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Abstract—We present a novel method for the interactive
control of geometric abstraction and texture in artistic images.
Previous example-based stylization methods often entangle shape,
texture, and color, while generative methods for image synthesis
generally either make assumptions about the input image, such
as only allowing faces or do not offer precise editing controls. By
contrast, our holistic approach spatially decomposes the input
into shapes and a parametric representation of high-frequency
details comprising the image’s texture, thus enabling independent
control of color and texture. Each parameter in this representa-
tion controls painterly attributes of a pipeline of differentiable
stylization filters. The proposed decoupling of shape and texture
enables various options for stylistic editing, including interactive
global and local adjustments of shape, stroke, and painterly
attributes such as surface relief and contours. Additionally,
we demonstrate optimization-based texture style-transfer in the
parametric space using reference images and text prompts, as
well as the training of single- and arbitrary style parameter
prediction networks for real-time texture decomposition.

Index Terms—texture decomposition, neural style transfer,
geometric abstraction, texture control, stroke-based rendering

I. INTRODUCTION

While recent methods for image synthesis, such as diffusion
models [1], and example-based stylization methods, such as
Neural Style Transfer (NST) [2], [3], achieve impressive re-
sults, their black-box character and lack of disentangled artistic
control variables [4] makes precise adjustment of geometric
elements and texture challenging. Thus, given an artistic image
obtained from such methods or given an artistic image without
having control over its formation process, achieving a desired
artistic look may necessitate further adjustments to geometric
and textural artistic control variables. These variables include
geometric elements such as brush shapes and sizes, and
textural elements such as stroke patterns, tonal variations, and
other intricate features in the image. In this paper, we propose
a novel method for geometric abstraction and texture control
that allows example-based as well as parametric control over
such artistic variables. Our method1 accepts an artistic image
as input, without any restrictions on the content domain, and
outputs an image with applied adjustments in the geometric
and textural space which preserve the input color distribution.

To allow for disentangled editing of artistic control vari-
ables, we first decompose the input image into primitive shapes

1Project and Code: https://maxreimann.github.io/artistic-texture-editing/

representing coarse structure and a parametric representation
of high-frequency details that form the image’s texture. The
coarse structure decomposition is achieved using segmenta-
tion techniques, e.g., superpixel segmentation [5], or layered
approaches such as neural stroke-based rendering [6], [7],
depending on the desired shape primitives. To decompose
the high-frequency details into meaningful artistic control
variables, a novel lightweight pipeline of differentiable styl-
ization filters is introduced. Filters in this pipeline are based
on traditional Image-based Artistic Rendering (IB-AR) filters
[8] implemented in an auto-grad enabled framework [9], and
are parameterized by explicitly defined stylistic or painterly
attributes, such as contours, surface relief (e.g., for oil-paint
texture), and local contrast, among others. Detail decompo-
sition is then achieved by optimizing filter parameters such
that the output of the filter pipeline, conditioned on the coarse
structure image, matches the input image.

The resulting spatial and value decomposition provides a
wide range of options for editing textures and geometric
abstraction (Fig. 1). The method of geometric abstraction is
interchangeable and, depending on the method of choice, pro-
vides interactive control over the stroke shapes and the level-
of-abstraction. Furthermore, filter parameters can be adjusted
interactively on both global and local levels using per-pixel
parameter masks, either by manual editing or interpolating
values based on extracted image attributes such as depth
or saliency. Overall, the decomposed representation allows
for independent control of color and texture, enabling color
adjustments without affecting the texture and vice versa, which
is particularly useful for editing tasks such as correcting
artifacts in images created by NST.

Our approach performs particularly well for example-based
edits of fine-granular texture patterns by adapting to the
underlying coarse shape primitives and achieving a spatially
homogeneous appearance. At this, example-based losses can
be used to optimize the texture in the parametric space to
conform to a desired style image using NST style-losses [2],
[10] or text-based losses [11]. For particular stylization tasks
such as style transfer, the texture decomposition optimization
can be further accelerated by training Parameter Prediction
Networks (PPNs) for real-time decomposition.

To summarize, we make the following contributions:
1) We present a holistic approach for geometric abstraction
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“Rain princess with umbrella”

Leonid Afremov

“Self-portrait”,

Vincent Van Gogh
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Fig. 1: Our method enables texture and geometric abstraction editing while keeping the overall color and structure intact. In
A-C, textures are adjusted by increasing the oiliness and stroke thickness (A) and using the text prompts “starry night” (B)
and “impressionistic painting” (C). In D - F the geometric abstraction primitives are varied between rectangular strokes (D),
blocks (E), and ellipsoids (F). These edits can be combined and interactively adjusted.

and texture editing that decomposes the image into coarse
shapes and high-frequency detail texture.

2) We present a novel differentiable filter pipeline for texture
editing. Compared to prior work it is lightweight and
improves parameter editability.

3) We introduce PPNs for real-time single and arbitrary style
texture decomposition.

4) We demonstrate that a texture can be adapted to new
styles using example images or text prompts, and can be
interactively adjusted on a global or local level.

II. RELATED WORK

Deep network-based methods, particularly NST [2], learn
stylistic representations in a black-box fashion, transferring
texture style from a reference style image to a content image.
In addition to the style-content trade-off control inherent to
NST [2], several methods have been developed to enable
control over aspects such as color [12] or strokes [13], [14].
CLIPstyler [11] can perform style transfer from text prompts
using CLIP-based losses [15]. However, these methods either
cannot be interactively controlled (i.e., optimization-based
approaches) or are not easily composable with each other (i.e.,
network-based approaches).

Traditional IB-AR [8], on the other hand, represent styles as
a chain of image filters that allow fine-granular control over
multiple style aspects, but have to be specifically designed
for a particular style, such as for watercolor [16], oil paint
[17], or cartoon [18]. Recently, Lötzsch et al. [9] proposed an
interactively controllable ”whitebox” style representation by
optimizing the parameters of such IB-AR filter pipelines to
match a stylized reference image. Similar to this work, we also
use a filter-based interpretable style representation. However,

Lötzsch et al. [9] represent the entire input image in such
parameters, i.e., shape, color, and details (e.g., local textures)
are entangled in a large set of often redundant parameters and
filters. This makes editing tedious and unintuitive, as adjusting
parameters controlling painterly attributes may have unwanted
side-effects on colors or shapes. Instead of matching the entire
input image, we represent color and shape distribution in
a geometric abstraction stage and use our subsequent filter
pipeline to represent the high frequency components, i.e., the
local textures. In contrast to the intricate, style-specific filter
pipelines [16], [17] employed by [9], we remove redundancy
and improve parameter editability by proposing a light-weight
filter pipeline capable of matching arbitrary styles while con-
sisting of only four filters.

While Lötzsch et al. [9] demonstrate the viability of PPNs
for a single img2img translation task in combination with an
additional postprocessing CNN, we show that PPNs can be
adapted for general single- and arbitrary style transfer decom-
position tasks, and do not require postprocessing networks.

Our geometric abstraction stage is inspired by approaches
that use either segmentation-based representation of shapes
[19], [20] or stroke-based rendering [21], [22] to abstract the
image into primitive shapes. Specifically, we make use of
recent neural painting approaches using optimization-based [7]
or prediction-based [6] methods to represent the image as a
set of layered primitives, or alternatively use SLIC [5]-based
segmentation for non-layered representation.

III. METHOD

A. Framework Overview

To obtain a decomposed image representation for downstream
editing tasks, texture decomposition is initially executed. Fig. 2
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Fig. 2: Texture decomposition. The parameter masks PM

controlling individual painterly attributes in a filter pipeline
O are optimized through loss L to match output image Io and
input image It. The pipeline expects an abstracted image Ia
as input, which can be obtained from different methods for
the geometric abstraction of It in the segmentation stage S.

shows the two involved stages: (1) a segmentation stage S(·)
to control texture granularity and geometric abstraction, and
(2) a pipeline of differentiable image filters O(·) to represent
image details. The first stage renders an abstracted variant Ia
of the input image It using shape primitives. The second stage
represents the details, i.e., the difference between Ia and It,
in the parameters of a filter pipeline O. Each of these filter
parameters represents a specific artistic control variable, e.g.,
contours, and local contrast, among others (Sec. III-D), and is
controllable on a per-pixel level using parameter masks PM .
Decomposition is achieved by first executing stage S and then
optimizing the decomposition loss over pipeline output Io to
adapt PM , which we detail in the following.

B. Decomposition Loss

Formally, O is parametrized by a set of M parameter masks,
i.e., PM = {Pi ∈ Rh×w|i ≤ M} and expects the output image
of the segmentation stage Ia = S(It) as input. A stylized
output image Io is thus obtained as:

Io = O (PM , S(It)) (1)

To obtain the decomposed texture representation, the parame-
ters PM are optimized using a loss function L that combines
a target loss, denoted by Ltarget , and the total variation loss,
denoted by LTV weighted by λTV :

L = Ltarget + λTVLTV (2)

The target loss ensures closeness to a desired target style, while
LTV reduces noise in masks and enforces local consistency.

Different types of loss functions can be used for the target
loss as follows. When the objective is to allow for subsequent
interactive editing, the ℓ1 loss is a suitable choice as it
optimizes for reconstructing the details of the input image:

Ltarget = ∥O(PM , S(It))− It∥1 (3)

When the objective is to control and change the details of
a style, text or image-based style transfer losses for Ltarget

can be used, as shown in Sec. IV-B. Similarly, such losses
can also be used to train a PPN to reconstruct the details of
a style-transferred input image in a single inference step. To
demonstrate this, we introduce single-style and arbitrary-style
decomposition networks in Sec. III-F.

C. Segmentation Stage

The segmentation stage S divides the input image It into
distinct shape primitives, e.g., brushstrokes or segments, of
uniform color. As S operates on pixels in both the input and
output domains, a wide range of methods such as superpixel
segmentation or stroke-based rendering can be utilized in this
stage. We discuss several choices for the segmentation stage in
Sec. IV-A. While changing abstraction settings in the segmen-
tation stage is typically interactive and enables effect previews,
the subsequent filter stage must be subsequently re-optimized
to adapt to the newly introduced geometric structure.

D. Differentiable Filter Stage

Existing heuristics-based stylization pipelines (e.g., [16]–[18])
are not well-suited for example-based stylization editing tasks,
as they were not designed with these specific use cases in
mind. They often have non-trainable parameters, such as color
quantization [18] which require differentiable proxies [9], and
furthermore have repetitive components in the pipeline, such
as repeated smoothing, which can hinder the optimization and
ease of editing local parameter masks. To this end, we ensure
that all parameters in our proposed pipeline are differentiable
and that the pipeline is kept simple with intuitive parameters
that produce the expected effects, while at the same time
having the capacity to match arbitrary textures. To preserve the
input color distribution (i.e., the segmentation stage output),
filters should not be able to freely alter pixels on the color
spectrum during optimization. Consequently, our pipeline’s
learnable parameters cannot modify color hue.

We propose a lightweight filter pipeline O(·) consisting of
following differentiable filters:
(1) Smoothing: We use a Gaussian smoothing (σ = 1) fol-

lowed by a bilateral filter [23], with learnable parameters
σd (distance kernel size) and σr (range kernel size).

(2) Edge enhancement: We implement eXtended difference-
of-Gaussians (XDoG) [24] with learnable parameters
contour amount and contour opacity.

(3) Painterly attributes: We use bump mapping for sur-
face relief control in our evaluation and implement
Phong shading [25] with learnable parameters bump-
scale, Phong-specularity, and bump-opacity. However,
any differentiable painterly filter can be used, e.g., we
also implement wet-in-wet filters [26] and wobbling [16]
for watercolorization control.

(4) Contrast: This learnable parameter controls the amount
of local contrast enhancement applied.

Gradients are computed with respect to both, the parameter
masks PM and the image input. To this end, such image



(a) Inputs It, Ia (b) Bilateral σd (c) Phong specular (d) Contour α

Fig. 3: Parameter masks PM optimized without (top row) and
with (bottom row) LTV to fit the input It (top row) to the
given segmented image Ia.

filters are implemented in an auto-grad-enabled framework
following [9]. The ablation study in Sec. V-B shows that all
stages are necessary for arbitrary style representation. The
proposed pipeline can be easily configured and optimized with
further IB-AR techniques [8] for extended control of painterly
attributes.

E. Optimization of Parameter Masks

The parameter masks PM are optimized using gradient descent
minimization of L. Optimizing only Ltarget as in [9] results in
strongly fragmented masks exhibiting large local variations of
values (Fig. 3, first row), which makes them hard to edit. When
optimizing with LTV , masks have reduced noise, increased
sparsity, and greater smoothness compared to those optimized
without constraints.

Detail optimization broadly follows [9]; local parameter
masks are optimized with 100 iterations of Adam [27] and
a learning rate of 0.01. We decrease the learning rate by a
factor of 0.98 every 5 iterations starting from iteration 50. In
contrast to [9], smoothing of parameter masks is not required,
as the employed filters do not exhibit artifacts. Throughout
this paper, we use λTV = 0.2 during optimization.

F. Style Transfer Parameter Prediction

While general-purpose, the optimization-based decomposition
is compute-intensive, taking approx. 3 min to optimize a
1MPix image on a Nvidia GTX 3090. For known tasks, such
as NST, the decomposition step can be sped-up to real-time
inference by training a PPN [9] to directly predict PM , similar
to (pixel predicting) NST networks [28], [29]. We propose
single and arbitrary style transfer texture decomposition PPNs
and train them as follows.

a) Single Style Decomposition PPN: We train a PPN—
PPNsst—to decompose the texture of a single style image Is.
We use the NST network of Johnson et al. [28], trained on Is,
to generate a stylized ground-truth image It and segment it
using S as a preprocessing step to generate training inputs Ia
for our filter pipeline O. The training loss for PPNsst is then:

TABLE I: Properties of the superpixel and neural painting
methods such as PaintTransformer (PTf) and neural painter
(NPtr), for application in the segmentation stage. PTf uses
a fixed shape primitive during training, whereas NPtr uses a
trainable generator network to synthesize brush shapes.

Method Type Primitive Control Runtime
SLIC [5] Superpixel segment #segment < 0.1 s
PTf [6] Neural painter fixed #layer < 1 s
NPtr [7] Neural painter trainable #stroke < 60 s

Io = O
(
PPNsst(Ia), Ia

)
(4)

LPPNsst
= Lgram(Io, Is) + λLc(Io, It) (5)

where Lgram is the Gram matrix style loss, and Lc the content
loss over VGG [30] features following Gatys et al. [2]. The
architecture for PPNsst is adapted from [28] by setting the
number of output channels in the last layer to the number of
parameter masks (#PM ).

b) Arbitrary Style Decomposition PPN: We train a
PPN—PPNarb—on a large set of style images Is to decom-
pose the textures of arbitrary styles, following the training
methodology of previous work on arbitrary style transfer [3],
[29]. The architecture for PPNarb is adapted from SANet [29]
by setting the number of output channels in the last layer of
the decoder to #PM . For training, we adapt the preprocessing
steps from before by using SANet to generate It. The training
loss for PPNarb is then:

Io = O
(
PPNarb(Ia, Is), Ia

)
(6)

LPPNarb
= λsLAdaIN(Io, Is) + λcLc(Io, It) (7)

Following SANet [29], we use the AdaIN [3] style loss. In
contrast to SANet, we do not use a structure-retaining identity
loss, as our filter pipeline O is itself much more constrained
in its ability to change content structures than SANet.

c) Training Details: We trained both PPNsst and PPNarb

using the MS-COCO dataset [31] for content images and used
the WikiArt dataset as style images for training PPNarb . As
PPNs learn to predict suitable parameters over a large set of
examples, the predicted masks contain little noise compared
to optimized masks, thus LTV is not required for PPN
training. Please see the supplementary for details on training
hyperparameters.

IV. CONTROLLING ASPECTS OF STYLE

There are various methods for controlling the decomposed
style representation after optimizing or predicting style param-
eters. We discuss methods for geometric abstraction control,
and present techniques such as manual editing, reoptimizing
using different style transfer losses, and interpolating predicted
parameters.

A. Geometric Abstraction Control

The geometric abstraction of the image can be controlled
through the choice of abstraction method (Tab. I), primitive
shape, number of strokes, segments, or layers.



(a) SLIC [5] (b) PaintTransf. [6] (c) Neural Painter [7]

Fig. 4: Impact of various segmentation methods on the level
of geometric abstraction in segmentation image Ia.

Generally, superpixel methods such as SLIC [5] divide the
image into segments that are clustered according to color
similarity and proximity, which align well with image regions
and make them well-suited for use as an intermediate repre-
sentation for interactive editing. These methods are primarily
employed in our pipeline to represent uniform color regions of
the image while abstracting away small-scale details (Fig. 4a),
which facilitates downstream editing of both color and fine-
structure parameters separately (Sec. IV-C).

Stroke-based rendering methods on the other hand are better
suited for stronger geometric abstraction. We integrate two
neural painting methods (Tab. I), which are trained to re-
draw images using a particular shape primitive, such as a
brush, rectangle, or circle. While the neural painter [7] is
able to create more abstract images, such as 8bit art (Fig. 4c)
and optimize flexible shapes, the PaintTransformer [6] uses
fixed primitive-shapes, however, is fast enough to allow for
immediate visual feedback and adjusting. To enable spatially
varying levels of stroke details, we multiply the stroke decision
confidence of the PaintTransformer with an optional level of
detail parameter mask PS , please refer to [6] for details on
the method. The mask PS can be acquired either manually or
predicted, e.g., using saliency or depth, as done in (Fig. 4b)
to threshold the foreground and background levels.

Re-optimization of filter parameters adjusts the fine details
to the shape and granularity of geometric elements and results
in an integrated look, see Fig. 6, Fig. 10 and Fig. 11, as well
as the supplemental material for examples of geometric shape
and granularity variations.

B. Texture Style Transfer

Parameters PM can be optimized using different losses to
adapt the style details to new targets for varied artistic ex-
pression. As such, given a segmented image, we replace ℓ1
matching of It with directly optimizing a style transfer loss
in Eqn. (2). The optimization may either be initialized with
a previous parameter decomposition to fine-tune the texture
style or start from empty parameter masks.

a) Image-based Parameter Style Transfer: Fig. 5 ex-
emplary shows results of optimizing the self-transport style
loss (STROTTS [10]) to adapt the parameter-decomposition
of a stylized image to different texture styles. Notice how
the overall structure and colors are maintained while the fine
details and texture are adapted.

(a) Great Wave (b) ink (c) vertical waves

Fig. 5: Parametric texture style transfer using example images.
The decomposed parameters of an image, created by NST [2]
using the “Starry Night” style, are retargeted to a new texture
style using the shown style example images and are optimized
with the STROTSS [10] loss.

PTf

SLIC

PTf

SLIC

(a) S output (b) S = 5000 segments (c) S = PTf-brush

Fig. 6: Re-optimization using CLIPstyler [11] loss with differ-
ent first stages S. The input painting ”rain princess” (teaser)
is optimized by the prompt ”a cubistic painting”. In (b)
we use a fine segmentation (5000 segments) and in (c) the
PaintTransformer (PTf) [6] with brush-shapes as the first stage.

b) Text-based Parameter Style Transfer: Text-based rep-
resentation of style allows for more freedom of control as
reference images are not required. We adapt the losses from
CLIPstyler [11] for text-based style transfer, however, in
contrast to their method we do not train a Convolutional Neural
Network (CNN), but directly optimize the effect parameters.
In particular, we adapt their patch-based and directional loss—
in most cases, the use of content losses is not necessary as the
filter pipeline inherently retains the major content structures
and colors. Fig. 6 shows adapted style details of a real-world
painting using prompts, with additional prompts results shown

Fig. 7: Using saliency (left) and depth (right) to interpolate
parameters of the original NST with the prompts “fire” (left)
and “drops” (right).



(a) w/o detail edits (b) +bumpiness (c) -bumpiness

Fig. 8: Global parameter editing. Values of the bump-map
scale PM are increased (b) and decreased (c) uniformly.

(a) NST [28] result (b) Color transfer (c) Repredicted

Fig. 9: Correcting artifacts in NST images using a style-
transfer PPN. Red dots in the face are removed using his-
togram matching of segments to other colors in the face.
The PPNsst re-prediction (candy style) reintegrates the manual
edits seamlessly into the overall style.

in the supplemental material. It can be observed that colors
remain faithful to the input while details adapt to the prompt
and are adjusted to the size of segments.

C. Parameter Editing

One major advantage of our filter parameter-based approach is
that various stylistic aspects can be edited interactively, using
both global and local parameter tuning.
Global Parameter Editing: Parameters masks of the

pipeline presented in Sec. III-D can be easily modified
after optimization or prediction by uniformly adding
or subtracting values on the parameter masks. Fig. 8
shows the result of globally increasing and decreasing
the bump mapping parameter by 50%.

Local Parameter Editing: Parameters can be edited locally
through adjustment of the parameter masks using brush
metaphors. For example, contours can be locally in-
creased in the eye and mouth region of a portrait, to make
them stand out (see supplementary video).

Parameter Interpolation: Parameters can be interpolated lo-
cally using binary or continuous-valued blending masks.
For automated stylization, we test saliency prediction
(using LPF [32]) and depth prediction (using DPT [33])
to interpolate between two parameter sets (Fig. 7).

D. Correction of Style Transfer Artifacts

The superpixels can be used for efficient selection and editing
of regions in the stylization generated by methods such as

NST, particularly for correcting localized artifacts and tailor-
ing local style elements to personal aesthetic preferences. The
uniformly colored segments can be easily selected and their
colors adjusted while the fine-structural texture is retained. For
example, a selected region of superpixels can be color-matched
to a different region using histogram matching, which can
be used to remove unwanted stylization patterns or colors. In
Fig. 9, a single-style PPN re-predicts the style’s texture during
the editing of segment colors to adapt the textural patterns to
the new segment colors and structures in real time, enabling an
integrated and interactive editing workflow (see supplementary
material).

V. RESULTS AND DISCUSSION

A. Qualitative Comparisons

We compare our texture style transfer against other meth-
ods for example-based texture control on their ability to
adapt texture style while retaining the overall composition
and colors of the input image. Fig. 10 compares our text-
based filter-optimization against CLIPstyler [11] and img2img
Stable Diffusion [1]. As CLIPstyler also adapts the colors, we
add a histogram-matching loss [34] (CLIPstyler-Hist) for a
fair comparison. It is visible that CLIPstyler introduces new
content structures and the strength of stylization is strongly
dependent on the used text prompt, furthermore, colors deviate
from the original even with histogram losses. Stable Diffusion,
on the other hand, introduces strong variations from the orig-
inal image content. Fig. 11 compares our image-based filter
optimization against STROTTS [10] with histogram-matching
loss [34], Gatys NST [2] with color-preserving loss [12], and
the Stylized Neural Painting (SNP) style transfer [6]. Similarly
to the CLIP-optimized parameters, our method is able to
preserve more colors and is spatially more homogeneous than
the preceding methods.

B. Quantitative Comparisons

a) Style-matching Capabilities: Tab. II compares style-
matching capabilities of our parameter prediction and op-
timization to their respective baselines. While the single-
style NST [28] is better in terms of content preservation
compared to PPNsst , which is expected as the PPN operates
on the segmented stylized image, the style preservation is
close. For the arbitrary style PPN, the content preservation is
almost on par with its baseline while even improving on the
style loss score. For optimization, we measure the ℓ1 to its
target (generated by STROTTS [10]), and achieve very close
matching. Compared to the stylization pipelines employed by
[9], we achieve similar values, even though their method does
not use loss constraints on the parameter masks.

b) Mask Editability: Tab. III compares the effect of the
Total variation loss LTV on mask noisiness. Masks with less
noise are typically more editable. Compared to our method
without LTV , the noise in the masks is reduced by more
than two orders of magnitude when optimized with LTV , as
measured by noise σ. The masks produced by the oilpaint
pipeline of Loetzsch et al. [9] are even more noisy.



(a) Original (b) CLIPstyler [11] (c) CLIPstyler-Hist (d) Stable Diffusion [1] (e) Ours (fine) (f) Ours (coarse)

Fig. 10: Comparisons to related methods for text-based generation. Text prompts, per row, are 1) ”round brushstrokes in the
style of monet”, 2) ”starry night”. Please zoom in to compare details.

(a) Input (b) Style (c) Color-pres. NST [12] (d) SNP [7] (e) STROTSS [10]-Hist (f) Ours

Fig. 11: Comparisons to related methods for image-based style transfer. Please zoom in to compare details.

TABLE II: Comparison to baselines. To assess decomposition
quality, we measure content loss Lc and style loss Ls [2] on
10 NST styles and 20 content images (see suppl. material).
PPNsst and PPNarb are compared to their pixel-predicting
baselines. Optimization is futhermore measured in ℓ1 distance
to its target and compared with the pipelines of Loetzsch et al.
[9]. We use LTV with λtv = 0.2. The segmentation stage S
uses SLIC [5] with s = 1000 and s = 5000 segments.

NST Method Lc Ls ℓ1 1

PPNsst (s=1K|5K) 0.092|0.082 0.068|0.051 -
Johnson NST [28] 0.063 0.044 -
PPNarb (s=1K|5K) 0.084|0.088 1.434|1.294 -
SANet NST [29] 0.081 1.434 -
Optim. (s=1K|5K) 0.046|0.047 0.442|0.443 0.031—0.026
Watercolor [9] 0.056 0.704 0.036
Oilpaint [9] 0.048 0.426 0.029
1 The ℓ1 distance is computed to the output of STROTTS [10]

TABLE III: Comparison of noise levels in parameter masks.
Our pipeline optimized with and without LTV is compared
against the oilpaint pipeline of Loetzsch et al. [9]. The
experimental setup is the same as used for Tab. II.

Pipeline σ of estimated noise1 LTV

Ours 0.0039 0.0041
Ours w/o LTV 0.0858 0.0514
Oilpaint [9] 0.1015 0.0614
1 We use skimage estimate sigma to estimate Gaussian noise σ

c) Ablation Study: Tab. IV provides an ablation study
using the experimental setup also used for Tab. II, to determine
if all filters are necessary in our pipeline by removing filters
and computing the ℓ1 to its target It after optimization. We
observe that removing any of the filters has a significant
impact on the ability to match arbitrary styles. Please refer
the supplementary material for the full ablation study and
qualitative examples.

https://scikit-image.org/docs/stable/api/skimage.restoration.html#skimage.restoration.estimate_sigma


TABLE IV: Filter ablation study. The effect of removing filters
on the ℓ1 distance to the target is measured. Refer to suppl.
material for study setup.

full w/o Bilat. w/o Bump w/o XDoG w/o Contrast
0.0255 0.0305 0.0372 0.0358 0.0342

C. Limitations

While filter optimization can accurately match a target image,
the quality of decomposition into painterly attributes is con-
tingent on several factors. First, the parameters controlling a
filter must produce distinct effects on the output, i.e., be non-
overlapping with other filters as the optimization is guided
towards generating plausible outputs and editable masks, but
does not take the semantic meaning of parameters into account.
Second, the options for explicit painterly control are limited
to the pipeline’s parameters, adding other differentiable filters
requires manual configuration. Further, while our method
allows global adaption of textures using geometric abstraction
techniques and example-based controls which are visually dis-
tributed uniformly, it does not guarantee to maintain statistical
textural properties such as spatial homogeneity.

VI. CONCLUSIONS

We presented a lightweight, differentiable pipeline for texture
editing using text prompts and image examples, and demon-
strated its integration with controllable geometric abstraction
techniques. Our approach demonstrates the benefits of a de-
composed representation of texture for interactive and ex-
ploratory editing. This technology and its future enhancements
enable the bridging of established image editors and tools with
modern image generation techniques. Joint optimization of
parameters and shape primitive placement holds the potential
for even better decomposition of texture and style and is an
avenue for future research.
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I. PPN TRAINING

a) Training and implementation: We trained both PPNsst

and PPNarb for 24 epochs using the MS-COCO dataset [31] for
content images and the WikiArt dataset [35] for style images
for PPNarb. Both datasets contain approximately 80,000 train-
ing images. During training, we resize the shorter edge of the
input images to 256 pixels and then randomly crop a region of
size 256× 256 pixels. The style images are also resized to a
resolution of 256 pixels. The parameters of the effect pipeline
have specified ranges that vary for each parameter, such as the
contour opacity range of [0, 1]. In order to improve training
stability, we normalize the predicted parameter ranges to be
between [−0.5, 0.5] utilizing the sigmoid function following
the final convolutional layer of the PPN. The parameter ranges
are subsequently scaled back to their original values prior to
being input in the effect pipeline. To ensure performance on
diverse settings of the segmentation stage S, we uniformly
vary the global smoothing sigma and kernel sizes within the
ranges of [1.0, 3.0] and [1, 7], respectively, as well as the
number of segments within the range of [470, 5475]. We
used the Adam optimizer [27] with a learning rate of 0.0005
for PPNsst and 0.00001 for PPNarb. A style weight between
[1 × 1010, 1 × 1011] is utilized for PPNsst , depending on the
style image with a content weight of 1x105. We employ the
same loss weights for PPNarb as Park et al. [29] use for SANet.
Using the identity retaining loss of SANet [29] is not necessary
for training our PPNarb, as our lightweight filter pipeline is not
capable of altering the semantic content structures given by Ia
in a major way.

II. RUNTIME PERFORMANCE

In Tab. V, we present a comparison of the runtime perfor-
mance of our proposed methods for various image sizes. Both
PPNs are about equally fast as they only require a forward
pass of the network. Furthermore the SLIC segmentation takes
around 75% of the execution time, and does not have to be
continously re-executed in interactive editing scenarios. On the
other hand, the optimization method requires several seconds
even for small images and is roughly compareable in runtime
to other optimization-based NSTs.

III. ABLATION STUDY - FILTER PIPELINE

In our proposed lightweight pipeline, a set of filters were
selected based on their ability to reconstruct texture after
geometric abstraction and their capacity to offer meaningful
artistic control parameters. The effectiveness of the pipeline is
verified by its ability to match a wide range of styles, as shown
in Table 2 of the main paper. To determine if all the chosen

TABLE V: Runtime comparison of our parameter prediction
and optimization methods, using a NVIDIA RTX 3090. The
optimization is performed for 100 iterations. Note that com-
putation time may not increase linearly with image size due
to GPU under-utilization for small images. For the PPNs,
we show runtime of the complete method, including target
generation using feedforward NST [28], and segmentation
using SLIC [5], and in parentheses the runtime for the PPN
and effect only. Results are presented in seconds.

Image Size Optimization PPNsst PPNarb
256x256 11.45 0.20 (0.08) 0.20 (0.08)
512x512 17.63 0.54 (0.12) 0.55 (0.13)

TABLE VI: Full ablation study results. In the first two rows,
we show results for the full pipeline, all subsequent rows show
the results for pipeline configurations with one filter removed.
All rows except the first use LTV during optimization. All
configurations were executed using 1000 and 5000 segments
of SLIC segmentation, denoted as (1K|5K). The experimental
setup is described in Sec. III.

Pipeline Config ℓ1 to ST [10] Lc Ls

w/o LTV 0.028|0.023 0.047|0.048 0.409|0.421
w. LTV 0.031|0.026 0.046|0.047 0.442|0.443
No Bilateral 0.031|0.031 0.046|0.047 0.442|0.448
No Bump Mapping 0.037|0.037 0.046|0.047 0.465|0.466
No XDoG 0.036|0.036 0.046|0.047 0.503|0.505
No Contrast 0.030|0.034 0.044|0.044 0.510|0.499

filters in the pipeline are indeed necessary for representing
these styles, an ablation study was conducted, as reported in
Table 4 of the main paper. The following sections provide the
full details and results of the ablation study.

a) Study setup.: We selected 20 random content images
from MS COCO [31] and 10 popular style images with fine
and coarse grained texture - we show these style images and
a selection of the content images in Figs. 12 and 16. We
used the STROTTS [10] style transfer algorithm to generate
a NST result and then optimized parameters to match this
result using the ℓ1 loss for Ltarget. We tested different
pipeline configurations, where each configuration except our
full pipeline has one filter deactivated. For evaluation, we
used the following metrics: VGG [30]-based content and style
loss [2], and the ℓ1 difference to the ground truth generated by
STROTTS. We used the following hyperparameters throughout
the study: content image size (long edge) of 512, style image
size of 256, and content and style weights of 0.01 and 5000
respectively, 0.2 for λTV , and Adam with a learning rate of
0.01 for 500 iterations. We executed the study with 1000 and
5000 segments using SLIC [5] in the segmentation stage.



Style

Content

STROTTS
[10] ground
truth

Full Pipeline

No Bilateral

No XDoG

No Bump
Mapping

No Contrast

Fig. 12: Example results of the ablation study. Each column contains one stylization target with the results of different pipeline
configurations.



(a) Content (b) Style (c) Stylized

(d) Color Amount (e) Edge Darkening (f) Wetness Scale

Fig. 13: Selected parameter masks of the watercolor [16]
differentiable filter pipeline [9]. We show the masks after
optimization to match a NST image (c). The parameters color
Amount, Edge Darkening, and Wetness Scale are not used or
do not display variation in values.

b) Results.: In Tab. VI, we show full results of our
ablation study. Using LTV on the full pipeline only slightly
increases the ℓ1 loss to the STROTTS [10] ground truth,
whereas removing one filter increases the loss value consid-
erably. Example images from the ablation study are shown in
Figure 12. Our proposed full pipeline, outlined in Section 3.3
of the main paper, and its optimization target, as generated by
STROTTS [10], demonstrate a close match. The subsequent
rows highlight that the removal of a single filter impairs
the pipeline’s capability to reconstruct details. All ablated
configurations exhibit difficulties in reconstructing the clock
face in the first column. The second column illustrates that the
absence of bump mapping leads to a failure in reconstructing
areas of high luminance, such as on the forehead and hat.
The removal of any of the other filters results in difficulties
in painting over segment boundaries, resulting in artifacts as
seen in the forehead area. The third column demonstrates that
small-scale contours are not properly retained. The last column
illustrates the pipeline’s inability to locally enhance contrast
when the contrast filter is omitted.

c) Other pipelines.: We briefly test other pipelines for
arbitrary style representation. The oilpaint and watercolor
pipelines of Semmo [17] and Bousseau [16], as implemented
in the differentiable framework of Loetzsch et al. [9] are not
well-suited for editing. Next to the noisiness of their parameter
masks (Table 3., main paper), they often contain redundant
parameters, which do not contain any information after opti-
mization. For example, Fig. 13 depicts that parameters such as
edge-darkening, wetness-scale or color-amount do not contain
locally adjusted values - even though one might for example
expect colour amount to be increased in the saturated areas of
the stylized image.

IV. STYLE-MATCHING CAPABILITIES

In Table 2 of the main paper, we quantitatively evaluated
the style-matching capabilities of our proposed parameter
prediction and optimization methods against their respective
pixel-predicting and optimizing NST baselines. The results
indicate that our methods are capable of achieving good style-
matching performance. We provide additional visual evidence
in Fig. 16 by showing the output of our parameter optimization
and single and arbitrary style parameter prediction networks.
The results are visually very similar to their baselines, e.g.,
refer to Fig. 17 for a comparison between the STROTTS [10]
baseline and the parameter optimization. However, it is noted
that the arbitrary style parameter prediction network (PPNarb)
sometimes overuses the bump-mapping parameter, resulting in
an excessive prediction of specular oilpaint texture where the
input NST would not have placed such elements. Moreover, we
compare our filter pipeline with the style-specific differentiable
pipelines implemented by Lötzsch et al. [9] in Fig. 17. We
compare example results obtained from Lötzsch et al. [9] for
the oil-paint [17] and watercolor [16] filter pipelines with our
method. Both style-specific pipelines tend to have problems in
matching the color in small regions, even though a dedicated
hue adaption step is employed by these pipelines.

V. EDITING APPLICATION

We implemented an prototypical application that makes
use of our decomposed shape and texture representation to
edit results of a NST. We provide editing metaphors for the
structural abstracted output Ia of the segmentation stage S
(using SLIC [5]). This enables coarse granular edits of color
and structure. The application further uses a PPNsst to predict
parameter masks PM for the filter pipeline. After performing
structural edits on Ia, the PM can be re-predicted by PPNsst

to adapt fine details to these edits.

A. Editing Tools

The user interface allows selection of one or multiple
individual segments to perform various forms of editing, which
are detailed in the following:

Content Image Interpolation Interpolates Ia with the con-
tent image Ic, enabling structure reconstruction from Ic
by adjusting the colors of the affected segments.

Color Interpolation Interpolates a region with a user-defined
color, allowing for adjustment of a region’s color.

Color Palette Matching Matches the color palette of a des-
tination region to the color palette of a source region,
facilitating the matching of color patterns between regions
while maintaining their structures.

Copy Region Copies a region to another image region, mak-
ing it possible to move a structure or style element.

Change Level of Detail Alters the number of segments used
to display a region, which can increase the level of detail
for important regions like facial features or decrease the
level of detail for backgrounds.



Un-
edited

Segmentation Start Johnson NST Result Unedited Output

1st

Edit

Segmentation Output Repredicted Output

2nd

Edit

Segmentation Output Repredicted Output

Style Content Output after Mask interpolation

Fig. 14: Illustration of the example editing process described in Sec. V-B. The top row displays the initial state, while the
middle two rows present the intermediate results after the first and second editing step, respectively. The bottom row exhibits
the final output after the parameter mask interpolation, alongside the content and style image used in the editing process. Our
method allows changing structures of the image and the parameter masks adapt automatically after reprediction.



(a) Input (b) Segmented (NPtr [7]) (c) PM Optimized (ℓ1) (d) PM re-predict (AST PPN) (e) Hand-painted by A. Lister

Fig. 15: Creating 8-bit art similar to the style of Adam Lister (e). The input image (a) is segmented by the neural painter [7]
(NPtr) method using 300 strokes (b). After optimizing the parameter masks PM with L to re-add the details (c), they are
further edited, e.g., by re-reprediction using the arbitrary style PPN (d).

B. Editing Example

The application’s capabilities are demonstrated through an
example usage, highlighting both structural and detail edits. To
showcase an editing workflow, we depict the editing steps in
Fig. 14. We use the candy style image to train both a Johnson
NST and a PPNsst and then use our application to stylize a
content image (sourced from NPRP [36]). For each editing step
(row two and three of Fig. 14), we provide the segmentation,
the pipeline output, and the pipeline output after repredicting
the visual parameters after the described edits have been made.

The first step of the editing process, depicted in the second
row of Fig. 14, entails eliminating all circular style elements.
This is achieved by selecting the entire face, excluding the
mouth, nose, and eyes, and utilizing the Content Image Inter-
polation tool to remove circular structures. Since the content
image lacks these circular structures, they are replaced by
the original content. Next, the Change Level of Detail tool is
applied to reduce the facial region’s level of detail, followed by
employing the Color Palette Matching tool selecting a yellow
face region to reinstate the face color, ensuring consistency
with the style image. Throughout this procedure, parame-
ter masks encoding fine details remain unaltered. After re-
predicting the parameter masks using the PPNsst , they adapt
to the structural modifications, leading to the elimination of
the initial circular structures in the parameter masks.

In the second editing step displayed row three of Fig. 14,
the Change Level of Detail tool was used to increase the level
of detail of the mouth, eyes, and nose. Upon re-prediction
of parameter masks, only minor differences emerge, as the
structure remains unchanged.

In the final step, the saliency mask is utilized to adap-
tively enhance the contrast parameter mask. This leads to an

increased contrast within the saliency region, which, in this
instance, corresponds to the woman’s face.

VI. FURTHER RESULTS

a) Geometric Abstractions: The combination of the geo-
metric abstraction stage with the subsequent filter-based stage
allows for reintroduction of details, which can mimic the style
of ”8-bit” quantized artwork such as the watercolor paintings
of Adam Lister, see Fig. 15. Direct ℓ1 optimization may,
however, cause more details to be reintroduced than desired,
even though such ”glitch-art” effects (Fig. 15c) have artistic
purpose of their own [37]. Instead, the parameters can, for
example, be repredicted using PPNarb with Is = It to only
retain the inputs’ textures (Fig. 15d).

Further, in Fig. 21 we show the full teaser images for
geometric abstraction editing. In Fig. 22 and Fig. 23, we vary
the geometric abstraction while keeping the texture fixed.

b) Comparisons with related works: In Figs. 19 and 20
we provide further qualitative comparisons to text-based and
image-based stylization methods.

c) Parameter Masks: In Fig. 24 we showcase a full set
of parameter masks after optimization.

d) CLIPStyler Experiments: In Figs. 18 and 25 we
experiment with different CLIPStyler-loss text-prompts.

e) Editing and Blending: In Fig. 26 we show the in-
termediate results of our interactive editing workflow (see
supplemental video). In Fig. 27 we show results for blending
with a saliency and depth mask.



(a) Content & Style (b) Optimization (c) PPNsst (d) PPNarb

Fig. 16: Comparison of parameter optimization and prediction for the task of style transfer. For each method, we use the
style target shown on the left. We compare optimization, the single style PPN (PPNsst ) and the arbitrary style PPN (PPNarb).
During parameter optimization (b), we optimize Ltarget using ℓ1 loss to the output of STROTSS [10]. Each method is capable
of predicting or optimizing parameters that produce artifact-free textures and match the visual fidelity of their CNN-based
counterparts. We show results predicted on 5000 segments of SLIC [5].



Content & Style STROTSS [10] Target Ours Oilpaint [9] Watercolor [9]

Fig. 17: Comparison of our proposed Arbitrary Style Pipeline with the differentiable, style-specific Oilpaint [17] and
Watercolor [26] effect pipelines by Lötzsch et al. [9]. The pipelines were optimized to match the stylization result generated
using the STROTSS [10] NST via ℓ1 loss.



(a) Original (b) ”the scream”

(c) ”foam” (d) ”icy frost”

(e) ”impressionism by Monet” (f) ”regular grid”

Fig. 18: Texture style transfer of ”rain princess” using CLIPstyler [11]-losses. PtF-Circle is used for segmentation.



(a) Original (b) CLIPstyler [11] (c) CLIPstyler-Hist

(d) Stable Diffusion [1] (e) Ours (fine) (f) Ours (coarse)

(g) Original (h) Clipstyler [11] (i) Clipstyler-Hist

(j) Stable Diffusion [1] (k) Ours (fine) (l) Ours (coarse)

Fig. 19: Further comparisons to related methods for text-based generation. Text prompts, per row, are 1) ”icy frost” and 2)
”triangles”.



(a) Input (b) Style (c) Color preserv. NST [12]

(d) SNP [7] (e) STROTSS [10]-Hist (f) Ours

(g) Input (h) Style (i) Color preserv. NST [12]

(j) SNP [7] (k) STROTSS [10]-Hist (l) Ours

Fig. 20: Further comparison of image-based style transfer methods with color preservation and our proposed method. We use
STROTSS [10] with Histogram Matching Loss [34].



(a) Input (b) S=Ptf-rect. Texture is re-optimized with STROTSS [10].

(c) S=SNP - 8bit art blocks. Texture is reoptimized with STROTSS [10]. (d) S = PTf-Circles. Texture is reoptimized with CLIPStyler [11].

Fig. 21: Full images of the teaser figure. We compare different geometric abstraction primitives from segmentation using
PaintTransformer [6] (Ptf) and stylized neural painter [6] (SNP) with subsequent reoptimization. See Fig. 3 of the main paper
for the outputs of the segmentation method (Ia) of the respective images. We reoptimize with a canvas texture as target. In
(c), local contour enhancements are made in a final step. In (d) we reoptimize with ”round brushstrokes in the style of monet”
as target.



(a) Input (b) 5000 segments (c) 1250 segments

(d) 700 segments (e) 300 segments (f) 100 segments
Fig. 22: Adjusting the number of segments. The parameters are optimized to match input (a) using 5000 segments (b). When
reducing the number of segments (without re-optimization), the underlying coarse-structure is spatially quantized while the
high-frequency details (i.e., texture) remain intact.

(a) Paint Transformer + CLIPstyler Prompt: Triangles (b) SLIC + CLIPstyler Prompt: Triangles

Fig. 23: Comparing the influence of the segmentation stage after re-optimization by a text prompt.



(a) STROTTS [10] ground truth (b) Segmentation Stage (SLIC) (c) Final Result

(d) Bilateral D* (e) Bilateral R* (f) Contour (g) Contour Opacity

(h) Phong Specular* (i) Bump Scale* (j) Bump Opacity (k) Contrast

Fig. 24: A complete set of parameter masks (PM ) after ℓ1 optimization. We match the target (a) and use a SLIC [5] segmentation
with 5000 segments. The Total Variation loss was utilized during the optimization process. To enhance visibility, some of the
parameter masks have been adjusted to increase luminosity. We highlight these with an asterisk (*).



(a) CLIPstyler Prompt: Shiny Chrome (b) CLIPstyler Prompt: Camera Bokeh

(c) CLIPstyler Prompt: Triangels (d) CLIPstyler Prompt: Icy Frost

Fig. 25: Re-Optimization experiments using different text prompts. The input painting was segmented with PaintTransformer
[6] and circle primitives.



(a) Global Re-Optimization using text prompt: Fire (b) Global Re-Optimization using text prompt: Star

(c) Blending parameters for ”Fire” in the face region with ”Star”
in the background using depth mask.

(d) Fine-tune global bump and specularity parameters to in-
crease oiliness.

Fig. 26: An exemplary four-step iterative editing process demonstrating the usage of text prompts, parameter interpolation and
global editing. Our method offers the advantage of allowing for adjustment of global and local parameter values at any point
in the editing workflow. Our supplementary video illustrates the interactive creation of such images.



Fig. 27: High-res figure 7 of the main paper. First row shows saliency parameter blending, second row shows depth blending.
In the first row, we use ”Starry Night” by Van Gogh as our style image and interpolate with the prompt ”fire”. In the second
row, we use ”Woman with a Hat” by Matisse as our style image and interpolate with the prompt ”drops” and furthermore use
the depth mask for adaptive circle sizes in the PaintTransformer.


	Introduction
	Related Work
	Method
	Framework Overview
	Decomposition Loss
	Segmentation Stage
	Differentiable Filter Stage
	Optimization of Parameter Masks
	Style Transfer Parameter Prediction

	Controlling Aspects of Style
	Geometric Abstraction Control
	Texture Style Transfer
	Parameter Editing
	Correction of Style Transfer Artifacts

	Results and Discussion
	Qualitative Comparisons
	Quantitative Comparisons
	Limitations
	Conclusions
	References

	PPN training
	Runtime Performance
	Ablation Study - Filter Pipeline
	Style-matching Capabilities
	Editing Application
	Editing Tools
	Editing Example
	Further results




