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Abstract

Decode-and-forward (D-F) and compress-and-forward (C-F) are two fundamentally different relay strategies
proposed by (Cover and El Gamal, 1979). Individually, either of them has been successfully generalized to multi-
relay channels. In this paper, to allow each relay node the freedom of choosing either of the two strategies, we
propose a unified framework, where both the D-F and C-F strategies can be employed simultaneously in the network.
It turns out that, to fully incorporate the advantages of both the best known D-F and C-F strategies into a unified
framework, the major challenge arises as follows: For the D-F relay nodes to fully utilize the help of the C-F relay
nodes, decoding at the D-F relay nodes should not be conducted until all the blocks have been finished; However,
in the multi-level D-F strategy, the upstream nodes have to decode prior to the downstream nodes in order to help,
which makes simultaneous decoding at all the D-F relay nodes after all the blocks have been finished inapplicable.
To tackle this problem, nested blocks combined with backward decoding are used in our framework, so that the
D-F relay nodes at different levels can perform backward decoding at different frequencies. As such, the upstream
D-F relay nodes can decode before the downstream D-F relay nodes, and the use of backward decoding at each
D-F relay node ensures the full exploitation of the help of both the other D-F relay nodes and the C-F relay nodes.
The achievable rates under our unified relay framework are found to combine both the best known D-F and C-F
achievable rates and include them as special cases.

I. INTRODUCTION

The relay channel, originally proposed in [1], models a communication scenario where there is one or
more relay nodes that can help the information transmission between the source and the destination. The
simplest one-relay channel is depicted in Fig. 1, where nodes 0, 1, and 2 are the source, the relay, and the
destination, respectively. Two fundamentally different relay strategies have been developed in [2] for such
channels, which, depending on whether the relay decodes the information or not, are generally known as
decode-and-forward (D-F) and compress-and-forward (C-F) respectively.

Fig. 1. The single-relay channel.

A. D-F and C-F for single-relay channels
In the D-F relay strategy, the relay first decodes the message sent by the source and then forwards it to

the destination, and the destination decodes the message taking into account the inputs of both the source
and the relay. With the D-F relay strategy, the following rate is achievable:

R < max
p(x0,x1)

min{I(X0;Y1|X1), I(X0, X1;Y2)} (1)
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where, the first condition R < I(X0;Y1|X1) makes node 1 able to decode the message based on the
signal transmitted by node 0, and the second condition R < I(X0, X1;Y2) makes node 2 able to decode
the message based on the signals transmitted by node 0 and node 1 together. Notably, the maximization
in (1) is over p(x0, x1), rather than p(x0)p(x1), which suggests that (1) can only be achieved by node
0 and node 1 cooperating with each other when transmitting signals. To accomplish such cooperation,
an essential technique called block Markov coding was employed in the D-F coding scheme developed
in [2]. Besides, the scheme in [2] also used irregular encoding with codebooks of different sizes at the
source and at the relay, random partitioning (binning), and successive decoding. Subsequently, some other
D-F coding schemes also achieving (1) were found in [3]-[4].

In contrast, the C-F relay strategy is used when the relay cannot decode the message sent by the source,
but still can help by compressing its observation Y1 into Ŷ1, and forwarding this compressed version to
the destination. The destination then either successively or jointly decodes the compression of the relay’s
observation and the original message of the source. In the original C-F scheme of [2], the decoder performs
successive compression-message decoding, i.e., it first decodes the compression of the relay’s observation,
and then decodes the original message of the source, leading to the following achievable rate:

R < max
p(x0)p(x1)p(ŷ1|y1,x1)

I(X0; Ŷ1, Y2|X1) (2)

such that I(Y1; Ŷ1|X1, Y2) ≤ I(X1;Y2), (3)

where (3) ensures that the compression Ŷ1 can be first recovered at the destination, and (2) ensures that
the destination can decode the original message X0 based on Ŷ1 and Y2 together.

The two-step compression-message successive decoding process in [2] requires Ŷ1 to be decoded first,
which facilitates the decoding of X0, but is not a requirement of the original problem. Recognizing this,
a joint compression-message decoding process was proposed in [5], where, instead of successively, the
destination decodes Ŷ1 and X0 together. It turns out that the decoding of X0 can be helped even if Ŷ1
cannot be decoded first. In fact, with joint decoding, the constraint (3) is not necessary, and instead of
(2), the achievable rate is expressed as

R < max
p(x0)p(x1)p(ŷ1|y1,x1)

I(X0; Ŷ1, Y |X1)−max{0, I(Y1; Ŷ1|X1, Y )− I(X1;Y )}.1 (4)

Therefore, compared to successive decoding, joint compression-message decoding provides more freedom
in choosing the compression Ŷ1. However, the question remains whether joint decoding achieves strictly
higher rates for the original message than successive decoding. For the single relay case, it was proved
in [8] that the answer is negative, and any rate achievable by either of them can always be achieved by
the other, i.e., the achievable rates in (2)-(3) and (4) are essentially the same. In fact, as we will see later
in the Introduction, when C-F is generalized to the case of multiple relays, there is no improvement on
the achievable rate by joint decoding either.

Combining the D-F and C-F together, one can further consider the hybrid scheme, e.g., [2, Thm 7], where
the relay partially decodes the message and compresses the rest of its received signals. However, such
hybrid schemes generally involve superposition coding that induces auxiliary random variables, making
the expression and evaluation of the achievable rates rather complicated especially in the case of multiple
relays that we will consider in the sequel. Thus, in this paper, our discussion focuses on the “pure” D-F
or C-F strategies only, i.e., the strategies where the relay either completely decodes the message, or does
not decode at all but simply compresses and forwards its observation.

B. D-F and C-F for multi-relay channels
A natural extension of the single-relay channel in Fig. 1 is to the case of multiple relays depicted in

Fig. 2, where nodes 0 and n+1 are the source and the destination respectively, and nodes 1, 2, . . . , n are

1Similar formulas as (4) have been derived with different arguments in [6]-[8].
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the n relay nodes that constitute the relay nodes set, denoted by N . Both the D-F and C-F relay strategies
have been separately generalized to such multi-relay channels in [9]-[18], among which, [12]-[15] and
[16]-[18] provide the best achievable rates for D-F and C-F respectively.

Specifically, in generalizing D-F to the multi-relay channel, [12]-[13] modified the original irregular
encoding/successive decoding scheme of [2] to a regular encoding/sliding window decoding scheme to
realize the “multi-level” D-F relay strategy. For any fixed permutation π on {0, 1, . . . , n+1} with π(1) = 0
and π(n + 2) = n + 1, i.e., any specific ordering of the relay nodes as π(2), π(3), . . . , π(n + 1), their
multi-level D-F scheme [12]-[13] achieves the following rate:

R < max
p(x0,x1,...,xn)

min
2≤k≤n+2

I(Xπ(1:k−1);Yπ(k)|Xπ(k:n+1)), (5)

where π(k1 : k2) := {π(k1), π(k1 + 1), . . . , π(k2)}. Later on, it was found in [14]-[15] that (5) can also
be achieved with backward decoding.

The formula (5) has a similar interpretation as (1). For each node π(k), k = 2, 3, . . . , n + 2, the
corresponding rate constraint is

R < I(Xπ(1:k−1);Yπ(k)|Xπ(k:n+1)), (6)

which implies that for the decoding at node π(k), the signals transmitted by nodes π(k + 1 : n + 1)
are known a priori, and the signals transmitted by nodes π(1 : k − 1) are cooperating in providing the
information. A simple explanation of this feasibility is the following. In the multi-level D-F relay strategy,
information is passed along the route π(1)→ π(2)→ · · · → π(n+2), so that i) any information obtained
by the downstream nodes of π(k), i.e., nodes π(k + 1 : n+ 1), has already been obtained by node π(k),
and therefore their inputs are predictable by node π(k), and ii) by the time the information reaches node
π(k), all its upstream nodes π(1 : k − 1) have already obtained the same information and can therefore
cooperate with the technique of block Markov coding. The formula (5) also demonstrates a remarkable
feature of the multi-level D-F relay strategy in [12]-[15], i.e., it completely eliminates the interference in
the network: To any node, the signal transmitted by any other node is either a “real” signal that can be
used for decoding, or a priori known signal that can be subtracted completely.

Fig. 2. The multiple-relay channel.

In the line of generalizing C-F to multi-relay channels, substantial advances have been recently made in
[16]-[18]. First, in [16], a new C-F scheme termed noisy network coding was proposed. Different from the
original C-F scheme of [2], where cumulative encoding/block-by-block forward decoding was used, this
noisy network coding scheme employed repetitive encoding/all blocks united decoding. Besides, it also
used compression-message joint decoding without uniquely decoding the relays’ compressions, instead of
compression-message successive decoding as in the original C-F scheme. It turns out [16] that the noisy
network coding scheme achieves the same rate as the original C-F scheme for the single-relay channel,
but improves the original C-F scheme in the case of multiple relays to achieve higher rates as follows:

R < max
p(x0)

∏n
i=1 p(xi)p(ŷi|yi,xi)

min
S⊆N

I(X0, XS ; ŶN\S , Yn+1|XN\S)− I(YS ; ŶS |X0, XN , Yn+1, ŶN\S). (7)
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However, soon in [17]-[18], it was discovered that neither repetitive encoding/all blocks united decoding
nor compression-message joint decoding used in [16] is necessary to achieve the rate (7); in particular, a cu-
mulative encoding/block-by-block backward decoding/compression-message successive decoding scheme
was developed, and its corresponding achievable rate was shown to be the same as (7), with the following
form:

R < max
p(x0)

∏n
i=1 p(xi)p(ŷi|xi,yi)

I(X0; ŶN , Yn+1|XN ) (8)

such that I(XS ; ŶN\S , Yn+1|XN\S)− I(YS ; ŶS |XN , Yn+1, ŶN\S) ≥ 0,∀S ⊆ N , (9)

where (8)-(9) can be similarly interpreted as (2)-(3) for the single-relay case, i.e., (9) ensures that the
relays’ compressions ŶN can be first recovered at the destination, and (8) ensures that the destination can
decode the original message of the source based on Yn+1 and ŶN together. Note that the rate equivalence
between (7) and (8)-(9) also demonstrates that in the case of multiple relays, there is no improvement on
the achievable rate by joint compression-message decoding either, which is consistent with the conclusion
made in the single-relay case. More interestingly, in proving such a rate equivalence, [17]-[18] found that
the the R.H.S. (right-hand-side) of (7) is maximized only when the compressions ŶN are chosen to satisfy
(9), i.e., to maximize the achievable rate for the original message, the compressions should always be
chosen to support successive decoding, and any compressions not supporting successive decoding will
actually lead to strictly lower achievable rates for the original message.

Since block-by-block backward decoding and compression-message successive decoding are relatively
easier to implement than all blocks united decoding and compression-message joint decoding respectively,
the cumulative encoding/block-by-block backward decoding/compression-message successive decoding
scheme of [17]-[18] becomes the simplest choice in achieving the highest C-F rate in the case of
multiple relays. Moreover, the fact that this scheme achieves the same rate as noisy network coding
also reveals the essential reason for the improvement of the achievable rate – not repetitive encoding/all
blocks united decoding, not joint compression-message decoding, but delayed decoding until all the blocks
have been finished. This delayed decoding is generally necessary because the multiple-relay case differs
from the single-relay case in that it may take multiple blocks for the relays to help each other before
their compressions can finally reach the destination. Hence, the block-by-block forward decoding scheme,
which is sufficient for the single-relay case, may not work satisfactorily for multiple relays in general
[18].

It is worth noting that although the optimal C-F rate is achieved only when the compressions are chosen
to support successive decoding in single-destination networks, in a network with multiple destinations
([16], [18]), the compressions may not be chosen to support successive decoding at all the destinations,
and joint decoding might have to be used. For this, a more general scheme of cumulative encoding/block-
by-block backward decoding/compression-message joint decoding was developed in [18]. For any given
distribution p(x0)

∏n
i=1 p(xi)p(ŷi|xi, yi), this scheme achieves the following rate:

R < min
S⊆D

I(X0, XS ; ŶD\S , Yn+1|XD\S)− I(YS ; ŶS |X0, XD, Yn+1, ŶD\S), (10)

where D is the unique largest subset of N satisfying

I(XS ; ŶD\S , Yn+1|X0, XD\S)− I(YS ; ŶS |X0, XD, Yn+1, ŶD\S) > 0, ∀S ⊆ D,S 6= ∅, (11)

and ŶD can be decoded jointly with X0. Here, D can be interpreted as the “jointly decodable” relay nodes
set such that the compressions of the relays in this set are decodable jointly with the original message X0.
In contrast, the compression of any relay node in N \ D′ is not decodable even jointly with X0, where
D′ is the unique largest subset of N satisfying

I(XS ; ŶD′\S , Yn+1|X0, XD′\S)− I(YS ; ŶS |X0, XD′ , Yn+1, ŶD′\S) ≥ 0,∀S ⊆ D′. (12)
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On the other hand, for any given distribution p(x0)
∏n

i=1 p(xi)p(ŷi|xi, yi), the achievable rate (7) can
be more generally expressed as

R < min
S⊆T

I(X0, XS ; ŶT \S , Yn+1|XT \S)− I(YS ; ŶS |X0, XT , Yn+1, ŶT \S) (13)

if we only consider a subset of relays T ⊆ N for the decoding, while treating the other inputs as purely
noise. Interestingly, it was found in [18] that among all the choices of T ⊆ N , the R.H.S. of (13) is
maximized when T = D or T = D′, but is strictly less than the maximum when T * D′. Therefore,
only those relays whose compressions are jointly decodable are helpful to the decoding of the original
message, and including the jointly un-decodable compressions in the formula (13), i.e., choosing T * D′,
will even strictly lower the achievable rate.

By comparing (10) and (13) with T = D, it can be concluded that for any compressions chosen at the
relays, the cumulative encoding/block-by-block backward decoding/compression-message joint decoding
scheme of [18] achieves the same rate as the noisy network coding scheme [16].2

C. A unified relay framework with both D-F and C-F relay nodes
In the above discussions, all the relay nodes in the network perform only one type of relay strategy,

either D-F or C-F. However, to obtain higher achievable rate, it might be better to let each relay node
choose from D-F and C-F its relay strategy depending on the channel condition, e.g., let the relay node
close to the source perform D-F while let the relay node close to the destination perform C-F. This
invokes a unified relay framework that includes both the D-F and C-F relay nodes in the network. In
developing such a framework, one naturally wants to combine the advantages of both the best known D-F
and C-F schemes, i.e., the multi-level D-F schemes in [12]-[15] and the recent advances on C-F schemes
in [16]-[18].

An attempt towards this unified relay framework has been recently made in [21]. In the scheme of
[21], part of the relay nodes use D-F and the rest use C-F, and the D-F relay nodes exploit the help of
the C-F relay nodes via offset coding. However, the scheme in [21] failed to take full advantage of the
best known D-F and C-F strategies. Firstly, [21] didn’t use the multi-level D-F schemes as in [12]-[15].
Instead, all the D-F relay nodes in the scheme of [21] are at the same level, and thus the decoding at
each D-F relay node couldn’t exploit the help of other D-F relay nodes. Secondly, in [21], although the
destination performed backward decoding to fully exploit the help of the C-F relay nodes, the decoding
at each D-F relay node was based on two consecutive blocks only and thus didn’t fully utilize the help
of the C-F relay nodes as in [16]-[18]. (Note as mentioned in Part B, in the case of multiple C-F relay
nodes, delayed decoding after all the blocks have been finished is in general necessary.)

Indeed, it turns out that, to fully incorporate the advantages of both the best known D-F and C-F relay
strategies into a unified framework is nontrivial due to the following major challenge: For the D-F relay
nodes to fully utilize the help of the C-F relay nodes as in [16]-[18], decoding at the D-F relay nodes
should not be conducted until all the blocks have been finished; However, to perform the multi-level D-F
strategy as in [12]-[15], the upstream nodes have to decode prior to the downstream nodes in order to
help, which makes simultaneous decoding at all the D-F relay nodes after all the blocks have been finished
inapplicable.

To tackle this problem, nested blocks ([14]-[15], [22]) combined with backward decoding are used in
our framework, so that the D-F relay nodes at different levels can perform backward decoding at different
frequencies: the closer to the source in the information passing route, the higher decoding frequency.
As such, the upstream D-F relay nodes can decode before the downstream D-F relay nodes and the
destination, and the use of backward decoding at each D-F relay node ensures the full exploitation of the
help of both the other D-F relay nodes and the C-F relay nodes.

2Part of the results in [17]-[18] have also been recognized in [19]-[20].
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Specifically, we partition the relay nodes set N into two sets,M with |M| =M and N\M, as depicted
in Fig. 3, and fix some permutation π on {0}

⋃
M

⋃
{n+ 1} with π(1) = 0 and π(M + 2) = n+ 1. Let

the relay nodes in M perform the multi-level D-F cooperatively along the route π(1) → π(2) → · · · →
π(M+2), while let each node i ∈ N\M performs C-F as in [16]-[18] independently. Then, a total of BM+1

blocks will be used and the length of a “virtual” block for node π(k), k = 2, 3, . . . ,M +2, will be Bk−2.
The backward decoding at the destination, i.e., node π(M+2), will happen at the end of all BM+1 blocks,
while the backward decoding at the D-F relay node π(k), k = 2, 3, . . . ,M + 1, will happen whenever it
has received B new “virtual” blocks, i.e., at the end of each block b = vBk−1, v ∈ [1 : BM+1/Bk−1]. Also,
both the D-F relay nodes and the destination will perform compression-message joint decoding, which
is in general necessary since the compressions of the C-F relay nodes may not be chosen to support
successive decoding at all the D-F relay nodes and the destination.

Under the above described framework, for any given distribution p(x0)p(xM|x0)
∏

i∈N\M p(xi)p(ŷi|yi, xi),
the following rate is achievable:

R < min
2≤k≤M+2

min
S⊆Dk

I(Xπ(1:k−1), XS ; ŶDk\S , Yπ(k)|XDk\S , Xπ(k:M+1))−I(YS ; ŶS |Xπ(1:M+1), XDk , Yπ(k), ŶDk\S),

(14)
where Dk is the unique largest subset of N \M satisfying

I(XS ; ŶDk\S , Yπ(k)|Xπ(1:M+1), XDk\S)− I(YS ; ŶS |Xπ(1:M+1), XDk , Yπ(k), ŶDk\S) > 0, (15)

for any nonempty S ⊆ Dk.

Fig. 3. A unified relay framework with both the D-F and C-F relay nodes.

(14) has the flavors of both (5) and (10). Specifically, for each node π(k), k = 2, 3, . . . ,M + 2, the
corresponding rate constraint is

R < min
S⊆Dk

I(Xπ(1:k−1), XS ; ŶDk\S , Yπ(k)|XDk\S , Xπ(k:M+1))−I(YS ; ŶS |Xπ(1:M+1), XDk , Yπ(k), ŶDk\S), (16)

which is in a form similar to (10) but with the appearance of Xπ(1:k−1), Xπ(k:M+1) and Xπ(1:M+1). (16) has
the similar form as (10) since node π(k) uses the help of the C-F relay nodes as in [17]-[18]. Xπ(1:k−1),
Xπ(k:M+1) and Xπ(1:M+1) appear in (16) because node π(k) also utilizes the help of other D-F relay nodes
as in [12]-[15] so that the signals of its upstream nodes, i.e., Xπ(1:k−1), are cooperatively providing the
information while the signals of its downstream nodes and itself Xπ(k:M+1) are known at π(k). Also, the
set Dk defined in (15) has a similar interpretation as the set D defined in (11), i.e., the “jointly decodable”
C-F relay nodes set at node π(k) such that the compressions of the relays in this set are decodable jointly
with Xπ(1:k−1) given that Xπ(k:M+1) are known at node π(k).



7

It can be easily seen that (14) includes the achievable rates in (5) and (10) as special cases: When
M = N , i.e., all the relays perform D-F, Dk = ∅ and (14) reduces to (5); When M = ∅, i.e., all the
relays perform C-F, (14) reduces to (10).

Finally, it should be noted that, the achievable rate (14) is proved by using the block-by-block backward
decoding scheme in [18]. We can also modify the all blocks united decoding scheme in [16] to a B-
blocks-by-B-blocks backward decoding scheme, to fit it into our unified relay framework and prove the
following achievable rate:

R < min
2≤k≤M+2

max
Tk⊆N\M

min
S⊆Tk

I(Xπ(1:k−1), XS ; ŶTk\S , Yπ(k)|XTk\S , Xπ(k:M+1))−I(YS ; ŶS |Xπ(1:M+1), XTk , Yπ(k), ŶTk\S).

(17)
Similarly to the equivalence between (10) and (13), here (14) and (17) are also equivalent. One can also
easily check that (17) includes the achievable rates in (5) and (13) as special cases by letting M = N
and M = ∅ respectively. Notably, again, in terms of complexity, block-by-block backward decoding is
relatively easier to implement since B-blocks-by-B-blocks backward decoding involves B blocks united
decoding.

The remainder of the paper is organized as the following. In Section II, we formally state our problem
setup and summarize the main results. Then, in Section III and Section IV, our unified relay framework
with block-by-block backward decoding and with B-blocks-by-B-blocks backward decoding will be
presented in detail respectively. Finally, some concluding remarks are included in Section V.

II. MAIN RESULTS

Consider a multiple-relay channel consisting of n+ 2 nodes, as depicted in Fig. 2, where nodes 0 and
n+1 are the source and the destination respectively, and nodes 1, 2, . . . , n are the n relay nodes. Formally,
this channel can be denoted by

(X0 ×X1 × · · · × Xn, p(yn+1, y1, . . . , yn|x0, x1, . . . , xn), Yn+1 × Y1 × · · · × Yn)

where, X0,X1, . . . ,Xn are the transmitter alphabets of the source and the relays respectively, Yn+1,Y1, . . . ,Yn
are the receiver alphabets of the destination and the relays respectively, and a collection of probability
distributions p(·, ·, . . . , ·|x0, x1, . . . , xn) on Yn+1 × Y1 × · · · × Yn, one for each (x0, x1, . . . , xn) ∈ X0 ×
X1×· · ·×Xn. The interpretation is that x0 is the input to the channel from the source, yn+1 is the output
of the channel to the destination, and yi is the output received by the i-th relay. The i-th relay sends an
input xi based on what it has received:

xi(t) = ri,t(yi(t− 1), yi(t− 2), . . .), for every time t, (18)

where ri,t(·) can be any causal function.
Before presenting the main results, we introduce some simplified notations. Denote the set N =
{1, 2, . . . , n}. For any subset S ⊆ {0, 1, . . . , n + 1}, let XS = {Xi, i ∈ S}, and use similar notations
for other variables. For any M ⊆ N with |M| = M , let π({0,M, n + 1}) be a permutation on
{0}

⋃
M

⋃
{n+1} with π(1) = 0 and π(M+2) = n+1, and let π(k1 : k2) = {π(k1), π(k1+1), . . . , π(k2)}.

Under our unified relay framework as described in the Introduction, the following Theorems 2.1 and 2.2
present the achievable rates by block-by-block backward decoding and B-blocks-by-B-blocks backward
decoding respectively. The coding schemes used to prove these theorems constitute the key contributions
of our paper, and will be presented in detail in Sections III and IV respectively.

Theorem 2.1: For the multiple-relay channel, a rate R is achievable if for someM⊆ N with |M| =M ,
there exists a permutation π({0,M, n+ 1}) and some

p(q)p(x0|q)p(xM|x0, q)
∏

i∈N\M

p(xi|q)p(ŷi|yi, xi, q),
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such that for any k = 2, 3, . . . ,M + 2,

R < min
S⊆Dk

I(Xπ(1:k−1), XS ; ŶDk\S , Yπ(k)|XDk\S , Xπ(k:M+1), Q)− I(YS ; ŶS |Xπ(1:M+1), XDk , Yπ(k), ŶDk\S , Q),

(19)
where Dk is the unique largest subset of N \M satisfying

I(XS ; ŶDk\S , Yπ(k)|Xπ(1:M+1), XDk\S , Q)− I(YS ; ŶS |Xπ(1:M+1), XDk , Yπ(k), ŶDk\S , Q) > 0, (20)

for any nonempty S ⊆ Dk.
Theorem 2.2: For the multiple-relay channel, a rate R is achievable if for someM⊆ N with |M| =M ,

there exists a permutation π({0,M, n+ 1}) and some

p(q)p(x0|q)p(xM|x0, q)
∏

i∈N\M

p(xi|q)p(ŷi|yi, xi, q),

such that for any k = 2, 3, . . . ,M + 2,

R < max
Tk⊆N\M

min
S⊆Tk

I(Xπ(1:k−1), XS ; ŶTk\S , Yπ(k)|XTk\S , Xπ(k:M+1), Q)−I(YS ; ŶS |Xπ(1:M+1), XTk , Yπ(k), ŶTk\S , Q).

(21)
The following theorem establishes the equivalence between the achievable rates in Theorems 2.1 and

2.2. The proof of this theorem can be immediately obtained by analogy to the proof of [18, Thm 2.8]
and will be omitted in this paper.

Theorem 2.3: For any M⊆ N with |M| =M , any permutation π({0,M, n+ 1}), any distribution

p(q)p(x0|q)p(xM|x0, q)
∏

i∈N\M

p(xi|q)p(ŷi|yi, xi, q),

and any k = 2, 3, . . . ,M + 2, the maximum in the R.H.S. of (21) is attained when Tk = Dk, where Dk
is as defined in (20).

Remark 2.1: Finally, we point out that Theorems 2.1 and 2.2 can also be applied to multiple-destination
problems, by choosing the D-F relay nodes set M to include the other destinations.

III. UNIFIED RELAY FRAMEWORK WITH BLOCK-BY-BLOCK BACKWARD DECODING

To prove Theorem 2.1, we incorporate the multi-level D-F scheme in [12]-[15] and the cumulative
encoding/block-by-block backward decoding/comression-message joint decoding C-F scheme in [18] into
the unified relay framework described in the Introduction.

Specifically, we divide the relay set N into two sets, M with |M| =M and N \M, as shown in Fig.
3, and fix some permutation π({0,M, n+1}) with π(1) = 0 and π(M +2) = n+1. The source performs
cumulative encoding, in the sense that a new message is encoded at the source in each new block; the nodes
inM perform multi-level D-F cooperatively, along the route π(1)→ π(2)→ · · · → π(M+2), in a similar
manner with [12]-[15]; each node i ∈ N \M performs C-F independently in the same way as [16]-[18];
both the D-F relay nodes and the destination node, i.e., nodes π(2 :M+2), perform compression-message
joint decoding in a block-by-block backward manner. (Note here, the nodes π(2 :M+2) will be treated as
multiple destinations with respect to the C-F relay nodes, and thus compression-message joint decoding is
generally necessary at the these nodes, as mentioned in the Introduction.) A total of BM+1 blocks will be
used and the length of a “virtual” block for node π(k), k = 2, 3 . . . ,M + 2, will be Bk−2. The backward
decoding at the destination, i.e., node π(M + 2), will happen at the end of all BM+1 blocks, while the
backward decoding at the D-F relay node π(k), k = 2, 3, . . . ,M+1, will happen at the end of every Bk−1

blocks, i.e., at the end of block b = vBk−1, v ∈ [1 : BM+1/Bk−1].
To make the presentation of the detailed coding scheme easier to follow, we first consider the case of

single D-F relay node, i.e., when M = 1, and then present the extension to the general case of multiple
D-F relay nodes, i.e., when M ≥ 2.
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A. Single D-F relay node (M = 1)
Assume that, among the relay nodes set N , only node 1 is the D-F relay node, and all other relay

nodes are the C-F relay nodes. Denote Ñ = N \ {1}. Specializing Theorem 2.1 to this case, we have
that a rate R is achievable, if there exists some

p(q)p(x0|q)p(x1|x0, q)
∏
i∈Ñ

p(xi|q)p(ŷi|yi, xi, q),

such that

R < min


min
S⊆D1

I(X0, XS ; ŶD1\S , Y1|X1, XD1\S , Q)− I(YS ; ŶS |X0, X1, XD1 , Y1, ŶD1\S , Q)

min
S⊆Dn+2

I(X0, X1, XS ; ŶDn+2\S , Yn+2|XDn+2\S , Q)− I(YS ; ŶS |X0, X1, XDn+2 , Yn+2, ŶDn+2\S , Q)


(22)

where D1 is the unique largest subset of Ñ satisfying

I(XS ; ŶD1\S , Y1|X0, X1, XD1\S , Q)− I(YS ; ŶS |X0, X1, XD1 , Y1, ŶD1\S , Q) > 0, (23)

for any nonempty S ⊆ D1, and Dn+2 is the unique largest subset of Ñ satisfying

I(XS ; ŶDn+2\S , Yn+2|X0, X1, XDn+2\S , Q)− I(YS ; ŶS |X0, X1, XDn+2 , Yn+2, ŶDn+2\S , Q) > 0, (24)

for any nonempty S ⊆ Dn+2.
The uniqueness of D1 and Dn+2 can be immediately obtained by analogy to the proof of [18, Thm

2.7]. Below, we focus on proving the achievablity of the rate in (22). For simplicity of notation, we only
prove the achievability for the case Q = ∅. Achievability for an arbitrary time-sharing random variable Q
can be obtained by using the standard technique of time sharing [23], [8]. The same consideration on Q
applies throughout all the proofs of this paper.

In the case of single D-F relay node, a total of B2 blocks will be used. The backward decoding at the
destination node n+ 2 will happen at the end of all B2 blocks, while the backward decoding at the D-F
relay node 1 will happen at the end of every B blocks, i.e., at the end of block b = vB, v ∈ [1 : B].
Note here, in order to fully utilize the help of the C-F nodes as in [16]-[18], even the only D-F relay
node 1, has to perform backward decoding, which is different from the situation arising in [14]-[15] and
[22], where there is no issue of exploiting the help of the C-F nodes and node 1 can decode at the end
of every block. The detailed codebook generation and encoding/decoding process are as follows, which
can be understood with the help of Table I.

Codebook Generation: Fix p(x0)p(x1|x0)
∏

i∈Ñ p(xi)p(ŷi|yi, xi). We randomly and independently gen-
erate a codebook for each block.

i) First consider the codebook generation for the source node 0 and the D-F relay node 1. A joint
codebook for these two nodes will be generated in a backward manner similar to [13] for each block.
Specifically, for each block b ∈ [1 : B2], randomly generate 2TR independent sequences x1,b(mb−B) for
node 1, and randomly generate 2TR conditionally independent sequences x0,b(mb|mb−B) for node 0, where
mb,mb−B ∈ [1 : 2TR]. As in [13], the codebook is generated in the backward manner because the source
node 0 knows what the D-F relay node 1 is going to transmit, and therefore can adjust its own transmission
accordingly, but not the converse. The difference from [13] is that here the delay between the messages
transmitted by node 1 and node 0 is B blocks, instead of 1 block in [13], since in our framework node
1 has to wait for every B blocks to perform backward decoding for exploiting the help of the C-F relay
nodes.

ii) Then we generate the codebooks for the C-F relay nodes in the same way as in [16]-[18]. For each
block b ∈ [1 : B2] and each relay node i ∈ Ñ , randomly and independently generate 2TR̂i sequences
xi,b(li,b−1), li,b−1 ∈ [1 : 2TR̂i ], where R̂i = I(Yi; Ŷi|Xi)+ε; for each relay node i ∈ Ñ and each xi,b(li,b−1),
li,b−1 ∈ [1 : 2TR̂i ], randomly and conditionally independently generate 2TR̂i sequences ŷi,b(li,b|li,b−1),
li,b ∈ [1 : 2TR̂i ].
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The combination of i) and ii) defines the codebook for any block b ∈ [1 : B2],

Cb =
{
x1,b(mb−B),x0,b(mb|mb−B) : mb,mb−B ∈ [1 : 2TR];

xi,b(li,b−1), ŷi,b(li,b|li,b−1) : li,b, li,b−1 ∈ [1 : 2TR̂i ], i ∈ Ñ
}
. (25)

Encoding: Let m = (m1,m2, . . . ,mB2) be the message vector to be sent and let mb = 1 be the dummy
message for any

b ∈ ∪Bw=1[wB − L+ 1 : wB]
⋃

[(B − 1)B + 1 : B2] (26)

and for any b ≤ 0. As we will see, these dummy messages are inserted to ensure the start of block-by-block
backward decoding. Due to these dummy messages, the actually achievable rate becomes (B−L)(B−1)

B2 R,
which, however, can be made arbitrarily close to R by letting B →∞ for any L.

TABLE I
BLOCK-BY-BLOCK BACKWARD DECODING FOR THE SINGLE D-F RELAY NODE CASE

Block 1 2 · · · B − L B − L + 1 · · · B · · ·

X0 x0,1(m1|1) x0,2(m2|1) · · · x0,B−L(mB−L|1) x0,B−L+1(1|1) · · · x0,B(1|1) · · ·

Y1 ∅ ∅ · · · ∅ ∅ · · · (m1,m2, . . . ,mB) · · ·

X1 x1,1(1) x1,2(1) · · · x1,B−L(1) x1,B−L+1(1) · · · x1,B(1) · · ·

YÑ ŷÑ ,1
(lÑ ,1

|1) ŷÑ ,2
(lÑ ,2

|lÑ ,1
) · · · ŷÑ ,B−L

(lÑ ,B−L
|lÑ ,B−L−1

) ŷÑ ,B−L+1
(lÑ ,B−L+1

|lÑ ,B−L
) · · · ŷÑ ,B

(lÑ ,B
|lÑ ,B−1

) · · ·

XÑ xÑ ,1
(1) xÑ ,2

(lÑ ,1
) · · · xÑ ,B−L

(lÑ ,B−L−1
) xÑ ,B−L+1

(lÑ ,B−L
) · · · xÑ ,B

(lÑ ,B−1
) · · ·

Yn+2 ∅ ∅ · · · ∅ ∅ · · · ∅ · · ·

Block B2 − B + 1 · · · B2 − L B2 − L + 1 · · · B2

X0 x
0,B2−B+1

(1|m
B2−2B+1

) · · · x
0,B2−L

(1|m
B2−B−L

) x
0,B2−L+1

(1|1) · · · x
0,B2 (1|1)

Y1 ∅ · · · ∅ ∅ · · · (m
B2−B+1

, . . . ,m
B2 )

X1 x
1,B2−B+1

(m
B2−2B+1

) · · · x
1,B2−L

(m
B2−B−L

) x
1,B2−L+1

(1) · · · x
1,B2 (1)

YÑ ŷÑ ,B2−B+1
(lÑ ,B2−B+1

|lÑ ,B2−B
) · · · ŷÑ ,B2−L

(lÑ ,B2−L
|lÑ ,B2−L−1

) ŷÑ ,B2−L+1
(lÑ ,B2−L+1

|lÑ ,B2−L
) · · · ŷÑ ,B2 (lÑ ,B2 |lÑ ,B2−1

)

XÑ xÑ ,B2−B+1
(lÑ ,B2−B

) · · · xÑ ,B2−L
(lÑ ,B2−L−1

) xÑ ,B2−L+1
(lÑ ,B2−L

) · · · xÑ ,B2 (lÑ ,B2−1
)

Yn+2 ∅ · · · ∅ ∅ · · · (m1,m2, . . . ,mB2 )

i) First consider the encoding process for nodes 0 and 1.
• In block b ∈ [1 : B2], the source node 0 transmits x0,b(mb|mb−B).
• At the end of block vB, v ∈ [1 : B], the D-F relay node 1 has decoded messages

(mvB−B+1,mvB−B+2, . . . ,mvB)

using backward decoding (see the decoding part). In the next B blocks, i.e., in block b ∈ [vB + 1 :
(v+ 1)B], the relay node 1 transmits x1,b(mb−B), where mb−B for any b ∈ [vB + 1 : (v+ 1)B]) has
been decoded by block vB.

ii) For any block b ∈ [1 : B2], each relay node i ∈ Ñ , upon receiving yi,b at the end of block b, finds
an index li,b such that

(xi,b(li,b−1),yi,b, ŷi,b(li,b|li,b−1)) ∈ Aε(Xi, Yi, Ŷi),

where li,0 = 1 by convention. In block b ∈ [1 : B2], the relay node i ∈ Ñ transmits xi,b(li,b−1).
Decoding: We present the decoding process at the D-F relay node 1 and at the destination node n+ 2

separately.
i) At the end of block b = vB, v ∈ [1 : B], the D-F relay node 1 decodes messages

(mb−B+1,mb−B+2, . . . ,mb)
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using block-by-block backward decoding. In fact, among these messages, (mb−L+1,mb−L+2, . . . ,mb) are
dummy messages according to (26) and only (mb−B+1,mb−B+2, . . . ,mb−L) need decoding.
• a) Node 1 first finds the unique lD1,b−L = {li,b−L, i ∈ D1} such that there exists some lbD1,b−L+1

satisfying that for any block j = b− L+ 1, b− L+ 2, . . . , b,

(X0,j(mj|mj−B),X1,j(mj−B), {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ D1},Y1,j) ∈ Aε(X0, X1, XD1 , ŶD1 , Y1).
(27)

Note in (27), for any j = b − L + 1, b − L + 2, . . . , b, mj and mj−B are both dummy messages
according to (26), and both X0,j(mj|mj−B) and X1,j(mj−B) are known at node 1. Then, it follows
from the proof of [18, Thm 2.7] that lD1,b−L can be decoded if

I(XS ; ŶD1\S , Y1|X0, X1, XD1\S)− I(YS ; ŶS |X0, X1, XD1 , Y1, ŶD1\S) > 0, (28)

for any nonempty S ⊆ D1.
• b) Backwardly and sequentially from block j = b−L to j = b−B+1, node 1 finds the unique pair
(mj, lD1,j−1) satisfying (27), where lD1,j has already been recovered due to the backward property of
decoding, and mj−B has been decoded by block b−B.

At each block j = b − L, b − L − 1, . . . , b − B + 1, error occurs with mj if the true mj does
not satisfy (27) with any lD1,j−1, or a false mj satisfies (27) with some lD1,j−1. According to the
properties of typical sequences, the true (mj, lD1,j−1) satisfies (27) with high probability.

For a false mj and a lD1,j−1 with false {li,j−1, i ∈ S} but true {li,j−1, i ∈ D1\S}, X0,j(mj|mj−B) is
conditionally independent of {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ D1} and Y1,j given X1,j(mj−B); and
{(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ S} are independent of {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ D1\S},
X1,j(mj−B) and Y1,j .

Therefore, the probability that such false (mj, lD1,j−1) satisfies (27) can be upper bounded by

2T (H(X0,X1,XD1
,ŶD1

,Y1)+ε)2−T (H(X1,XD1\S ,ŶD1\S ,Y1)−ε)

×2−T (H(X0|X1)−ε)2−T (H(XS)−ε)2−T (
∑
i∈S(H(Ŷi|Xi)−ε)).

Since the number of such false (mj, lD1,j−1) is upper bounded by 2TR
∏

i∈S 2
T (I(Yi;Ŷi|Xi)+ε), with the

union bound, it is easy to check that the probability of finding a false mj goes to zero as T →∞, if

R < min
S⊆D1

I(X0, XS ; ŶD1\S , Y1|X1, XD1\S)− I(YS ; ŶS |X0, X1, XD1 , Y1, ŶD1\S). (29)

Then, based on the recovered mj−B and lD1,j , again from the proof of [18, Thm 2.7], it follows that
lD1,j−1 can be decoded if (28) holds.

By a) and b) together, at the end of block b = vB, v ∈ [1 : B], the D-F relay node 1 can decode
messages (mb−B+1,mb−B+2, . . . ,mb) if both (28) and (29) hold.

ii) At the end of all B2 block, the destination node n+ 2 decodes messages (m1,m2, . . . ,mB2) using
block-by-block backward decoding. Similarly, we only consider the decoding of (m1,m2, . . . ,mB2−B−L),
since (mB2−B−L+1,mB2−B−L+2, . . . ,mB2) are all dummy messages according to (26).
• a) Node n + 2 first finds the unique lDn+2,B2−L = {li,B2−L, i ∈ Dn+2} such that there exists some
lB

2

Dn+2,B2−L+1 satisfying that for any block j = B2 − L+ 1, B2 − L+ 2, . . . , B2,

(X0,j(mj|mj−B),X1,j(mj−B), {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ Dn+2},Yn+2,j)

∈ Aε(X0, X1, XDn+2 , ŶDn+2 , Yn+2), (30)

where, similarly, mj and mj−B are both dummy messages according to (26), and X0,j(mj|mj−B)
and X1,j(mj−B) are both known at node n + 2. Still, from the proof of [18, Thm 2.7], lDn+2,B2−L
can be decoded if

I(XS ; ŶDn+2\S , Yn+2|X0, X1, XDn+2\S)− I(YS ; ŶS |X0, X1, XDn+2 , Yn+2, ŶDn+2\S) > 0, (31)
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for any nonempty S ⊆ Dn+2.
• b) Backwardly and sequentially from block j = B2 − L to j = 1, node n + 2 finds the unique

pair (mj−B, lDn+2,j−1) satisfying (30), where lDn+2,j has already been recovered due to the backward
property of decoding, and mj either is a dummy message (for j = B2−L,B2−L−1, . . . , B2−B−
L + 1) or has been decoded due to the backward property of decoding (for j = B2 − B − L,B2 −
B − L− 1, . . . , 1).

At each block j = B2 − L,B2 − L− 1, . . . , 1, error occurs with mj−B if the true mj−B does not
satisfy (30) with any lDn+2,j−1, or a false mj−B satisfies (30) with some lDn+2,j−1. According to the
properties of typical sequences, the true (mj−B, lDn+2,j−1) satisfies (30) with high probability.

For a false mj−B and a lDn+2,j−1 with false {li,j−1, i ∈ S} but true {li,j−1, i ∈ Dn+2 \ S},
X0,j(mj|mj−B) and X1,j(mj−B) are independent of {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ Dn+2} and
Yn+2,j; and {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ S} are independent of {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) :
i ∈ Dn+2 \ S} and Yn+2,j .

Therefore, the probability that such false (mj, lDn+2,j−1) satisfies (30) can be upper bounded by

2T (H(X0,X1,XDn+2
,ŶDn+2

,Yn+2)+ε)2−T (H(XDn+2\S ,ŶDn+2\S ,Yn+2)−ε)

×2−T (H(X0,X1)−ε)2−T (H(XS)−ε)2−T (
∑
i∈S(H(Ŷi|Xi)−ε)).

Since the number of such false (mj, lDn+2,j−1) is upper bounded by 2TR
∏

i∈S 2
T (I(Yi;Ŷi|Xi)+ε), with

the union bound, it is easy to check that the probability of finding a false mj goes to zero as T →∞,
if

R < min
S⊆D1

I(X0, X1, XS ; ŶDn+2\S , Yn+2|XDn+2\S)− I(YS ; ŶS |X0, X1, XDn+2 , Yn+2, ŶDn+2\S). (32)

Similarly, based on the recovered mj and lDn+2,j , lDn+2,j−1 can be decoded if (31) holds.
By a) and b) together, at the end of all B2 block, the destination node n+2 can decode messages

(m1,m2, . . . ,mB2) if both (31) and (32) hold.
Combining i) and ii), and using the standard technique of time sharing, we conclude that the rate

described in (22)-(24) is achievable.

B. Multiple D-F relay nodes (M ≥ 2)
When there are multiple D-F relay nodes, i.e., M ≥ 2, a total of BM+1 blocks will be used. The

detailed codebook generation and encoding/decoding process are as follows.
Codebook Generation: Fix p(x0)p(xM|x0)

∏
i∈N\M p(xi)p(ŷi|yi, xi). We randomly and independently

generate a codebook for each block.
i) First consider the codebook generation for nodes π(1 :M + 1).
• For each block b ∈ [1 : BM+1], backwardly and sequentially for each relay node π(k), k = M +
1,M, . . . , 2, randomly generate 2TR conditionally independent sequences

xπ(k),b(mb−Bk−1|mb−Bk , . . . ,mb−BM ),

where mb−Bk−1 ,mb−Bk , . . . ,mb−BM ∈ [1 : 2TR];
• For each block b ∈ [1 : BM+1] and node π(1), i.e., the source node 0, randomly generate 2TR

conditionally independent sequences x0,b(mb|mb−B, . . . ,mb−BM ), where

mb,mb−B, . . . ,mb−BM ∈ [1 : 2TR].

ii) The codebook generation for the nodes in N \M is the same as that in the case of M = 1. For
each block b ∈ [1 : BM+1] and each relay node i ∈ N \M, randomly and independently generate 2TR̂i

sequences xi,b(li,b−1), li,b−1 ∈ [1 : 2TR̂i ], where R̂i = I(Yi; Ŷi|Xi)+ ε; for each relay node i ∈ N \M and
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each xi,b(li,b−1), li,b−1 ∈ [1 : 2TR̂i ], randomly and conditionally independently generate 2TR̂i sequences
ŷi,b(li,b|li,b−1), li,b ∈ [1 : 2TR̂i ].

The combination of i) and ii) defines the codebook for any block b ∈ [1 : BM+1],

Cb =
{
xπ(k),b(mb−Bk−1|mb−Bk , . . . ,mb−BM ) : mb−Bk−1 ,mb−Bk , . . . ,mb−BM ∈ [1 : 2TR], k =M + 1,M, . . . , 2;

x0,b(mb|mb−B, . . . ,mb−BM ) : mb,mb−B, . . . ,mb−BM ∈ [1 : 2TR];

xi,b(li,b−1), ŷi,b(li,b|li,b−1) : li,b, li,b−1 ∈ [1 : 2TR̂i ], i ∈ N \M
}
. (33)

Encoding: Let m = (m1,m2, . . . ,mBM+1) be the message vector to be sent and let mb = 1 be the
dummy message for any

b ∈ ∪BMw=1[wB − L+ 1 : wB]
⋃
∪Mu=1 ∪B

M−u

v=1 [v(B − 1)Bu + 1 : vBu+1], (34)

and for any b ≤ 0. Now, the actually achievable rate is B−L
B

(B−1
B

)MR due to the dummy messages, which
can still be made arbitrarily close to R by letting B →∞ for any L and M .

i) We still first consider the encoding process for nodes π(1 :M + 1).
• In block b ∈ [1 : BM+1], node π(1), i.e., the source node 0, transmits x0,b(mb|mb−B, . . . ,mb−BM ).
• By the end of block vBk−1, v ∈ [1 : BM+1/Bk−1], the D-F relay node π(k), k = 2, . . . ,M + 1,

has decoded messages (m1,m2, . . . ,mvBk−1) using backward decoding (see the decoding part). In
the next Bk−1 blocks, i.e., in block b ∈ [vBk−1 + 1 : (v + 1)Bk−1], node π(k), k = 2, . . . ,M + 1,
transmits xπ(k),b(mb−Bk−1 |mb−Bk , . . . ,mb−BM ), where

(mb−Bk−1 ,mb−Bk , . . . ,mb−BM ), b ∈ [vBk−1 + 1 : (v + 1)Bk−1]

have all been decoded by block vBk−1.
ii) The encoding process for the nodes in N \M is still the same as that in the case of M = 1. For

any block b ∈ [1 : BM+1], each relay node i ∈ N \M, upon receiving yi,b at the end of block b, finds
an index li,b such that

(xi,b(li,b−1),yi,b, ŷi,b(li,b|li,b−1)) ∈ Aε(Xi, Yi, Ŷi),

where li,0 = 1 by convention. In block b ∈ [1 : BM+1], the relay node i ∈ N \M transmits xi,b(li,b−1).
Decoding: At the end of block b = vBk−1, v ∈ [1 : BM+1/Bk−1], the node π(k), k = 2, . . . ,M + 2,

decodes messages (mb−Bk−1+1, . . . ,mb) using block-by-block backward decoding as follows.
i) The node π(k), k = 2, . . . ,M + 2, first finds the unique lDk,b−L = {li,b−L, i ∈ Dk} such that there

exists some lbDk,b−L+1 satisfying that for any block j = b− L+ 1, b− L+ 2, . . . , b,

(X0,j(mj|mj−B, . . . ,mj−BM ),

{Xπ(s),j(mj−Bs−1|mj−Bs , . . . ,mj−BM ), s = 2, . . . , k − 1, k, k + 1, . . . ,M + 1},
{(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ Dk},Yπ(k),j) ∈ Aε(X0, XM, XDk , ŶDk , Yπ(k)). (35)

Note in (35), (mj,mj−B, . . . ,mj−BM ), j = b−L+1, b−L+2, . . . , b are all dummy messages according
to (34), and thus Xπ(s),j, s = 1, . . . ,M + 1 are all known at node π(k). Then, it follows from the proof
of [18, Thm 2.7] that lDk,b−L can be decoded if

I(XS ; ŶDk\S , Yπ(k)|Xπ(1:M+1), XDk\S)− I(YS ; ŶS |Xπ(1:M+1), XDk , Yπ(k), ŶDk\S) > 0, (36)

for any nonempty S ⊆ Dk.
ii) Backwardly and sequentially from block j = b−L to j = b−Bk−1+1, node π(k), k = 2, 3, . . . ,M+2,

jointly decodes the message transmitted by its immediate upstream node π(k−1), and the compressions of
the C-F relay nodes. Specifically, node π(k), k = 2, 3, . . . ,M +2 finds the unique pair (mj−Bk−2 , lDk,j−1)
satisfying (35); node π(k), k = 2, finds the unique pair (mj, lDk,j−1) satisfying (35). Note here the
exception for node π(2) arises because the source node π(1) transmits mj rather than mj−1 in block j,
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but the ideas of the decoding processes at all π(k), k = 2, 3, . . . ,M + 2, are exactly the same. Thus,
below, we only present the decoding at node π(k), k = 3, 4, . . . ,M + 2, while the decoding at node π(2)
can be easily obtained by analogy. The same consideration also applies to the proof in IV-B.

In (35), lDk,j has already been recovered due to the backward property of decoding, and among the
messages (mj,mj−B, . . . ,mj−BM ), only mj−Bk−2 is the unknown message at node π(k) that needs to
be decoded in block j. In fact, (mj−Bk−1 , . . . ,mj−BM ) have been decoded by block b − Bk−1, while
(mj, . . . ,mj−Bk−3) either are dummy messages according to (34) (for block j = b−L, b−L− 1 . . . , b−
Bk−2−L+1) or have been decoded due to the backward property of decoding (for block j = b−Bk−2−
L, b−Bk−2 − L− 1, . . . , b−Bk−1 + 1).

At each block j = b− L, b− L− 1, . . . , b−Bk−1 + 1, error occurs with mj−Bk−2 if the true mj−Bk−2

does not satisfy (35) with any lDk,j−1, or a false mj−Bk−2 satisfies (35) with some lDk,j−1. According to
the properties of typical sequences, the true (mj−Bk−2 , lDk,j−1) satisfies (35) with high probability.

For a false mj−Bk−2 and a lDk,j−1 with false {li,b−1, i ∈ S} but true {li,b−1, i ∈ Dk \ S},

{Xπ(1),j(mj|mj−B, . . . ,mj−BM ),Xπ(s),j(mj−Bs−1|mj−Bs , . . . ,mj−BM ), s = 2, . . . , k − 1}

are conditionally independent of {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ Dk} and Yπ(k),j given

{Xπ(s),j(mj−Bs−1|mj−Bs , . . . ,mj−BM ), s = k, . . . ,M + 1};

and {(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ S} are independent of

{(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ Dk\S}, {Xπ(s),j(mj−Bs−1|mj−Bs , . . . ,mj−BM ), s ∈ [k :M+1]},Yπ(k),j.

Therefore, the probability that such false (mj−Bk−2 , lDk,j−1) satisfies (35) can be upper bounded by

2T (H(Xπ(1:M+1),XDk ,ŶDk ,Yπ(k))+ε)2−T (H(Xπ(k:M+1),XDk\S ,ŶDk\S ,Yπ(k))−ε)

×2−T (H(Xπ(1:k−1)|Xπ(k:M+1))−ε)2−T (H(XS)−ε)2−T (
∑
i∈S(H(Ŷi|Xi)−ε)).

Since the number of such false (mj−Bk−2 , lDk,j−1) is upper bounded by 2TR
∏

i∈S 2
T (I(Yi;Ŷi|Xi)+ε), with the

union bound, it is easy to check that the probability of finding a false mj−Bk−2 goes to zero as T →∞,
if

R < min
S⊆Dk

I(Xπ(1:k−1), XS ; ŶDk\S , Yπ(k)|XDk\S , Xπ(k:M+1))−I(YS ; ŶS |Xπ(1:M+1), XDk , Yπ(k), ŶDk\S). (37)

Then, based on the recovered mj−Bk−2 and lDk,j , from the proof of [18, Thm 2.7], it follows that lDk,j−1
can be decoded if (36) holds.

Combining i) and ii), using the technique of time sharing, we obtain the achievable rate (19)-(20).

IV. UNIFIED RELAY FRAMEWORK WITH B-BLOCKS-BY-B-BLOCKS BACKWARD DECODING

Under the unified relay framework using nested blocks and backward decoding, we can also consider
combining the noisy network coding scheme [16] with the multi-level D-F scheme. However, since noisy
network coding uses repetitive encoding/all blocks united decoding, to make it fit into our framework,
a modification is needed. Specifically, assume some fixed M ⊆ N with |M| = M and π({0,M, n +
1}), and a total of BM+1 blocks are used. The source can still repetitively encode intra-B-blocks as
in [16], but inter-B-blocks, the source has to cumulatively encode to allow for the operation of D-F
strategy; Correspondingly, both the D-F relay nodes and the destination will perform B-Blocks-By-B-
Blocks backward decoding, which is essentially a combination of backward decoding and B blocks united
decoding. Same as in Section III, the backward decoding at node π(k), k = 2, 3, . . . ,M + 2, will happen
at the end of every Bk−1 blocks, i.e., at the end of block b = vBk−1, v ∈ [1 : BM+1/Bk−1], and both the
D-F relay nodes and the destination node perform compression-message joint decoding. Below, we still
first consider the case of single D-F relay node (M = 1) to illustrate the main idea, and then extend it to
the general case of multiple D-F relay nodes (M ≥ 2).
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A. Single D-F relay node (M = 1)
Still assume that only node 1 is the D-F relay node, and all other relay nodes are the C-F relay nodes,

and let Ñ := N \{1}. Specializing Theorem 2.2 to this case, we have that a rate R is achievable, if there
exists some

p(q)p(x0|q)p(x1|x0, q)
∏
i∈Ñ

p(xi|q)p(ŷi|yi, xi, q),

such that

R < min


max
T1⊆Ñ

min
S⊆T1

I(X0, XS ; ŶT1\S , Y1|X1, XT1\S , Q)− I(YS ; ŶS |X0, X1, XT1 , Y1, ŶT1\S , Q),

max
Tn+2⊆Ñ

min
S⊆Tn+2

I(X0, X1, XS ; ŶTn+2\S , Yn+2|XTn+2\S , Q)− I(YS ; ŶS |X0, X1, XTn+2 , Yn+2, ŶTn+2\S , Q).


(38)

Still, a total of B2 blocks will be used. The detailed codebook generation and encoding/decoding process
are as follows, which can be understood with the help of Table II.

TABLE II
B-BLOCKS-BY-B-BLOCKS BACKWARD DECODING FOR THE SINGLE D-F RELAY NODE CASE

Block 1 2 · · · B − 1 B · · ·

X0 x0,1(m1|1) x0,2(m1|1) · · · x0,B−1(m1|1) x0,B(m1|1) · · ·
Y1 ∅ ∅ · · · ∅ m1 · · ·
X1 x1,1(1) x1,2(1) · · · x1,B−1(1) x1,B(1) · · ·
YÑ ŷÑ ,1(lÑ ,1|1) ŷÑ ,2(lÑ ,2|lÑ ,1) · · · ŷÑ ,B−1(lÑ ,B−1|lÑ ,B−2) ŷÑ ,B(lÑ ,B |lÑ ,B−1) · · ·

XÑ xÑ ,1(1) xÑ ,2(lÑ ,1) · · · xÑ ,B−1(lÑ ,B−2) xÑ ,B(lÑ ,B−1) · · ·

Yn+2 ∅ ∅ · · · ∅ ∅ · · ·

Block B2 −B + 1 B2 −B + 2 · · · B2 − 1 B2

X0 x0,B2−B+1(1|mB−1) x0,B2−B+2(1|mB−1) · · · x0,B2−1(1|mB−1) x0,B2 (1|mB−1)

Y1 ∅ ∅ · · · ∅ mB

X1 x1,B2−B+1(mB−1) x1,B2−B+2(mB−1) · · · x1,B2−1(mB−1) x1,B2 (mB−1)

YÑ ŷÑ ,B2−B+1(lÑ ,B2−B+1|lÑ ,B2−B) ŷÑ ,B2−B+2(lÑ ,B2−B+2|lÑ ,B2−B+1) · · · ŷÑ ,B2−1(lÑ ,B2−1|lÑ ,B2−2) ŷÑ ,B2 (lÑ ,B2 |lÑ ,B2−1)

XÑ xÑ ,B2−B+1(lÑ ,B2−B) xÑ ,B2−B+2(lÑ ,B2−B+1) · · · xÑ ,B2−1(lÑ ,B2−2) xÑ ,B2 (lÑ ,B2−1)

Yn+2 ∅ ∅ · · · ∅ (m1,m2, . . . ,mB)

Codebook Generation: Fix p(x0)p(x1|x0)
∏

i∈Ñ p(xi)p(ŷi|yi, xi). We randomly and independently gen-
erate a codebook for each block.

i) First consider the codebook generation for the source node 0 and the D-F relay node 1. Denote
f(b) := d b

B
e, i.e., the smallest integer greater than or equal to b

B
. For each block b ∈ [1 : B2], randomly

generate 2TBR independent sequences x1,b(mf(b−B)) for node 1, and randomly generate 2TBR conditionally
independent sequences x0,b(mf(b)|mf(b−B)) for node 0, where mf(b),mf(b−B) ∈ [1 : 2TBR].

ii) The codebook generation for the C-F relay nodes is exactly the same as that in Section III. For
each block b ∈ [1 : B2] and each relay node i ∈ Ñ , randomly and independently generate 2TR̂i sequences
xi,b(li,b−1), li,b−1 ∈ [1 : 2TR̂i ], where R̂i = I(Yi; Ŷi|Xi)+ε; for each relay node i ∈ Ñ and each xi,b(li,b−1),
li,b−1 ∈ [1 : 2TR̂i ], randomly and conditionally independently generate 2TR̂i sequences ŷi,b(li,b|li,b−1),
li,b ∈ [1 : 2TR̂i ].

The combination of i) and ii) defines the codebook for any block b ∈ [1 : B2],

Cb =
{
x1,b(mf(b−B)),x0,b(mf(b)|mf(b−B)) : mf(b),mf(b−B) ∈ [1 : 2TBR];

xi,b(li,b−1), ŷi,b(li,b|li,b−1) : li,b, li,b−1 ∈ [1 : 2TR̂i ], i ∈ Ñ
}
. (39)
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Encoding: Let the message vector to be sent be

m = (m1,m1, . . . ,m1︸ ︷︷ ︸
B

,m2,m2, . . . ,m2︸ ︷︷ ︸
B

, . . . ,mB,mB, . . . ,mB︸ ︷︷ ︸
B

).

Let mB = 1 be the dummy message, i.e., mf(b) = 1 for any

b ∈ [(B − 1)B + 1 : B2], (40)

and for any b ≤ 0. The actually achievable rate is B−1
B
R due to the dummy messages, which, however,

can be made arbitrarily close to R by letting B →∞.
i) First consider the encoding process for nodes 0 and 1.
• In block b ∈ [1 : B2], the source node 0 transmits x0,f(b)(mf(b)|mf(b−B)).
• At the end of block vB, v ∈ [1 : B], the D-F relay node 1 has decoded messages mv using B blocks

united decoding (see the decoding part). In the next B blocks, i.e., in block b ∈ [vB+1 : (v+1)B], the
relay node 1 transmits x1,b(mf(b−B)), where mf(b−B) for any b ∈ [vB+1 : (v+1)B] is corresponding
to mv) that has been decoded by block vB.

ii) For any block b ∈ [1 : B2], each relay node i ∈ Ñ , upon receiving yi,b at the end of block b, finds
an index li,b such that

(xi,b(li,b−1),yi,b, ŷi,b(li,b|li,b−1)) ∈ Aε(Xi, Yi, Ŷi),

where li,0 = 1 by convention. In block b ∈ [1 : B2], the relay node i ∈ Ñ transmits xi,b(li,b−1).
Decoding: We present the decoding process at the D-F relay node 1 and at the destination node n+ 2

separately.
i) At the end of block b = vB, v ∈ [1 : B], the D-F relay node 1 decodes messages mv using B blocks

united decoding, i.e., it finds the unique mv, such that there exists some lvBÑ ,(v−1)B+1
satisfying that for

any block j = (v − 1)B + 1, (v − 1)B + 2, . . . , vB,

(X0,j(mf(j)|mf(j−B)),X1,j(mf(j−B))

{(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ Ñ},Y1,j) ∈ Aε(X0, X1, XÑ , ŶÑ , Y1), (41)

where mf(j−B) is corresponding to mv−1 and has been decoded by the end of block (v− 1)B, and mf(j)

is corresponding to mv. From [16, Thm 1] and its proof (see also [18, Thm 2.4]), we have that mv can
be decoded if

R < min
S⊆Ñ

I(X0, XS ; ŶÑ \S , Y1|XÑ \S , X1)− I(YS ; ŶS |X0, X1, XÑ , Y1, ŶÑ \S). (42)

Note, (42) can be improved by considering only a subset T1 ⊆ Ñ for the decoding while treating the
inputs of other C-F relay nodes as purely noise, leading to following more general rate constraint:

R < max
T1⊆Ñ

min
S⊆T1

I(X0, XS ; ŶT1\S , Y1|XT1\S , X1)− I(YS ; ŶS |X0, X1, XT1 , Y1, ŶT1\S). (43)

ii) At the end of all B2 block, the destination node decodes all messages (m1,m2, . . . ,mB) using B-
Blocks-By-B-Blocks backward decoding. In fact, since mB = 1 is dummy message, only (m1,m2, . . . ,mB−1)
need to be decoded. For this, backwardly and sequentially for g = B−1, B−2, . . . , 1, node n+2 finds the
unique mg such that there exists some lgB+B

Ñ ,gB+1
satisfying that for any block j = gB+1, gB+2, . . . , gB+B,

(X0,j(mf(j)|mf(j−B)),X1,j(mf(j−B))

{(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ Ñ},Yn+2,j) ∈ Aε(X0, X1, XÑ , ŶÑ , Yn+2). (44)

Note in (44), for j = gB + 1, gB + 2, . . . , gB +B, only mf(j−B), corresponding to mg, needs decoding;
and mf(j), corresponding to mg+1, either is a dummy message (for g = B−1, i.e., j = (B−1)B+1, (B−
1)B+2, . . . , B2), or has been decoded due to the backward property of decoding (for g = B− 2, . . . , 1).
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Thus, X0 and X1 are cooperatively transmitting the message mg, and similarly as above, mg can be
decoded if

R < min
S⊆Ñ

I(X0, X1, XS ; ŶÑ \S , Yn+2|XÑ \S)− I(YS ; ŶS |X0, X1, XÑ , Yn+2, ŶÑ \S). (45)

Also, (45) can be improved by considering only a subset Tn+2 for the decoding, leading to the following
rate constraint:

R < max
Tn+2⊆Ñ

min
S⊆Tn+2

I(X0, X1, XS ; ŶTn+2\S , Yn+2|XTn+2\S)− I(YS ; ŶS |X0, X1, XTn+2 , Yn+2, ŶTn+2\S).

(46)

Combining (43) and (46) and using the technique of time sharing, we have that the rate in (38) is
achievable.

B. Multiple D-F relay nodes (M ≥ 2)
Codebook Generation: Fix p(x0)p(xM|x0)

∏
i∈N\M p(xi)p(ŷi|yi, xi). We randomly and independently

generate a codebook for each block. The codebook generation for the C-F relay nodes is exactly the
same as that in III and IV-A, and hence omitted. We only present the codebook generation for nodes
π(1 :M + 1). Still, denote f(b) := d b

B
e, i.e., the smallest integer greater than or equal to b

B
.

• For each block b ∈ [1 : BM+1], backwardly and sequentially for each relay node π(k), k = M +
1,M, . . . , 2, randomly generate 2TBR conditionally independent sequences

xπ(k),b(mf(b−Bk−1)|mf(b−Bk), . . . ,mf(b−BM )),

where mf(b−Bk−1),mf(b−Bk), . . . ,mf(b−BM ) ∈ [1 : 2TBR].
• For each block b ∈ [1 : BM+1] and node π(1), i.e., the source node 0, randomly generate 2TBR

conditionally independent sequences

x0,b(mf(b)|mf(b−B), . . . ,mf(b−BM )),

where mf(b),mf(b−B), . . . ,mf(b−BM ) ∈ [1 : 2TBR].

The above, together with the codebook generation for the C-F relay nodes, defines the codebook for any
block b ∈ [1 : BM+1],

Cb = {xπ(k),b(mf(b−Bk−1)|mf(b−Bk), . . . ,mf(b−BM )) : mf(b−Bk−1), . . . ,mf(b−BM ) ∈ [1 : 2TBR], k =M + 1,M, . . . , 2;

x0,b(mf(b)|mf(b−B), . . . ,mf(b−BM )) : mf(b),mf(b−B), . . . ,mf(b−BM ) ∈ [1 : 2TBR];

xi,b(li,b−1), ŷi,b(li,b|li,b−1) : li,b, li,b−1 ∈ [1 : 2TR̂i ], i ∈ N \M}.

Encoding: Let the message vector to be sent be

m = (m1,m1, . . . ,m1︸ ︷︷ ︸
B

,m2,m2, . . . ,m2︸ ︷︷ ︸
B

, . . . ,mBM ,mBM , . . . ,mBM︸ ︷︷ ︸
B

).

Let mf(b) = 1 be the dummy message for any

b ∈ ∪Mu=1 ∪B
M−u

v=1 [v(B − 1)Bu + 1 : vBu+1], (47)

and for any b ≤ 0. The actually achievable rate is (B−1
B

)MR due to the dummy messages, which can still
be made arbitrarily close to R by letting B →∞ for any M .

The encoding process for the C-F relay nodes is still exactly the same as that in III and IV-A, and
hence omitted. We only present the encoding process for nodes π(1 :M + 1).
• In block b ∈ [1 : BM+1], the source node 0 transmits x0,b(mf(b)|mf(b−B), . . . ,mf(b−BM )).
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• At the end of block vBk−1, v ∈ [1 : BM+1/Bk−1], the relay node π(k), k = 2, . . . ,M+1, has decoded
messages (m1,m2, . . . ,mvBk−2) using backward decoding (see the decoding part). In the next Bk−1

blocks, i.e., in block b ∈ [vBk−1+1 : (v+1)Bk−1], the relay node π(k), k = 2, . . . ,M +1, transmits

xπ(k),b(mf(b−Bk−1)|mf(b−Bk), . . . ,mf(b−BM )),

where (mf(b−Bk−1),mf(b−Bk), . . . ,mf(b−BM )) for any b ∈ [vBk−1 + 1 : (v + 1)Bk−1] have all been
decoded by block vBk−1.

Decoding: At the end of every Bk−1 blocks, the node π(k), k = 2, . . . ,M + 2 decodes Bk−2 mes-
sages using B-Blocks-By-B-Blocks backward decoding. (Note every Bk−1 blocks carry Bk−2 messages.)
Specifically, at the end of block b = vBk−1, v ∈ [1 : BM+1/Bk−1], the node π(k), k = 2, . . . ,M + 2, de-
codes messages (m(v−1)Bk−2+1, . . . ,mvBk−2). In fact, (mvBk−2−Bk−3+1, . . . ,mvBk−2) are dummy messages
according to (47), and only (m(v−1)Bk−2+1, . . . ,mvBk−2−Bk−3) need decoding. For this, backwardly and
sequentially for g = vBk−2 −Bk−3, vBk−2 −Bk−3 − 1, . . . , (v− 1)Bk−2 + 1, node π(k) finds the unique
mg such that there exists some lgB+Bk−2

N\M,(g−1)B+Bk−2+1
satisfying that for any block j = (g − 1)B +Bk−2 +

1, (g − 1)B +Bk−2 + 2, . . . , gB +Bk−2,

(X0,j(mf(j)|mf(j−B), . . . ,mf(j−BM )),

{Xπ(s),j(mf(j−Bs−1)|mf(j−Bs), . . . ,mf(j−BM )), s = 2, . . . , k − 1, k, k + 1, . . . ,M + 1},
{(Xi,j(li,j−1), Ŷi,j(li,j|li,j−1)) : i ∈ N \M},Yπ(k),j) ∈ Aε(X0, XM, XN\M, ŶN\M, Yπ(k)), (48)

where (mf(j),mf(j−B), . . . ,mf(j−Bk−3),mf(j−Bk−2),mf(j−Bk−1), . . . ,mf(j−BM )) are corresponding to

(mg+Bk−3 ,mg+Bk−3−1, . . . ,mg+Bk−3−Bk−4 ,mg,mg+Bk−3−Bk−2 , . . . ,mg+Bk−3−BM−1) (49)

Among the messages in (49), only mg, corresponding to mf(j−Bk−2), is the unknown message at node
π(k) that needs to be decoded. In fact,

(mg+Bk−3−Bk−2 , . . . ,mg+Bk−3−BM−1), corresponding to (mf(j−Bk−1), . . . ,mf(j−BM )),

have been decoded by block b−Bk−1, while

(mg+Bk−3 ,mg+Bk−3−1, . . . ,mg+Bk−3−Bk−4), corresponding to (mf(j),mf(j−B), . . . ,mf(j−Bk−3)),

either are dummy messages according to (47) (for g = vBk−2 − Bk−3, . . . , vBk−2 − 2Bk−3 + 1) or have
been decoded due to the backward property of decoding (for g = vBk−2 − 2Bk−3, vBk−2 − 2Bk−3 −
1, . . . , (v − 1)Bk−2 + 1). Therefore, in (48),

{Xπ(s),j, s = k, k + 1, . . . ,M + 1}

are known at node π(k), while
{Xπ(s),j, s = 1, . . . , k − 1}

are cooperatively transmitting the message mg. Having noted this fact, from [16, Thm 1] and its proof
(see also [18, Thm 2.4]), we have that mg can be decoded if

R < min
S⊆N\M

I(X(1:k−1), XS ; Ŷ(N\M)\S , Yπ(k)|X(N\M)\S , X(k:M+1))− I(YS ; ŶS |X(1:M+1), XN\M, Yπ(k), Ŷ(N\M)\S).

(50)

By considering only a subset Tk ⊆ N \M for the decoding at node π(k) while treating the inputs of
other C-F relay nodes as purely noise, and using the technique of time sharing, (50) can be improved to

R < max
Tk⊆N\M

min
S⊆Tk

I(Xπ(1:k−1), XS ; ŶTk\S , Yπ(k)|XTk\S , Xπ(k:M+1), Q)− I(YS ; ŶS |Xπ(1:M+1), XTk , Yπ(k), ŶTk\S , Q),

(51)

which proves Theorem 2.2.
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V. CONCLUSION

We have proposed a unified relay framework with both the D-F and C-F relay nodes for multiple-relay
channels. This framework employs nested blocks combined with backward decoding to allow for the full
incorporation of the best known D-F and C-F relay strategies. The achievable rates obtained under such
a framework turn out to combine both the best known D-F and C-F achievable rates and include them as
special cases.
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