by applying the patch and subsequent
geometric transformations. Figure 1 shows a diagram of our
method.

In this experiment, we use the attack generation method
proposed in [8], as it has shown good performance especially
when applied to a objects with high intra-class variations
such as persons. The goal of this attack is to generate a
patch that hides people from the detector by minimizing
the objectness score of the person to hide in the context
of surveillance camera systems. The patch is created by
optimizing the pixels in the patch area using an Adam
optimizer that minimizes the following loss function shown
in equation 1:

L = αLnps + βLtv + γLobj (1)

Where α, β and γ are empirically determined scaling
factors, Lnps is a non-printability score that ensures that
the colors in the patch are printable by common printers,
Ltv symbolizes the difference in colors between neighboring
pixels, and emphasizes smoother patches, and Lobj is the
maximum objectness score in the image. This is the main
component in the loss function, as the lower this score is,
the less likely the detector is able to detect the person.

After generating the patch, we apply it to a single view
of the dataset (henceforth referred to as the “reference
view”). Then, we apply a perspective geometric transfor-
mation (P) between each frame of the reference view and
its corresponding frame in other views using the geometric
transformation described in Equation 2:xdstydst

1

 =

p11 p12 p13
p21 p22 p23
p31 p32 1

xrefyref

1

 (2)

Where (xref , yref ) refers to a pixel in the reference
view, (xdst, ydst) refers to a pixel in the destination view,
(p11, p12, p21, p22) form the rotation matrix and are com-
posed of various transformations to the image (Scale, shear
and rotation), p31 and p32 are the translation vector, and p13
and p23 form the tilt vector. Obtaining the parameters of
the geometric transformation can be likened to solving the
linear system shown in equation 3, requiring at least four
correspondence points that can be obtained using calibration
data or manually extracted.

xdst =
p11 ∗ xref + p12 ∗ yref + p13
p31 ∗ xref + p32 ∗ yref

xref =
p21 ∗ xref + p22 ∗ yref + p23
p31 ∗ xref + p32 ∗ yref

(3)



Finally, we obtain a new dataset with an adversarial
patch applied to the reference view and transferred to other
views via perspective geometric transformations. We can
now apply the chosen pedestrian detector to the dataset we
have prepared.

III. EXPERIMENTS AND RESULTS

In this section we apply then aforementioned method in
the previous section and discuss the obtained results:

A. Testing Parameters

In order to generate the patch, we use the following
empirical hyperparameters shown in Table I. All trained
patches use random values as a starting point.

Table I
PATCH TRAINING HYPERPARAMETERS

Hyperparameter Value
α 0.01
β 2.5*
γ 1
Patch size 300*300 px
Mini batch size 4
Learning rate 0.03
*Ltv is floored at 0.1 to prevent the optimizer from focusing

on smoothing the patch over achieving high fooling rates

To ensure proper testing conditions, we choose YOLOv2
for pedestrian detection, as it was the target detector of the
chosen adversarial patch. Furthermore, we use pre-trained
weights for the YOLOv2 detector that are provided by the
authors of the patch.

B. Wildtrack tests and results

We first test our patch on the Wildtrack multiview dataset
[12]. We generate our patch on view 1, and we divide the
views into two sets {1, 4, 6, 7} and {2, 3, 5} since we add
a patch to each visible person’s front and back. We choose
views 1 and 5 as reference views since those cameras are
opposed to each other. Figure 2 shows the patch added in a
sample frame of view 7 after the geometric transformation
step. The results of these experiments are shown in tables
II and III below. The recall values are the percentage of
people correctly detected among the number of people that
are present in both the reference view and destination view
since we do not take into account people who are only
visible in only one of the views.

Table II
PATCH PERFORMANCE ON THE {1,4,6,7} VIEW SET

View Clean Recall Patched Recall Difference (%)
1 (ref) 17.35 1.04 -94.01%
4 30.28 15.86 -47.62%
6 7.56 4.03 -46.69%
7 44.22 6.97 -84.24%

Figure 2. Sample of the Wildtrack view 7 detection results with the patch
applied after geometric transformation

Table III
PATCH PERFORMANCE ON THE {2,3,5} VIEW SET

View Clean Recall Patched Recall Difference (%)
5 (ref) 43.37 9.72 -77.59%
2 22.97 20.85 -9.23%
3 24.59 10.28 -58.19%

C. LATIS-MVAPE database tests and results

To better isolate the effects of view angle, we create
our own dataset: LATIS- Multi-View Adversarial Patch
Evaluation (LATIS-MVAPE) which contains 14 images of
18 different persons taken from seven different view angles
and two distances for a total of 252 photos. 11 persons were
filmed in indoor conditions, and the other seven were filmed
outdoors. For the geometric transformation correspondence
points, we manually select 18 pairs of points between
the reference view and each destination view. We train 2
patches: The first patch with only the reference view as
input data, and the second patch with the reference and
60◦ views from the dataset as input data. Figure 3 shows a
sample of patch application with the subsequent geometric
transformation in both the reference view and in the 60◦

view respectively. Table IV below shows the detection results
with each of the applied patches:

Table IV
DETECTION RESULTS USING THE TWO PATCHES TRAINED ON THE

LATIS-MVAPE DATASET

View Clean Recall Patch 1 Recall Patch 2 Recall
5◦ 100 70.59 64.71
30◦ 100 75.00 72.22
60◦ 100 91.67 100.00
90◦ (ref) 100 38.89 27.78
120◦ 100 92.86 96.43
150◦ 100 92.86 82.14
175◦ 100 83.33 83.33

D. Discussion

Our results confirm that angle has a significant effect on
the effectiveness of an adversarial patch attack: In Wildtrack
database experiments, the projected patch lost up to half its



Figure 3. Sample of a successful adversarial attack on the reference view
of LATIS-MVAPE, while it fails to fool the detector at a different angle.

efficiency compared to the one applied to the reference view.
In the tests performed on our database, the projected patch
was at best half as effective as the reference view patch,
losing nearly all of its attack capabilities in some cases.

These findings have the potential to impact both the
attacking side and the defending side in adversarial patch
attacks: On the attack side, this study highlights the need
to incorporate view angle into the patch creation process,
as the patch loses a significant amount of its effectiveness
when viewed from an angle. This integration can be achieved
by adding geometric transformations in the patch training
process, or including multi-view data in the training dataset.

As for the defense side, these findings suggest interesting
pathways to stronger defenses, such as adopting multi-view
detection techniques. These multi-view detectors combine
data from all of the available views to locate objects within
them, and as such can detect objects in a certain view that
a monocular detector failed to detect using the extra multi-
view data. Therefore, to attack such a potential defense, an
adversary has to defeat the detector on all of the views,
reducing the strength of the adversarial patch to be only
as strong as the weakest view, and in the case of a patch
untrained against view angle variations, this effectiveness
loss can be severe.

IV. CONCLUSION

The threat of adversarial attacks has spurred increasing in-
terest in designing practical adversarial attacks and defenses
in the real world. To better understand these attacks, an
investigation of the interactions between adversarial patches
and the factors that affect object detection is necessary. This
paper unprecedentedly studies the effect of view angle on
the effectiveness of an adversarial patch. To emulate the
angle view deformation on the patch, we apply a perspective
geometric transformation to an existing attack. We compared
the original patch results with the transformed patch on other
views, and we notice a significant effect on attack success
rates. This difference has implications for adversarial patches
on both tasks of attacking a detector or immunizing detectors
from such attacks.
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