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Abstract—The minimum rate needed to accurately approxi-
mate a product distribution based on an unnormalized infor-
mational divergence is shown to be a mutual information. This
result subsumes results of Wyner on common information and
Han-Verdú on resolvability. The result also extends to cases where
the source distribution is unknown but the entropy is known.

I. I NTRODUCTION

What is the minimal rate needed to generate a good approx-
imation of a target distribution with respect to some distance
measure? For example, to learn a system response, we might
give inputs to the system and compute the output statistics.
However, in computer simulations the inputs are only some
approximations of the true distributions that are generated with
random number generators. We would like to use a small
number of bits to generate good approximations of a target
distribution.

Wyner considered such a problem and characterized the
smallest rate needed to approximate aproduct distribution
accurately when using thenormalized informational diver-
gence as the distance measure between two distributions. The
smallest rate is a Shannon mutual information [1]. Han-Verdú
[2] showed that the same rate is necessary and sufficient
to generate distributions arbitrarily close to aninformation
stable distribution in terms ofvariational distance. Note that
normalized informational divergence and variational distance
are not necessarily larger or smaller than the other.

The main contributions of this work are to show that the
minimal rate needed to make theunnormalized informational
divergence between a target product distribution and the ap-
proximating distribution arbitrarily small is the same Shannon
mutual information as in [1], [2] and we extend the proof to
cases where the encoder has a non-uniform input distribution.
Our result implies results in [1] and [2] when restricting
attention to product distributions (in particular Theorem6.3 in
[1] and Theorem 4 in [2]). We remark that Hayashi developed
closely related theory via Gallager’s error exponent in [3]and
Bloch and Kliewer considered non-uniform distributions for
secrecy in [4]. We also refer to results by Csiszar [5, p. 44,
bottom] who treats strong secrecy by showing that a variational
distance exhibits an exponential behavior with block length
n [5, Prop. 2]. This result implies that an unnormalized mutual
information expression can be made small with growingn

via [5, Lemma 1].

PSfrag replacements

W = {1, . . . ,M} Un
V n ∼ PV nQn

V |U
QUn

Encoder

Fig. 1. Coding problem with the goal of makingPV n ≈ Qn

V
.

The paper is organized as follows. In Section II, we state
the problem. In Section III we state and prove the main result.
Section IV discusses related work and extensions.

II. PRELIMINARIES

Random variables are written with upper case letters and
their realizations with the corresponding lower case letters. Su-
perscripts denote finite-length sequences of variables/symbols,
e.g.,Xn = X1, . . . , Xn. Subscripts denote the position of a
variable/symbol in a sequence. For instance,Xi denotes the
i-th variable inXn. A random variableX has probability
distributionPX and the support ofPX is denoted as supp(PX).
We write probabilities with subscriptsPX(x) but we drop
the subscripts if the arguments of the distribution are lower
case versions of the random variables. For example, we write
P (x) = PX(x). If the Xi, i = 1, . . . , n, are independent and
identically distributed (i.i.d.) according toPX , then we have
P (xn) =

∏n
i=1 PX(xi) and we writePXn = Pn

X . Calligraphic
letters denote sets. The size of a setS is denoted as|S|. We
useT n

ǫ (PX) to denote the set of letter-typical sequences of
lengthn with respect to the probability distributionPX and
the non-negative numberǫ [6, Ch. 3], [7], i.e., we have

T n
ǫ (PX) =

{
xn :

∣∣∣
N(a|xn)

n
− PX(a)

∣∣∣ ≤ ǫPX(a), ∀a ∈ X

}

whereN(a|xn) is the number of occurrences ofa in xn.
Consider the system depicted in Fig. 1. The random variable

W is uniformly distributed over{1, . . . ,M}, M = 2nR, and
is encoded to sequences

Un = f(W ). (1)

V n is generated fromUn through a memoryless channelQn
V |U

and has distributionPV n . A rate R is achievable if for any
ξ > 0 there is a sufficiently largen and an encoder such that

D(PV n ||Qn
V ) =

∑

vn∈supp(PV n )

P (vn) log
P (vn)

Qn
V (v

n)
(2)

is less thanξ. We wish to determine the smallest achievable
rate.
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III. M AIN RESULT AND PROOF

Theorem 1: For a given target distributionQV , the rateR
is achievable ifR > I(V ;U), whereI(V ;U) is calculated
with some joint distributionQUV that has marginalQV

and |supp(QU )| ≤ |V|. The rateR is not achievable if
R < I(V ;U) for all QUV with |supp(QU )| ≤ |V|.
We provide two proofs, one with Shannon’s typicality ar-
gument and the other with Gallager’s error exponent [8]
where we extend results in [3]. SupposeU andV have finite
alphabetsU and V , respectively. LetQUV be a probability
distribution with marginalsQU andQV . Let UnV n ∼ Qn

UV ,
i.e., for anyun ∈ Un, vn ∈ Vn we have

Q(un, vn) =
n∏

i=1

QUV (ui, vi) = Qn
UV (u

n, vn) (3)

Q(vn|un) =

n∏

i=1

QV |U (vi|ui) = Qn
V |U (v

n|un). (4)

Let C = {Un(w)}Mw=1, where theUn(w), w = 1, . . . ,M ,
are generated in an i.i.d. manner usingQn

U . V n is generated
from Un(W ) through the channelQn

V |U (see Fig. 2). We have

P (vn) =

M∑

w=1

1

M
·Qn

V |U (v
n|un(w)). (5)

Note that if for avn we have

Qn
V (v

n) =
∑

un∈supp(Qn
U )

Qn
U (u

n)Qn
V |U (v

n|un) = 0 (6)

then we have

Qn
V |U (v

n|un) = 0, for all un ∈ supp(Qn
U ). (7)

This meansP (vn) = 0 and supp(PV n) ⊆ supp(Qn
V ) so that

D(PV n ||Qn
V ) < ∞. We further have

E

[
Qn

V |U (v
n|Un)

Qn
V (v

n)

]
=
∑

un

Qn
U (u

n) ·
Qn

V |U (v
n|un)

Qn
V (v

n)
= 1. (8)

A. Shannon’s Typicality

The average informational divergence overW , C andV n is
(recall thatP (w) = 1

M , w = 1, . . . ,M ):

E[D(PV n ||Qn
V )]

(a)
= E

[
log

∑M
j=1

1
M ·QV n|Un(V n|Un(j))

Qn
V (V

n)

]

=

M∑

w=1

1

M
· E

[
log

∑M
j=1 Q

n
V |U (V

n|Un(j))

MQn
V (V

n)

∣∣∣∣∣W = w

]

(b)

≤

M∑

w=1

1

M
· E

[
log

(
Qn

V |U (V
n|Un(w))

MQn
V (V

n)
+

M − 1

M

) ∣∣∣∣∣W = w

]

≤

M∑

w=1

1

M
· E

[
log

(
Qn

V |U (V
n|Un(w))

MQn
V (V

n)
+ 1

)∣∣∣∣∣W = w

]

(c)
= E

[
log

(
Qn

V |U (V
n|Un)

M ·Qn
V (V

n)
+ 1

)]
(9)
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Fig. 2. The random coding experiment.

where
(a) follows by taking the expectation overW , V n and

Un(1), . . . , Un(M);
(b) follows by the concavity of the logarithm and Jensen’s

inequality applied to the expectation over theUn(j), j 6=
w, and by using (8);

(c) follows by choosingUnV n ∼ Qn
UV .

Alternatively, we can make the steps (9) more explicit:

E[D(PV n ||Qn
V )]

(a)
=
∑

un(1)

· · ·
∑

un(M)

M∏

k=1

Qn
U (u

n(k))

∑

vn

M∑

w=1

1

M
·Qn

V |U (v
n|un(w))

[
log

∑M
j=1 Q

n
V |U (v

n|un(j))

M ·Qn
V (v

n)

]

=

M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (u

n(w), vn)

M∑

k 6=w

∑

un(k)

M∏

l 6=w

Qn
U (u

n(l))

[
log

∑M
j=1 Q

n
V |U (v

n|un(j))

M ·Qn
V (v

n)

]

(b)

≤
M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (u

n(w), vn)


log


Qn

V |U (v
n|un(w))

M ·Qn
V (v

n)
+

M∑

j 6=w

∑

un(j)

[
Qn

UV (u
n(j), vn)

M ·Qn
V (v

n)

]




=

M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (u

n(w), vn)

[
log

(
Qn

V |U (v
n|un(w))

M ·Qn
V (v

n)
+

M − 1

M

)]

≤
M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (u

n(w), vn)

[
log

(
Qn

V |U (v
n|un(w))

M ·Qn
V (v

n)
+ 1

)]

(c)
= E

[
log

(
Qn

V |U (V
n|Un)

M ·Qn
V (V

n)
+ 1

)]
. (10)

We remark that the identity after(a) is valid for M = 1 by
interpreting the empty sum followed by an empty product to



be 1. We may write (9) or (10) as

E

[
log

(
Qn

V |U (V
n|Un)

M ·Qn
V (V

n)
+ 1

)]
= d1 + d2 (11)

where

d1 =
∑

(un,vn)∈T n
ǫ (QUV )

Q(un, vn) log

(
Q(vn|un)

M ·Q(vn)
+ 1

)

d2 =
∑

(un,vn)/∈T n
ǫ (QUV )

(un,vn)∈supp(Qn
UV )

Q(un, vn) log

(
Q(vn|un)

M ·Q(vn)
+ 1

)
.

Using standard inequalities (see [7]) we have

d1 ≤
∑

(un,vn)∈T n
ǫ (QUV )

Q(un, vn) log

(
2−n(1−ǫ)H(V |U)

M · 2−n(1+ǫ)H(V )
+ 1

)

≤ log

(
2−n(1−ǫ)H(V |U)

M · 2−n(1+ǫ)H(V )
+ 1

)

= log
(
2−n(R−I(V ;U)−ǫ(H(V |U)+H(V ))) + 1

)

≤ log(e) · 2−n(R−I(V ;U)−2ǫH(V )) (12)

and d1 → 0 if R > I(V ;U) + 2ǫH(V ) and n → ∞. We
further have

d2 ≤
∑

(un,vn)/∈T n
ǫ (QUV )

(un,vn)∈supp(Qn
UV )

Q(un, vn) log

((
1

µV

)n

+ 1

)

≤ 2|V| · |U| · e−2nǫ2µ2
UV log

((
1

µV

)n

+ 1

)
(13)

≤ 2|V| · |U| · e−2nǫ2µ2
UV · n · log

(
1

µV
+ 1

)
(14)

andd2 → 0 asn → ∞, where

µV = minv∈supp(QV )Q(v) (15)

µUV = min(v,u)∈supp(QUV )Q(u, v). (16)

Combining the above we have

E[D(PV n ||Qn
V )] → 0 (17)

if R > I(V ;U)+2ǫH(V ) andn → ∞. As usual, (17) means
that there must exist a code withD(PV n ||Qn

V ) < ξ for any
ξ > 0 and sufficiently largen. This proves the coding theorem.
The converse follows from [1, Theorem 5.2] by removing the
normalization factor1n .

Remark 1: The cardinality bound on supp(QU ). can be
derived using techniques from [9, Ch. 15].

Remark 2: If V = U , then we haveR > H(V ).
Theorem 1 is proved using a uniformW which represents

strings of uniform bits. If we use a non-uniformW for the
coding scheme, can we still drive the unnormalized informa-
tional divergence to zero? We give the answer in the following
lemma.

Lemma 1: Let W = BnR be a bit stream withnR bits
that are generated i.i.d. with a binary distributionPX with
PX(0) = p, 0 < p ≤ 1

2 . The rateR is achievable if

R >
I(V ;U)

H2(p)
(18)

whereH2(·) is the binary entropy function.
Proof: The proof is given in Appendix A.

Remark 3: Lemma 1 states that even ifW is not uniformly
distributed, the informational divergence can be made small.
This is useful because if the distribution ofW is not known
exactly, then we can chooseR large enough to guarantee the
desired resolvability result. A similar result was developed in
[4] for secrecy.

B. Gallager’s Error Exponent

We provide a second proof using Gallager’s error exponent
[8] by extending [3, Lemma 2] to asymptotic cases. Consider
− 1

2 ≤ ρ ≤ 0 and define

En
0 (ρ,Q

n
UV ) = log2

∑

vn

{
E[P (vn)

1
1+ρ ]

}1+ρ

(19)

E0(ρ,QUV ) = log2
∑

v

{
∑

u

Q(u)Q(v|u)
1

1+ρ

}1+ρ

(20)

EG(R,QUV ) = inf
− 1

2
≤ρ<0

{E0(ρ,QUV ) + ρR} . (21)

Due to [3, Lemma 2], we have the following properties
concerningEn

0 (ρ,Q
n
UV ) andE0(ρ,QUV ):

Property 1:

En
0 (0, Q

n
UV ) = E0(0, QUV ) = 0 (22)

Property 2:

∂En
0 (ρ,Q

n
UV )

∂ρ

∣∣∣∣
ρ=0

= −E[D(PV n ||Qn
V )]

∂E0(ρ,QUV )

∂ρ

∣∣∣∣
ρ=0

= −I(V ;U) (23)

Property 3:

∂2En
0 (ρ,Q

n
UV )

∂ρ2
≥ 0

∂2E0(ρ,QUV )

∂ρ2
≥ 0 (24)

Due to [8, Theorem 5.6.3], we have
{

EG(R,QUV ) < 0 if R > I(V ;U)
EG(R,QUV ) = 0 if R ≤ I(V ;U)

(25)

By extending [3, Sec. III, Inequality (15)] to asymptotic
cases, we have the following lemma.

Lemma 2: We have

En
0 (ρ,Q

n
UV ) ≤ log2

(
1 + 2nEG(R,QUV )

)
. (26)

Proof: The proof is given in Appendix B.
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Combining Properties1-3, we have En
0 (ρ,Q

n
UV ) and

E0(ρ,QUV ) are convex inρ, for − 1
2 ≤ ρ ≤ 0 and (see Fig. 3)

ρ · (−E[D(PV n ||Qn
V )]) ≤ En

0 (ρ,Q
n
UV ) (27)

which means

E[D(PV n ||Qn
V )] ≤

En
0 (ρ,Q

n
UV )

−ρ

(a)

≤
log2

(
1 + 2nEG(R,QUV )

)

−ρ
(28)

where(a) follows from Lemma 2. The right hand side of (28)
goes to0 asn → ∞ as long as (see (25))

R > I(V ;U). (29)

Remark 4: This proof applies tocontinuous random vari-
ables by replacing the sums in the proof of Lemma 2 with
integrals.

Remark 5: The average divergence E[D(PV n ||Qn
V )] can be

viewed as the mutual informationI(C;V n) from the random
codebookC to the outputV n [3, Sec. III]. To show this, denote
C̃ as a realization ofC and we have (see (10))

I(C;V n) =
∑

C̃

P (C̃)
∑

vn

P (vn|C̃) log
P (vn|C̃)

Qn
V (v

n)

=
∑

un(1)

· · ·
∑

un(M)

M∏

k=1

Qn
U (u

n(k))

∑

vn

M∑

w=1

1

M
·Qn

V |U (v
n|un(w)) log

∑M
j=1

1
MQn

V |U (v
n|un(j))

Qn
V (v

n)

= E

[
log

∑M
j=1

1
MQn

V |U (V
n|Un(j))

Qn
V (V

n)

]

= E[D(PV n ||Qn
V )]. (30)

Thus, as E[D(PV n ||Qn
V )] → 0 we haveI(C;V n) → 0 which

means thatC and V n are (almost) independent. This makes
sense, since asPV n → Qn

V one is not able to distinguish
which codebook is used to generate the output.

IV. D ISCUSSION

Hayashi studied the resolvability problem using unnormal-
ized divergence and he derived bounds for nonasymptotic
cases [3, Lemma 2]. We have outlined his proof steps in Sec.
III-B. Theorem 1 can be derived by extending [3, Lemma 2] to
asymptotic cases (see III-B) and it seems that such a result was
the underlying motivation for [3, Lemma 2]. Unfortunately,
Theorem 1 is not stated explicitly in [3] and the ensuing
asymptotic analysis was done fornormalized informational
divergence. Hayashi’s proofs (he developed two approaches)
were based on Shannon random coding.

Theorem 1 implies [1, Theorem 6.3] which states that for
R > I(V ;U) the normalized divergence1nD(PV n ||Qn

V ) can
be made small. Theorem 1 implies [2, Theorem 4] for product
distributions through Pinsker’s inequality [10, Lemma 11.6.1]

D(PX ||QX) ≥
1

2 ln 2
||PX −QX ||2TV (31)

where

||PX −QX ||TV =
∑

x

|P (x)−Q(x)|. (32)

Moreover, the speed of decay in (12) and (14) is (almost)
exponential withn. We can thus make

α(n) · E [D(PV n ||Qn
V )] (33)

vanishingly small asn → ∞, whereα(n) represents asub-
exponential function of n that satisfies,

lim
n→∞

n · α(n)

eβn
= 0 (34)

whereβ is positive and independent ofn (see also [3]). For
example, we may chooseα(n) = nm for any integerm. We
may also chooseα(n) = eγn whereγ < β.

Since all achievability results in [11] are based on [2, Theo-
rem 4], Theorem 1 extends the results in [11] as well. Theorem
1 is closely related tostrong secrecy [12] and provides a
simple proof that Shannon random coding suffices to drive
an unnormalized mutual information between messages and
eavesdropper observations to zero.

Theorem 1 is valid for approximating product distributions
only. However extensions to a broader class of distributions,
e.g.,information stable distributions [2], are clearly possible.

Finally, an example code is as follows (courtesy of F.
Kschischang). Consider a channel with input and output
alphabet the27 binary 7-tuples. Suppose the channel maps
each input uniformly to a7-tuple that is distance0 or 1 away,
i.e., there are8 channel transitions for every input and each
transition has probability18 . A simple “modulation” code for
this channel is the(7, 4) Hamming code. The code is perfect
and if we choose each codeword with probability116 , then the
outputV 7 of the channel is uniformly distributed over all27

values. HenceI(V ;U) = 4 bits suffice to “approximate” the
product distribution (here there is no approximation).



APPENDIX A
NON-UNIFORM W

Observe thatH(W ) = H(BnR) = nR ·H2(p). Following
the same steps as in (9) we have

E[D(PV n ||Qn
V )] = E

[
log

∑M
j=1 P (j)QV n|Un(V n|Un(j))

Qn
V (V

n)

]

=
∑

w

P (w) · E

[
log

∑M
j=1 P (j)Qn

V |U (V
n|Un(j))

Qn
V (V

n)

∣∣∣∣∣W = w

]

≤
∑

w

P (w) · E

[
log

(
P (w)Qn

V |U (V
n|Un(w))

Qn
V (V

n)
+ 1− P (w)

)]

≤
∑

w

P (w) · E

[
log

(
P (w)Qn

V |U (V
n|Un(w))

Qn
V (V

n)
+ 1

)]

= d1 + d2 + d3 (35)

where

d1 =
∑

w∈T n
ǫ (Pn

X )

P (w)
∑

(un(w),vn)∈T n
ǫ (Qn

UV )

Qn
UV (u

n(w), vn)

[
log

(
P (w)Qn

V |U (v
n|un(w))

Qn
V (v

n)
+ 1

)]

d2 =
∑

w∈T n
ǫ (Pn

X )

P (w)
∑

(un(w),vn)/∈T n
ǫ (QUV )

(un(w),vn)∈supp(Qn
UV )

Qn
UV (u

n(w), vn)

[
log

(
P (w)Qn

V |U (v
n|un(w))

Qn
V (v

n)
+ 1

)]

d3 =
∑

w/∈T n
ǫ (Pn

X )

w∈supp(Pn
X )

P (w)
∑

(un(w),vn)∈supp(Qn
UV )

Qn
UV (u

n(w), vn)

[
log

(
P (w)Qn

V |U (v
n|un(w))

Qn
V (v

n)
+ 1

)]
. (36)

We can boundd1 as follows (see (12))

d1 ≤
∑

w∈T n
ǫ (Pn

X )

P (w)

[
log

(
2n(I(V ;U)+2ǫH(V ))

2n(1−ǫ)R·H2(p)
+ 1

)]

≤ log
(
2−n(R·H2(p)−I(V ;U)−ǫ(2H(V )+R·H2(p))) + 1

)

≤ log(e) · 2−n(R·H2(p)−I(V ;U)−δǫ(n)) (37)

which goes to zero ifR >
I(V ;U)+δǫ(n)

H2(p)
andn → ∞, where

δǫ(n) = ǫ(2H(V ) +R ·H2(p)). We also have

d2 ≤
∑

w∈T n
ǫ (Pn

X )

P (w)
∑

(un(w),vn)/∈T n
ǫ (QUV )

(un(w),vn)∈supp(Qn
UV )

Qn
UV (u

n(w), vn)

[
log

((
1

µV

)n

+ 1

)]

≤ 2|V| · |U| · e−2nǫ2µ2
UV log

((
1

µV

)n

+ 1

)
(38)

which goes to zero asn → ∞ (see (14)). We further have

d3 ≤
∑

w/∈T n
ǫ (Pn

X)

w∈supp(Pn
X)

P (w)
∑

(un(w),vn)∈supp(Qn
UV )

Qn
UV (u

n(w), vn)

[
log

((
1

µV

)n

+ 1

)]

≤
∑

w/∈T n
ǫ (Pn

X)

w∈supp(Pn
X)

P (w)

[
log

((
1

µV

)n

+ 1

)]

≤ 4 · e−2nǫ2p2

log

((
1

µV

)n

+ 1

)
(39)

which goes to zero asn → ∞ (see (14)).
Combining the above for non-uniformW we have

E[D(PV n ||Qn
V )] → 0 (40)

if R >
I(V ;U)+δn(ǫ)

H2(p)
andn → ∞.

APPENDIX B
PROOF OFLEMMA 2

We extend the proof of [3, Sec. III, Inequality (15)] to
asymptotic cases to establish Lemma 2. Recall that− 1

2 ≤
ρ ≤ 0. Let s = −ρ

1+ρ so we have

0 ≤ s ≤ 1

1 + s =
1

1 + ρ
(41)

We also have for anya, b ≥ 0 and0 ≤ x ≤ 1

(a+ b)x ≤ ax + bx. (42)

Observe that for anyvn we have

E[P (vn)] = E

[
M∑

w=1

1

M
·Qn

V |U (v
n|Un(w))

]

= E
[
Qn

V |U (v
n|Un(1))

]

= E

[
n∏

i=1

QV |U (vi|Ui(1))

]

=

n∏

i=1

E
[
QV |U (vi|Ui(1))

]

=

n∏

i=1

[
∑

u

Q(u)QV |U (vi|u)

]

=

n∏

i=1

QV (vi) = Qn
V (v

n) (43)



We further have

2E
n
0 (ρ,Qn

UV ) =
∑

vn

{
E[P (vn)

1
1+ρ ]

}1+ρ

(a)
=
∑

vn

{
E[P (vn)1+s]

} 1
1+s

=
∑

vn



E



(

M∑

w=1

1

M
·Qn

V |U (v
n|Un(w))

)1+s







1
1+s

=
1

M

∑

vn

{
E

[
M∑

w=1

Qn
V |U (v

n|Un(w))



Qn
V |U (v

n|Un(w)) +

M∑

j 6=w

Qn
V |U (v

n|Un(j))




s







1
1+s

(44)

where(a) follows from (41). Applying (42) to (44) we have

2E
n
0 (ρ,Qn

UV ) ≤
1

M

∑

vn

{
E

[
M∑

w=1

Qn
V |U (v

n|Un(w))



(
Qn

V |U (v
n|Un(w))

)s
+




M∑

j 6=w

Qn
V |U (v

n|Un(j))




s









1
1+s

(a)
=

1

M

∑

vn

{
E

[
M∑

w=1

(
Qn

V |U (v
n|Un(w))

)1+s
]

+

M∑

w=1

(
E
[
Qn

V |U (v
n|Un(w))

])

·E






M∑

j 6=w

Qn
V |U (v

n|Un(j))




s







1
1+s

(b)

≤
1

M

∑

vn

{
ME

[(
Qn

V |U (v
n|Un)

)1+s
]

+MQn
V (v

n) ·


E




M∑

j 6=w

Qn
V |U (v

n|Un(j))






s


1
1+s

(c)
=

1

M

∑

vn

{
ME

[(
Qn

V |U (v
n|Un)

)1+s
]

+MQn
V (v

n) ((M − 1)Qn
V (v

n))s}
1

1+s

≤
1

M

∑

vn

{
ME

[(
Qn

V |U (v
n|Un)

)1+s
]
+ (MQn

V (v
n))

1+s

} 1
1+s

(45)

where

(a) follows becauseUn(w) is independent ofUn(j), j 6= w

(b) follows by choosingUnV n ∼ Qn
UV , by the concavity of

xa for 0 ≤ a ≤ 1 and by (43)
(c) follows by (43)

Applying (42) again to (45) we have

2E
n
0 (ρ,Qn

UV ) ≤
1

M

∑

vn

{(
ME

[(
Qn

V |U (v
n|Un)

)1+s
]) 1

1+s

+MQn
V (v

n)}

(a)
= 1 +Mρ

∑

vn

(
E

[(
Qn

V |U (v
n|Un)

) 1
1+ρ

])1+ρ

= 1+Mρ
∑

vn

(
∑

un

Qn
U (u

n)
(
Qn

V |U (v
n|un)

) 1
1+ρ

)1+ρ

(b)
= 1 + 2nρR

∑

v

(
∑

u

Q(u) (Q(v|u))
1

1+ρ

)n(1+ρ)

= 1+ 2n(E0(ρ,QUV )+ρR) (46)

where

(a) follows from (41)
(b) follows because theUiVi are i.i.d.,i = 1, . . . , n

Optimizing overρ, we have

En
0 (ρ,Q

n
UV ) ≤ log2

(
1 + 2nEG(R,QUV )

)
. (47)
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[2] T. Han and S. Verdú, “Approximation theory of output statistics,” IEEE
Trans. Inf. Theory, vol. 39, no. 3, pp. 752–772, May 1993.

[3] M. Hayashi, “General nonasymptotic and asymptotic formulas in chan-
nel resolvability and identification capacity and their application to the
wiretap channel,”IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1562–
1575, April 2006.

[4] M. Bloch and J. Kliewer, “On secure communication with constrained
randomization,” inIEEE Int. Symp. Inf. Theory, Boston, MA, USA,
2012, pp. 1172–1176.

[5] I. Csiszár, “Almost independence and secrecy capacity,” Prob. of Inf.
Transmission, vol. 32, no. 1, pp. 40–47, Jan.–March 1996.

[6] J. L. Massey,Applied Digital Information Theory, ETH Zurich, Zurich,
Switzerland, 1980-1998.

[7] A. Orlitsky and J. Roche, “Coding for computing,”IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–917, March 2001.

[8] R. G. Gallager,Information Theory and Reliable Communication. Wi-
ley, 1968.

[9] I. Csiszár and J. Körner,Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic, 1981.

[10] T. Cover and J. Thomas,Elements of Information Theory, 2nd ed. New
York: Wiley, 2006.

[11] P. Cuff, H. Permuter, and T. Cover, “Coordination capacity,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4181–4206, Sept. 2010.

[12] M. Bloch and J. Barros,Physical Layer Security From Information
Theory to Security Engineering. Cambridge University Press, 2011.


	I Introduction
	II Preliminaries
	III Main Result and Proof
	III-A Shannon's Typicality
	III-B Gallager's Error Exponent

	IV Discussion
	Appendix A: Non-Uniform W
	Appendix B: Proof of Lemma 2
	References

