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Abstract

The rate-privacy function is defined in [1] as a tradeoff between privacy and utility in a distributed private
data system in which both privacy and utility are measured using mutual information. Here, we use maximal
correlation in lieu of mutual information in the privacy constraint. We first obtain some general properties and
bounds for maximal correlation and then modify the rate-privacy function to account for the privacy-constrained
estimation problem. We find a bound for the utility in this problem when the maximal correlation privacy is set
to some thresholdǫ > 0 and construct an explicit privacy scheme which achieves this bound.

I. INTRODUCTION

For a given pair of random variables(X, Y ) ∈ X × Y , the problem of privacy is, in general, to
display a random variable, sayZ, such thatY and Z are as much correlated as possible whileX
and Z are almost independent. To make this statement precise, we need to introduce twomeasures
of dependence, one for measuring the correlation betweenY and Z and the other one betweenX
and Z. For two arbitrary alphabetsU and V and random variablesU ∈ U and V ∈ V, a mapping
δ : U × V → [0, 1] is said to be a measure of dependence ifδ(U ;V ) = 0 if and only if U andV are
independent andδ(U ;V ) = 1 if there exists some deterministic functional relationship betweenU and
V , i.e., there exist functionsf and g such thatX = f(Y ) or Y = g(X) with probability one. Rényi
[2] postulated additional axioms for an appropriate measure of dependence. For example, the linear
correlation coefficient,|ρ(U ;V )|, is not a measure of dependence as it might become zero even ifU is
perfectly determined byV .

Rényi [2] augmented the definition of the linear correlationcoefficient by taking into account functions
of U andV and then taking the supremum ofρ(f(U); g(V )) over all choices of appropriate functionsf
andg, to obtainmaximal correlation. There are a few alternative characterizations of maximal correlation
in the literature some of which are explained in the sequel. Due to itstensorization1 property, maximal
correlation is shown to be very important in correlation distillation, e.g, [3], distributions simulation,
e.g., [4], and is also related to the hypercontractivity coefficient, e.g., [5] and [6]. Beigi and Gohari [7]
have recently proposedmaximal correlation ribbonas a generalization of maximal correlation.

Mutual informationI(U ;V ) can also be viewed as a measure which captures dependence between
U andV . Although, it is not a measure of dependence according to Rényi’s stipulations, it has some
properties which make mutual information a good candidate in data privacy applications especially
for measuring utility. Although both maximal correlation and mutual information have been used in
numerous applications in information theory, the connection between them is still not fully explored in
the literature.

The definition of maximal correlation together with some alternative characterizations are given in
Section II. In Section III, we present some general results about maximal correlation and also some

This work was supported in part by NSERC of Canada.
1The measure of dependenceδ(U ;V ) is said to have the tensorization property if for anyn i.i.d. copies(Un, V n) of (U, V ), we have

δ(Un;V n) = δ(U ; V ). Note that mutual information violates this property asI(Un;V n) = nI(U ;V ).
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bounds in terms of mutual information. We then formulate a data privacy problem (privacy-constrained
estimation) in terms of maximal correlation in Section IV and present some achievability results.

II. M AXIMAL CORRELATION: DEFINITION AND CHARACTERIZATION

Suppose thatX is a random variable with distributionP , over alphabetX andY is another random
variable which results from passingX through channelW . ChannelW consists of a family of probability
measures defined over alphabetY , i.e.,PY |X(·|x) for x ∈ X . We denote byW ◦ P the distribution on
Y induced by the push-forward of the distributionP , which is the distribution of the outputY when
the inputX is distributed according toP , and byP ×W the joint distributionPXY if PX = P .

Let G (resp.H) be the set of all real-valued functions ofX (resp.Y ) with zero mean and finite
variances with respect toP (resp.W ◦ P ). The setsG andH are both separable Hilbert spaces with
the covariance as the inner product.

For a fixed channel,W , the maximal correlation betweenX and Y is a functional ofP and W
defined as

ρm(P ;W ) := sup
g∈G,f∈H

ρ(g(X); f(Y )) (1)

= sup
g∈G,f∈H,||f ||2=||g||2=1

E[g(X)f(Y )],

whereρ(·; ·) is the linear correlation coefficient2 and for any random variableU , ||U ||22 := E[U2]. We use
interchangeably the notationρm(P ;W ) andρm(X ; Y ) whereX ∼ P andY are respectively the input
and output of channelW . Maximal correlation is a measure of dependence between random variables
X andY , that is,0 ≤ ρm(X ; Y ) ≤ 1 whereρm(X ; Y ) = 0 if and only if X andY are independent
andρm(X ; Y ) = 1 if an only if there exists a pair of functionsg andf such thatg(X) andf(Y ) are
non-degenerate andf(Y ) = g(X) with probability one. Maximal correlation is closely related to the
conditional expectation operator, defined as follows.

Definition 1. For a given joint distributionPXY = P × W , the conditional expectation operator
TX : H → G is defined as

(TXf)(x) := E[f(Y )|X = x].

It is a well-known fact that the second largest singular value3 of TX is preciselyρm(P ;W ), see e.g.
[3] and [2].

The definition of maximal correlation, given in (1), has beensimplified in the literature in general and
also for some special cases. For example, by a simple application of the Cauchy-Schwarz inequality,
Rényi [2] showed the following one-function characterization,

ρ2m(P ;W ) = sup
g∈G,||g||2=1

E[E2[g(X)|Y ]]. (2)

Remark1. If min{|X |, |Y|} = 2, then

ρ2m(P ;W ) = χ2(PXY ||PX × PY ), (3)

where the chi-squared divergence is defined as

χ2(P ||Q) :=

∫
(

dP
dQ

)2

dQ− 1, (4)

2I.e., ρ(X;Y ) := Cov(X;Y )
σXσY

, where Cov(X; Y ), σX andσY are the covariance betweenX andY , the standard deviation ofX and the
standard deviation ofY , respectively.

3For any arbitrary operatorT mapping (Banach) spaceX to itself, an eigenvalue ofT is defined as a numberλ such thatTx = λx.
The singular value ofT is then defined as the eigenvalue ofT ∗T whereT ∗ is the adjoint ofT . See [8] for more details.
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where dP
dQ is the Radon-Nikodym derivative ofP with respect toQ. Note that in the finite dimensional

case, the singular values of operatorTX are equal to the singular values of the matrixQ = [ PXY (x,y)√
PX(x)PY (y)

],

see [9]. The expression (3) therefore follows from observing that ρ2m(P ;W ) is the second largest
eigenvalue of bothQQT andQTQ either of which is a2 × 2 matrix which implies thatρ2m(P ;W ) is
equal to the trace of that matrix minus the largest eigenvalue, i.e., 1. It is important to mention here that
χ2(PXY ||PXPY ) is shown in [3] to be equal to the sum of squares of the singularvalues of operator4

TX minus one (i.e., the largest one) whileρm(X ; Y ) is the second largest one.

SupposeW̃ is the backward channel corresponding toW , that is, if W = PY |X , then W̃ = PX|Y .
Then the compositioñW ◦W : X → X defined by

W̃ ◦W (x′|x) =
∑

y∈Y
W (y|x)W̃ (x′|y),

is a channel for whichP is a stationary distribution and the associated conditional expectation operator
TX is self-adjoint. It is easy to show that in this case

ρ2m(P ;W ) = ρm(P ; W̃ ◦W ). (5)

To see this, note that it is show in [5] that

ρ2m(P ;W ) = sup
g∈G,||g||2=1

E[g(X)g(X ′)], (6)

where X ′ is the output of channel̃W ◦ W under inputX. This clearly implies thatρ2m(X ; Y ) ≤
ρm(X ;X ′). The following gives the reverse inequality. For arbitrarymeasurable functionsh, g : X → R,
we have

E[g(X)h(X ′)]
(a)
= E

[

E[g(X)|Y ]E[h(X ′)|Y ]
]

(b)

≤ ||E[g(X)|Y ]||2||E[h(X ′)|Y ]||2
(c)

≤ ρm(X ; Y )ρm(X
′; Y )

(d)
= ρ2m(X ; Y ), (7)

where(a) is due to the Markov conditionX → Y → X ′, (b) is a simple application of the Cauchy-
Schwarz inequality,(c) comes from (2), and(d) follows from the fact thatρm(X ′; Y ) = ρm(X ; Y ).
This chain of inequalities shows thatρm(X ;X ′) ≤ ρ2m(X ; Y ) which, together with the earlier inequality,
yields ρm(X ;X ′) = ρ2m(X ; Y ).

III. M AXIMAL CORRELATION AND MUTUAL INFORMATION

It is well-known that for Gaussian random variablesX, Y andZ which satisfy the Markov condition
X → Y → Z, we haveρ(X,Z) = ρ(Y, Z)ρ(X, Y ). A similar relation for maximal correlation does not
in general hold. However, the following theorem gives a similar result.

Theorem 1. For random variablesX and Y with a joint distributionP ×W , we have

sup
X→Y→Z
ρm(Y ;Z)6=0

ρm(X ;Z)

ρm(Y ;Z)
= ρm(X ; Y ).

4In the finite dimensional case, the sum of the singular valuesof operatorT is equal to the Frobenius norm ofT which is defined as
||T ||F = Tr(T ∗T ) where Tr is the trace operator.

March 15, 2018 DRAFT



4

Proof. First note that by data processing for maximal correlation the ratio on the left-hand side is always
less than or equal to one. The inequality (c) in (7) yieldsρm(X ;Z) ≤ ρm(X ; Y )ρm(Y ;Z) from which
we can write

ρm(X ;Z)

ρm(Y ;Z)
≤ ρm(X ; Y ).

The achievability result comes from the special case treated in Section II whereX → Y → X ′ andPX′|Y
is the backward channel associated withPY |X . It was shown thatρm(X ; Y )ρm(X

′; Y ) = ρm(X ;X ′)
which completes the proof.

This theorem is similar to a recent result by Anantharam et al. [5] in which for a givenPXY the ratio
betweenI(X ;Z) and I(Y ;Z) is maximized over all channelsPZ|Y such that the Markov condition
X → Y → Z is satisfied.

The following theorem connects the maximal correlation with mutual information whenX and channel
W are both assumed to be Gaussian.

Theorem 2. Let (X, Y ) be jointly Gaussian random variables, then we have

ρ2m(X ; Y ) ≤ 1− 2−2I(X;Y ) ≤ (2 ln 2)I(X ; Y ).

Remark2. Linfoot [10] introduced theinformationalmeasure of correlation which is defined for two
continuous random variablesX andY as

r(X ; Y ) :=
√

1− 2−2I(X;Y ).

Theorem 2 therefore implies that for jointly Gaussian random variables,ρm(X ; Y ) ≤ r(X ; Y ). The
informational measure of correlation is generalized in [11] for general random variables.

Proof. Since (X, Y ) is bivariate Gaussian, we know from [12] thatρm(X ; Y ) = |ρ(X ; Y )|. On the
other hand, we can show that given a pair of random variablesX andY , the conditional expectation
of X givenY has the maximum linear correlation withX among all functionsf ∈ H, i.e.

sup
f

ρ(X ; f(Y )) = ρ(X ;E[X|Y ]) =
||E[X ]− E[X|Y ]||2

√

var(X)
, (8)

where the supremum is taken over all measurable functionsf with finite variance (not necessarily with
zero mean) andvar(X) denotes the variance ofX. To see this, without loss of generality, we can assume
that f ∈ H, i.e.,E[f(Y )] = 0. Then we have

ρ(X ; f(Y )) =
E[Xf(Y )]

√

var(X)||f(Y )||2

=
E
[

f(Y )E[X|Y ]
]

√

var(X)||f(Y )||2
≤ ||E[X|Y ]||2

√

var(X)
,

where the inequality comes from the Cauchy-Schwarz inequality. Equality occurs iff(Y ) = E[X|Y ].
It is a well-known fact from rate-distortion theory that forGaussianX and its reconstruction̂X

I(X ; X̂) ≥ 1

2
log

var(X)

E[(X − X̂)2]
,

and hence by settinĝX = E[X|Y ], after some straightforward calculations we obtain

I(X ; Y ) ≥ 1

2
log

1

1− ρ2(X ;E[X|Y ])
, (9)
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and hence,
ρ2(X ;E[X|Y ]) ≤ 1− 2−2I(X;Y ). (10)

Combining (8) and (10), we have

ρ2m(X ; Y ) ≤ ρ2(X ;E[X|Y ]) ≤ 1− 2−2I(X;Y )

= 1− e−2 ln 2I(X;Y ) ≤ 2 ln 2I(X ; Y ).

Note that Theorem 2 is based on the fact that for jointly Gaussian random variablesX andY , we
haveρm(X ; Y ) = |ρ(X ; Y )|. This is not, in general, true. For example consider a pair ofzero-mean
random variablesX = U1V andY = U2V where allU1, U2 andV are independent andPr(Ui = +1) =
Pr(Ui = −1) = 1/2 for i = 1, 2. We haveE[X|Y ] = E[U1V |U2V ] = 0 and similarlyE[Y |X ] = 0 both
implying thatρ(X ; Y ) = 0. Nevertheless,Pr(X2 = Y 2) = 1 implying thatρm(X ; Y ) = 1.

The following theorem gives a lower bound for maximal correlation in terms of mutual information.
We assume that the Radon-Nikodym derivativePXY with respect toPX × PY exists which we denote
it by ı, i.e.,

ı :=
dPXY

d(PX × PY )
. (11)

The logarithm of this quantity is sometimes called the information density [13, p. 248].

Theorem 3. For a givenPXY = P ×W with min{|X |, |Y|} = 2, we have

ρ2m(P ;W ) ≥ 2I(P ;W ) − 1

Proof. As mentioned earlier, whenmin{|X |, |Y|} = 2, thenρ2m(X ; Y ) = χ2(PXY ||PXPY ) and hence

ρ2m(X ; Y ) =

∫

dPXY

(

dPXY

d(P × PY )

)

− 1

= EPXY

[

2log ı(X,Y )
]

− 1

≥ 2EPXY
[log ı(X,Y )] − 1, (12)

where the inequality is due to Jensen’s inequality.

Theorem 3 hods only when either|X | = 2 or |Y| = 2. Suppose we have a binary-input AWGN
channel modeled byY = X + N , whereX ∼ Bernoulli(p) and N ∼ N (0, σ2) are independent.
Theorem 3 then implies that ifI(X ; Y ) → 1 (which occurs only whenσ2 → 0) then there exists a pair
of functionsf ∈ H and g ∈ G such thatf(Y ) = g(X) with probability one. The following theorem
gives an upper bound for maximal correlation when|X | < ∞.

Theorem 4. If X is a discrete random variable with|X | < ∞, then for a given joint distribution
PXY = P ×W , we have

Pminρ
2
m(P ;W ) ≤

√

(2 ln 2)I(P ;W ),

wherePmin := minx∈X P (x).

Proof. In the proof we assume thatY has also a finite alphabet, however, the proof can be modified
for general alphabetY . As mentioned earlier, for any pair of random variables(X, Y ), ρ2m(X ; Y ) ≤
χ2(PXY ||P × PY ) and hence

ρ2m(X ; Y ) ≤ χ2(PXY ||P × PY )

March 15, 2018 DRAFT
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=
∑

x,y

(PXY (x, y)− P (x)PY (y))
PXY (x, y)

P (x)PY (y)

≤ max
x,y

PXY (x, y)

P (x)× PY (y)
||PXY − P × PY ||TV

≤ 1

Pmin
||PXY − P × PY ||TV

≤ 1

Pmin

√

(2 ln 2)I(P ;W ),

where||Q−P ||TV :=
∑

x |Q(x)−P (x)| is the total variation distance for probability measuresQ and
P and the last inequality is due to Pinsker’s inequality (see e.g., [14, problem 3.18]).

The value of the maximal correlation is often hard to calculate except for a few classes of joint
distributions. For instance, as mentioned earlier, if(X, Y ) is jointly Gaussian then the exact value of
ρm(X ; Y ) is known. Bryc et al. [15] showed that there exists another family of joint distributions for
which the maximal correlation can be exactly computed. For this, we need the following definition.

Definition 2. [16] A random variableX is said to have anα-stable distribution if the characteristic
function ofX is of the form

ϕ(t) := E[exp(itX)]

= exp (itc− b|t|α(1 + iκ sgn(t)ωα(t))) ,

wherec is a constant, sgn is the sign function,−1 ≤ κ ≤ +1 and

ωα(t) =

{

tan(πα
2
) if α 6= 1

2
π
log |t| if α = 1.

Gaussian, Cauchy and Lévy distributions are examples of stable distributions.

Theorem 5.[15] Let (X, Y ) be a given pair of random variables.
(I). If N is a random variable with anα-stable distribution and is independent of(X, Y ), thenλ 7→
ρm(Y ;X + λN) is a non-increasing function forλ ≥ 0.
(II). If N andX are independent and have the sameα-stable distribution for0 < α ≤ 2, then for any
λ ≥ 0,

ρm(X,X + λN) =
1√

1 + λα
.

This theorem shows that ifW (the channelX → Y) is an additive noise channel,Z = X + λN ,
whereN andX have anα-stable distribution, thenρm(X ;Z) can be analytically calculated. Part (I)
of this theorem might look trivial at first, as forN independent of(X, Y ), one might think thatY
andX + λN are asymptotically independent whenλ → ∞. However this does not, in general, hold.
For example letX take value in[0, 1] andN be a binary random variable taking values+1 and−1.
ThenX +N is mapped either to[1, 2] or [−1, 0] which are two disjoint sets and hence for any known
|λ| > 1, X + λN determines uniquely the value ofX.

IV. A PROBLEM OF PRIVACY

The tradeoff between data privacy and utility has always been an intriguing problem in computer
science and information theory. Information-theoretic privacy was first studied by Shannon who con-
nected information theory to cryptography. Yamamoto [17] introduced a set-up where givenn i.i.d.
copies of two correlated sourcesX andY , the receiver is to be able to reconstructY within a distortion
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D and unable to estimateX, and henceX is kept private from the receiver. In this set-up privacy
is measured in terms ofequivocationwhich is the conditional entropy ofX given what the receiver
observes. Yamamoto [17] characterized the tradeoff between distortion and equivocation. Another set-up
for privacy is given in [1] where both utility and privacy aredefined in terms of mutual information
and therate-privacy functionis introduced as the tradeoff between utility and privacy.

Definition 3. For a given joint distributionP ×W , the rate-privacy function is defined as

gǫ(P,W ) := sup{I(Y ;Z) : X → Y → Z, I(X ;Z) = ǫ}.
The channelPZ|Y , over which the supremum is taken, is in fact responsible formasking information

aboutX and is thus called a privacy filter. Thus,gǫ(P,W ) quantifies the maximum information that
one can receive aboutY while revealing onlyǫ bits of information aboutX. From the privacy point of
view, the case with zero privacy leakage is of more interest,i.e., ǫ = 0, which is calledperfect privacy.
It is shown in [1] that for finiteX and Y , g0 > 0 if and only if vectors{PX|Y (·|y) : y ∈ Y} are
linearly dependent implying that the matrix correspondingto joint distributionPXY is rank-deficient.
In particular if |Y| > |X |, theng0 > 0.

The following lemma shows that the mappingǫ 7→ gǫ(P,W )
ǫ

is non-increasing.

Lemma 1. For a given joint distributionP ×W , ǫ 7→ gǫ(P,W )
ǫ

is non-increasing.

Proof. The proof follows the same steps as the proof of [18, Lemma. 1].

This lemma yields the following bound for the rate-privacy function.

Corollary 1. For a given joint distributionP ×W , we have for anyǫ > 0

gǫ(P,W ) ≥ ǫ
H(Y )

I(P ;W )
.

Proof. By the Markov conditionX → Y → Z, we know thatǫ ≤ I(P ;W ). Whenǫ = I(P ;W ) then the
privacy constraint is removed and hencegI(P ;W ) = H(Y ). The result then follows from Lemma 1.

It is important to note, however, that the mutual information has deficiencies as a measure of privacy
(e.g. [19]). We can, instead, use maximal correlation as a measure of privacy and then define

ĝǫ(P,W ) := sup{I(Y ;Z) : X → Y → Z, ρm(X ;Z) ≤ ǫ},
as the corresponding privacy-rate tradeoff.

Suppose now that the privacy filter is such that the Markov condition X → Y → Z is satisfied and
the channelPZ|X can be modeled byZ = X + λN for λ > 0 whereN and (X, Y ) are independent
and has the sameα-stable distribution asX for someα ∈ (0, 2]. Then by Theorem 5, we know that
ρm(X ;Z) = 1√

1+λα
. Let

̺ǫ(X ; Y ) := ρm(Y ;X + λ∗N),

where

λ∗
ǫ =

(

1

ǫ2
− 1

)1/α

.

We can therefore conclude from Theorem 5 that

max ρm(Y ;X + λN) = ̺ǫ(X ; Y ) (13)

where the maximum is taken over allλ such thatρm(X ;X+λN) ≤ ǫ. This says that if the privacy filter
meets the above model, then the bestλ which satisfiesǫ maximal correlation privacy;ρm(X ;Z) ≤ ǫ,
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is λ∗
ǫ . In other words, among all such privacy filters

sup
ρm(X;Z)≤ǫ

ρm(Y ;Z) = ̺ǫ(X ; Y ). (14)

Unfortunately, all stable distributions have infinite support (like the Poisson and Gaussian distributions),
thus |Y| = ∞, and hence we can not invoke Theorem 4 to obtain a lower bound for ĝǫ(P,W ). Finding
a similar upper-bound ofρm(X ; Y ) in terms of mutual information for general alphabets remains open.
It is worth mentioning that the channel model,Z = X +λN is similar to theartificial noise introduced
in [20] in which both signal and noise are assumed to be Gaussian, i.e., having a2-stable distribution.

Defining a utility in terms of linear correlation coefficient, we can construct aprivacy-constrained
estimation problem. Suppose an agent knowingZ wants, on the one hand to estimateY as reliably as
possible, and on the other hand, to satisfy the privacy constraint ρm(X ;Z) ≤ ǫ. Let mmse(Y ;λ) denote
the minimum mean squared error (MMSE) ofY based onZ = X + λN , that is

mmse(Y ;λ) := E

[

(

Y − E[Y |X + λN ]
)2
]

.

Let mmseǫ(Y ) denote the minimum achievablemmse(Y ;λ) whenρm(X ;Z) ≤ ǫ.

Theorem 6. If the privacy filterPY |Z is such that for random variablesX → Y → Z, PZ|X can be
modeled asZ = X + λN , for N independent of(X, Y ) and having similarα-stable distribution asX
for α ∈ (0, 2]. Then

mmseǫ(Y ) ≥ (1− ̺2ǫ (X ; Y ))var(Y ).

Proof. By simple algebraic manipulations, we can write

mmse(Y ;λ) = E[Y 2]− E[E2[Y |Z]]
= var(Y )− ||E[Y ]− E[Y |Z]||22
(a)
= var(Y )[1− ρ2(Y ;E[Y |Z])],

where(a) is obtained from (8). Sinceρ(Y, g(Z)) ≤ ρm(Y ;Z) for any functiong, we have

mmse(Y ;λ) ≥ var(Y )(1− ρ2m(Y ;Z)).

The result follows by taking minimum from both sides overλ such thatρm(X ;Z) ≤ ǫ and invoking
(13).

The lower bound for MMSE becomes zero only if̺ǫ(X ; Y ) = 1. It is easy to verify that in the trivial
Markov chainY → X → λ∗

ǫN , we haveρm(Y ;X) ≥ ρm(Y ;X + λ∗
ǫN), therefore ifρm(X ; Y ) < 1,

then̺ǫ(X ; Y ) < 1 and thus(1− ̺2ǫ(X ; Y )) is bounded away from zero. This is the price that one has
to pay to haveprivacy-constrainedestimation. We note that̺ǫ(X ; Y ) is non-increasing inǫ and thus
for a more stringent privacy constraint (i.e., smallerǫ) we have biggermmseǫ(Y ).
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