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Abstract

The rate-privacy function is defined in [1] as a tradeoff besgtw privacy and utility in a distributed private
data system in which both privacy and utility are measuradgumutual information. Here, we use maximal
correlation in lieu of mutual information in the privacy ciraint. We first obtain some general properties and
bounds for maximal correlation and then modify the rategay function to account for the privacy-constrained
estimation problem. We find a bound for the utility in this plem when the maximal correlation privacy is set
to some threshold > 0 and construct an explicit privacy scheme which achieves tibund.

I. INTRODUCTION

For a given pair of random variablds(,Y) € X x ), the problem of privacy is, in general, to
display a random variable, sa¥, such thaty and Z are as much correlated as possible whie
and Z are almost independent. To make this statement precise,ee@ to introduce twaneasures
of dependenceone for measuring the correlation betwegEnand Z and the other one betweek
and Z. For two arbitrary alphabet and V and random variable§ € ¢/ andV € V, a mapping
0:UxV —[0,1] is said to be a measure of dependencé(if; V') = 0 if and only if U and V' are
independent and(U; V') = 1 if there exists some deterministic functional relatiopsbetween/ and
V, i.e., there exist functiong and g such thatX = f(Y) or Y = ¢g(X) with probability one. Rényi
[2] postulated additional axioms for an appropriate measafrdependence. For example, the linear
correlation coefficient|p(U; V)|, is not a measure of dependence as it might become zero everisif
perfectly determined by'.

Rényi [2] augmented the definition of the linear correlatoefficient by taking into account functions
of U andV and then taking the supremum @ff(U); g(V')) over all choices of appropriate functiorfis
andg, to obtainmaximal correlationThere are a few alternative characterizations of maximiaktation
in the literature some of which are explained in the sequak B itstensorizatiot property, maximal
correlation is shown to be very important in correlationtilegion, e.g, [3], distributions simulation,
e.g., [4], and is also related to the hypercontractivityfiicient, e.g., [5] and [6]. Beigi and Gohari [7]
have recently proposemiaximal correlation ribboras a generalization of maximal correlation.

Mutual information/(U; V') can also be viewed as a measure which captures dependemeebet
U and V. Although, it is not a measure of dependence according tg/iRéstipulations, it has some
properties which make mutual information a good candidatelata privacy applications especially
for measuring utility. Although both maximal correlatiomcamutual information have been used in
numerous applications in information theory, the conmecbetween them is still not fully explored in
the literature.

The definition of maximal correlation together with somesalative characterizations are given in
Section II. In Section Ill, we present some general resuttsua maximal correlation and also some
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The measure of dependeng@/; V) is said to have the tensorization property if for any.i.d. copies(U™, V™) of (U, V), we have
o(U™; V™) =4§(U; V). Note that mutual information violates this property H&/™; V") = nI(U;V).
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bounds in terms of mutual information. We then formulate & gaivacy problem (privacy-constrained
estimation) in terms of maximal correlation in Section IMdgoresent some achievability results.

II. MAXIMAL CORRELATION: DEFINITION AND CHARACTERIZATION

Suppose thak is a random variable with distributioR, over alphabeft andY is another random
variable which results from passidg through channéll’. Channel/ consists of a family of probability
measures defined over alphaBsti.e., Py x(-|z) for x € X. We denote by o P the distribution on
Y induced by the push-forward of the distributiéty which is the distribution of the outpy when
the input X is distributed according t@, and by P x W the joint distributionPyy if Px = P.

Let G (resp.#) be the set of all real-valued functions &f (resp.Y’) with zero mean and finite
variances with respect t& (resp.WW o P). The setsj and H are both separable Hilbert spaces with
the covariance as the inner product.

For a fixed channell}/, the maximal correlation betweel andY is a functional of P and W
defined as

pm(P;W) = sup p(g(X); f(Y)) (1)
geqg,feH

= sup Elg(X)f(Y)],
9€G, feH,|If]l2=Ilgll2=1

wherep(+; -) is the linear correlation coefficiehand for any random variablg, ||U||2 := E[U?]. We use
interchangeably the notatign,(P; W) andp,,(X;Y) whereX ~ P andY are respectively the input
and output of channédll’. Maximal correlation is a measure of dependence betweeatonarvariables
X andY, that is,0 < p,,,(X;Y) < 1 wherep,,(X;Y) = 0 if and only if X andY are independent
andp,,(X;Y) = 1 if an only if there exists a pair of functiongand f such thaty(X) and f(Y") are
non-degenerate anflY) = ¢g(X) with probability one. Maximal correlation is closely reddtto the
conditional expectation operator, defined as follows.

Definition 1. For a given joint distributionPyy = P x W, the conditional expectation operator
Tx : H — G is defined as

(Tx f)(x) == E[f(V)|X = z].

It is a well-known fact that the second largest singular &abf T is preciselyp,,(P; W), see e.g.
[3] and [2].

The definition of maximal correlation, given in (1), has be@nplified in the literature in general and
also for some special cases. For example, by a simple appficaf the Cauchy-Schwarz inequality,
Rényi [2] showed the following one-function characteriaat

po(PiW) = sup  E[E*[g(X)|Y]]. (2)

9€G,l|gl|2=1

Remarkl. If min{|X|,|V|} = 2, then

P?n(P; W):XZ(PXYHPX x Py), 3)
where the chi-squared divergence is defined as
drP?
2
P = — ] d@ —1, 4
o= [ () @
2le., p(X;Y) = XY "\where CoyX;Y),ox andoy are the covariance betweeén and Y, the standard deviation ot and the

standard deviation of‘/,( ?éspectively.

3For any arbitrary operatdf’ mapping (Banach) spac¥ to itself, an eigenvalue df is defined as a number such thatT'z = \z.
The singular value of” is then defined as the eigenvalue®©fT whereT™" is the adjoint ofT". See [8] for more details.
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where ¢ o) is the Radon-Nikodym derivative dP with respect ta)). Note that in the finite dimensional

case, the singular values of operalar are equal to the singular values of the maix= [%],
xX\T)Cy \y

see [9]. The expression (3) therefore follows from obseyvihat o2, (P; W) is the second largest
eigenvalue of bottQQ” and Q7 Q either of which is & x 2 matrix which implies that? (P; W) is
equal to the trace of that matrix minus the largest eigemvala., 1. It is important to mention here that
2(Pxy||PxPy) is shown in [3] to be equal to the sum of squares of the singtdares of operatdr
Tx minus one (i.e., the largest one) whjlg (X;Y") is the second largest one.

SupposelV is the backward channel correspondingitg that is, if W' = Pyx, thenW = Pxy.
Then the compositiom o W : X — X defined by

WoW(x ZW ylo)W (2'|y),
yey

is a channel for whichP is a stationary distribution and the associated conditierpectation operator
Tx is self-adjoint. It is easy to show that in this case

P (PiW) = po(P; W 0 W), (5)
To see this, note that it is show in [5] that
pe(P;W) = sup  E[g(X)g(X")], (6)
9€G,|lgll2=1

where X’ is the output of channel o W under inputX. This clearly implies that? (X:;Y) <
pm(X; X'). The following gives the reverse inequality. For arbitrargasurable functions, g : X — R,
we have

—~
S
N

E[g(X)h(X")]

E|Elg(X)[Y]E[R(X)|Y]

[[E[g(X) Y]] |2 [E[A(X)]Y]||2
(X3 Y oK)
po (XY, (7)

where (a) is due to the Markov conditiodX — Y — X', (b) is a simple application of the Cauchy-
Schwarz inequality(c) comes from (2), andd) follows from the fact tha,,(X";Y) = p(X;Y).
This chain of inequalities shows that, (X; X') < p?,(X;Y) which, together with the earlier inequality,
yields p, (X; X') = p,(X;Y).

INS

—
INe

—
S
=

1. M AXIMAL CORRELATION AND MUTUAL INFORMATION

It is well-known that for Gaussian random variablEsY and Z which satisfy the Markov condition
X =Y — Z,we havep(X, Z) = p(Y, Z)p(X,Y). A similar relation for maximal correlation does not
in general hold. However, the following theorem gives a Emiesult.

Theorem 1. For random variablesX and Y with a joint distribution P x W, we have

pm(X; Z)
su —_— X;Y).
X(—>Yp—)>Z Pm(Y Z) —pm ( )
pm

“In the finite dimensional case, the sum of the singular vabfesperator? is equal to the Frobenius norm @f which is defined as
[|T||r = Tr(T*T) where Tr is the trace operator.
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Proof. First note that by data processing for maximal correlati@ratio on the left-hand side is always
less than or equal to one. The inequality (c) in (7) yiedd3 X; Z) < pm(X;Y)pm(Y; Z) from which
we can write

pm(X; Z)

pm(Y5 Z)

The achievability result comes from the special case tdgat&ection Il whereX — Y — X’ and Py/y
is the backward channel associated Wity x. It was shown thap,,(X;Y)p,,(X";Y) = pn(X; X')
which completes the proof. 0

< pn(X3Y).

This theorem is similar to a recent result by Anantharam .gb&in which for a givenPyy the ratio
between/(X;Z) and I(Y; Z) is maximized over all channelB,, such that the Markov condition
X =Y — Z is satisfied.

The following theorem connects the maximal correlatiorhwatutual information wheX and channel
W are both assumed to be Gaussian.

Theorem 2. Let (X,Y) be jointly Gaussian random variables, then we have
P2(X;Y) <1 —272EY) < (2In2)I(X;Y).

Remark2. Linfoot [10] introduced thanformational measure of correlation which is defined for two
continuous random variables andY as

r(X;Y) =1 —2721(XY),
Theorem 2 therefore implies that for jointly Gaussian randeariables,p,,,(X;Y) < r(X;Y). The
informational measure of correlation is generalized in] [fbt general random variables.

Proof. Since (X,Y) is bivariate Gaussian, we know from [12] that,(X;Y) = |p(X;Y)|. On the

other hand, we can show that given a pair of random variakleend Y, the conditional expectation

of X givenY has the maximum linear correlation witi among all functionsf € H, i.e.

_ IELX] - EXY]]]
var(X)

where the supremum is taken over all measurable functfongh finite variance (not necessarily with

zero mean) andar(X') denotes the variance of. To see this, without loss of generality, we can assume
that f € H, i.e,, E[f(Y)] = 0. Then we have

SIJJCp,O(X; fY)) = p(X;E[X|Y]) : (8)

E[X/(Y)]
Vaar(X)[17()]
E[f(V)EIXIY]] _ [[EX]Y]]]
arX)[[F )]~ var(x)

where the inequality comes from the Cauchy-Schwarz inggu&quality occurs iff(Y) = E[X[Y].
It is a well-known fact from rate-distortion theory that fGaussianX and its reconstructiock
5 1 X
I(X;X) > = log _vrlX)
2 TE[(X - X))

p(X5f(Y)) =

and hence by setting = E[X|Y], after some straightforward calculations we obtain

1 1
I(X:Y)> =1
(Y) 2 5 o T Y]

9)
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and hence,
PP (XGE[X]Y]) <1 — 272057, (10)

Combining (8) and (10), we have

PLIX;Y) < PAXGEX|Y]) <1— 272
= 1 — ¢ 22AEY) <2 2I(X;Y).

L]
Note that Theorem 2 is based on the fact that for jointly Gamseandom variable andY’, we

have p,,(X;Y) = |p(X;Y)|. This is not, in general, true. For example consider a paizevb-mean
random variablesX' = U,V andY = U,V where allU;, U, andV are independent anelr(U; = +1) =
Pr(U; =—1) =1/2fori=1,2. We haveE[X|Y]| = E[U,V|U,V] = 0 and similarlyE[Y|X] = 0 both
implying thatp(X;Y) = 0. NeverthelessPr(X? = Y?) = 1 implying thatp,,(X;Y) = 1.

The following theorem gives a lower bound for maximal catign in terms of mutual information.
We assume that the Radon-Nikodym derivatiRg, with respect toPy x Py exists which we denote

it by ¢, i.e., P
L XY
1= 7d(PX < Py)’ (11)

The logarithm of this quantity is sometimes called the infation density [13, p. 248].
Theorem 3. For a given Pxy = P x W with min{|X|, |V|} = 2, we have
PR (P; W) > 2IPW)
Proof. As mentioned earlier, whemin{|X|, ||} = 2, thenp? (X;Y) = x*(Pxy||Px Py) and hence

dP
2 . _ XY .
pm(X7Y) = /dPXY ( P X Py)) 1

— |:210gz(X Y)] —1
> 2EPXY[logz(X,Y)} o 1’ (12)
where the inequality is due to Jensen’s inequality. O

Theorem 3 hods only when eithé’| = 2 or |V| = 2. Suppose we have a binary-input AWGN
channel modeled by = X + N, where X ~ Bernoulli(p) and N ~ N(0,¢%) are independent.
Theorem 3 then implies that if(X; Y) — 1 (which occurs only whem? — 0) then there exists a pair
of functions f € ‘H andg € G such thatf(Y) = g(X) with probability one. The following theorem
gives an upper bound for maximal correlation whaf| < oc.

Theorem 4. If X is a discrete random variable withY| < oo, then for a given joint distribution
Pxy = P x W, we have

Prinp’,(P; W) < \/(2In2)I(P; W),
where P,,;,, := mingcy P(x).

Proof. In the proof we assume that has also a finite alphabet, however, the proof can be modified
for general alphabey. As mentioned earlier, for any pair of random variablé§ V), p? (X;Y) <
2(Pxy||P x Py) and hence

P2 (X;Y) < x*(Pxy||P x Py)
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= D (Pxy(z,y) = P(x)Pr(y)) Pxy(z,y)

P(z) Py (y)
PXY(xv y)
< ———=" ||Pxy — P x P,
S WPy x By Xy P il
1

< 2 [Pxy — P x Py||rv

< 5 —VEmIFEW),
where||Q — P||rv := >, |Q(z) — P(x)] is the total variation distance for probability measufgsnd
P and the last inequality is due to Pinsker’s inequality (seg, €14, problem 3.18]). O

The value of the maximal correlation is often hard to caltulexcept for a few classes of joint
distributions. For instance, as mentioned earliefXf V) is jointly Gaussian then the exact value of
pm(X;Y') is known. Bryc et al. [15] showed that there exists anotherilfaof joint distributions for
which the maximal correlation can be exactly computed. Ry, we need the following definition.

Definition 2.[16] A random variableX is said to have am-stable distribution if the characteristic
function of X is of the form

o(t) = Elexp(itX)]
= exp (itc — bt|*(1 + ir SgN(t)wa(t))),

wherec is a constant, sgn is the sign function] < x < +1 and

tan(Z2) if a #1
ozt - 2 .
wa (t) {%]og|t| if o =1.

Gaussian, Cauchy and Lévy distributions are examples bfestiistributions.

Theorem 5[15] Let (X, Y) be a given pair of random variables.
(). If N is a random variable with am-stable distribution and is independent @X,Y), then\ —
pm(Y; X + AN) is a non-increasing function fok > 0.
(M. If N and X are independent and have the samstable distribution for) < o < 2, then for any
A >0,
- 1
VIt

This theorem shows that ifl” (the channelX¥ — ))) is an additive noise channe, = X + AN,
where N and X have ana-stable distribution, themp,,(X; Z) can be analytically calculated. Part (1)
of this theorem might look trivial at first, as faN independent of X, Y’), one might think that”
and X + AN are asymptotically independent whan— oo. However this does not, in general, hold.
For example letX take value in[0, 1] and N be a binary random variable taking values and —1.
Then X + N is mapped either tfl, 2] or [—1, 0] which are two disjoint sets and hence for any known
IA| > 1, X + AN determines uniquely the value o&f.

pm(X, X + AN) =

IV. A PROBLEM OF PRIVACY

The tradeoff between data privacy and utility has alwayshbe&e intriguing problem in computer
science and information theory. Information-theoretitvgry was first studied by Shannon who con-
nected information theory to cryptography. Yamamoto [IMfaduced a set-up where giveni.i.d.
copies of two correlated sourcésandY’, the receiver is to be able to reconstriictvithin a distortion
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D and unable to estimat&, and henceX is kept private from the receiver. In this set-up privacy
is measured in terms agquivocationwhich is the conditional entropy ok given what the receiver
observes. Yamamoto [17] characterized the tradeoff betwlestortion and equivocation. Another set-up
for privacy is given in [1] where both utility and privacy adefined in terms of mutual information
and therate-privacy functionis introduced as the tradeoff between utility and privacy.

Definition 3. For a given joint distributionP x W, the rate-privacy function is defined as
ge(PW):=sup{I(Y;Z2): X =Y = Z, 1(X;Z) = €}.

The channelPyy-, over which the supremum is taken, is in fact responsiblerfasking information
about X and is thus called a privacy filter. Thug,(P, W) quantifies the maximum information that
one can receive abodt while revealing onlye bits of information aboutX. From the privacy point of
view, the case with zero privacy leakage is of more inteiiest,e = 0, which is calledperfect privacy
It is shown in [1] that for finiteX and ), go > 0 if and only if vectors{Px|y(-|y) : vy € Y} are
linearly dependent implying that the matrix correspondiagoint distribution Pyy is rank-deficient.
In particular if | Y| > |X|, thengy > 0.

The following lemma shows that the mapping> 9(BW) g non-increasing.

€

Lemma 1. For a given joint distributionP x W, € — 9-(PW) g non-increasing.

€

Proof. The proof follows the same steps as the proof of [18, Lemma. 1] O
This lemma yields the following bound for the rate-privacyétion.

Corollary 1. For a given joint distribution” x W, we have for any > 0

H(Y)
(P,W) > e——2—.
9B = Ty
Proof. By the Markov conditionX — Y — Z, we know that < I(P; ). Whene = I(P; W) then the
privacy constraint is removed and hengep.,yy = H(Y'). The result then follows from Lemma 1.7

It is important to note, however, that the mutual informatieas deficiencies as a measure of privacy
(e.g. [19]). We can, instead, use maximal correlation as asome of privacy and then define

G(P,W) =sup{I(YV;2): X =Y = Z, pu(X; Z) <€},

as the corresponding privacy-rate tradeoff.

Suppose now that the privacy filter is such that the Markowdaon X — Y — 7 is satisfied and
the channelP;x can be modeled by’ = X + AN for A > 0 where N and (X,Y’) are independent
and has the same-stable distribution as\' for somea € (0,2]. Then by Theorem 5, we know that

pm (X3 Z) = \/ﬁ Let

0(X;Y) = pn(Y; X + A'N),

. 1 1/a
We can therefore conclude from Theorem 5 that

max p, (Y; X + AN) = 0.(X;Y) (13)

where

where the maximum is taken over allsuch that,,(X; X + AN) < e. This says that if the privacy filter
meets the above model, then the beswhich satisfiess maximal correlation privacyp,,(X; Z) < e,
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is Af. In other words, among all such privacy filters

sup  pp (Y3 Z) = 0.(X;Y). (14)
pm(X;2)<e

Unfortunately, all stable distributions have infinite sopplike the Poisson and Gaussian distributions),
thus|)| = oo, and hence we can not invoke Theorem 4 to obtain a lower boomgl P, W'). Finding
a similar upper-bound af,,(X;Y") in terms of mutual information for general alphabets remaipen.
It is worth mentioning that the channel mod&l,= X + AN is similar to theartificial noiseintroduced
in [20] in which both signal and noise are assumed to be Gansse., having 2-stable distribution.

Defining a utility in terms of linear correlation coefficienwe can construct @arivacy-constrained
estimation problemSuppose an agent knowirdg wants, on the one hand to estimateas reliably as
possible, and on the other hand, to satisfy the privacy cainsp,,(X; Z) < e. Let mmse(Y’; \) denote
the minimum mean squared error (MMSE) ¥fbased onZ = X + AN, that is

mmse(Y; ) = E [(Y _E[Y|X + AN])Q} .
Let mmse.(Y') denote the minimum achievabtemse(Y; \) whenp,,(X; Z) <.

Theorem 6. If the privacy filter Py, is such that for random variableX — Y — Z, P, x can be
modeled asZ = X + AN, for N independent ofX,Y) and having similara-stable distribution asX
for o € (0,2]. Then

mmse.(Y) > (1 — 02(X;Y))var(Y).

Proof. By simple algebraic manipulations, we can write
mmse(Y;)\) = E[Y? —E[E*[Y]|Z]]
var(Y) — [[E[Y] - E[Y|Z]]];
9 var(Y)[1 - pA(YE[Y|Z),

—
N

where(a) is obtained from (8). Since(Y, g(Z)) < p(Y; Z) for any functiong, we have
mmse(Y; \) > var(Y)(1 — p2,(Y; 2)).

The result follows by taking minimum from both sides ovesuch thatp,,(X; Z) < ¢ and invoking
(13). O

The lower bound for MMSE becomes zero onlywif X; Y') = 1. It is easy to verify that in the trivial
Markov chainY — X — A*N, we havep,,(Y; X) > p,(Y; X + A*N), therefore ifp,,(X;Y) < 1,
theno.(X;Y) < 1 and thus(1 — ¢*(X;Y)) is bounded away from zero. This is the price that one has
to pay to haveprivacy-constrainecestimation. We note thai.(X;Y') is non-increasing i and thus
for a more stringent privacy constraint (i.e., smalewe have biggemmse.(Y).

REFERENCES

[1] S. Asoodeh, F. Alajaji, and T. Linder, “Notes on inforrmat-theoretic privacy,” in52nd Annual Allerton Conference on
Communication, Control, and Computing (Allertp@014, pp. 1272-1278.

[2] A. Rényi, “On measures of dependencégta Mathematica Academiae Scientiarum Hungarieal. 10, no. 3, pp. 441-451, 1959.

[3] H. S. Witsenhausen, “On sequence of pairs of dependewiora variables,'SIAM Journal on Applied Mathematicgol. 28, no. 2,
pp. 100-113, 1975.

[4] S. Beigi and A. Gohari, “On the duality of additivity andrtsorization,”preprint, arXiv:1502.00827y12015.

[5] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, “On nmaal correlation, hypercontractivity, and the data processequality
studied by Erkip and CoverPreprint, arXiv:1304.6133v,12014.

[6] S.Kamath and V. Anantharam, “Non-interactive simwatof joint distributions: The Hirschfeld-Gebelein-Rémyaximal correlation
and the hypercontractivity ribbon,” iBOth Annual Allerton Conference on Communication, Contrad Computing (Allerton)Oct.
2012, pp. 1057-1064.

March 15, 2018 DRAFT



[7] S. Beigi and A. Gohari, “A monotone measure for non-locairelations,”Preprint, arXiv:1409.3665v,32015.
[8] Y. Abramovich and C. D. AliprantisAn Invitation to Operator Theory, Graduate Studies in Matladics American Mathematical
Society, 2002.
[9] S.-L. Huang and L. Zheng, “The linear information cougliproblems,”Preprint, arXiv:1406.2834v12014.
[10] E. Linfoot, “An informational measure of correlatidrinformation and Contrglvol. 1, no. 1, pp. 85-89, 1957.
[11] S. Lu, “Measuring dependence via mutual informafiddaster’s thesis, Queen’s University, Canada, 2011.
[12] H. O. Lancaster, “Some properties of the bivariate redrdistribution considered in the form of a contingency ¢gbBiometrika
vol. 44, no. 2, pp. 289-292, Mar. 1957.
[13] R. M. Gray, Entropy and Information Theory Springer-Verlag New York, Inc., 1990.
[14] 1. Csiszar and J. Kérneinformation Theory: Coding Theorems for Discrete Memayl&ystems Cambridge University Press,
2011.
[15] W. Bryc, A. Dembo, and A. Kagan, “On the maximum correatcoefficient,” Theory Probab. Appl.vol. 49, no. 1, pp. 132-138,
Mar. 2005.
[16] R. Durrent,Probability: Theory and Example8rd ed. Thomson Inc., 1995.
[17] H. Yamamoto, “A source coding problem for sources witlditional outputs to keep secret from the receiver or wppéas,”|EEE
Trans. Inf. Theoryvol. 29, no. 6, pp. 918-923, Nov. 1983.
[18] N. Shulman and M. Feder, “The uniform distribution asnévarsal prior,”IEEE Trans. Inform. Theoryol. 50, no. 6, pp. 13561362,
June 2004.
[19] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting pecy breaches in privacy preserving data mining,’Piroceedings of the
Twenty-Second Symposium on Principles of Database Sys266%, pp. 211-222.
[20] S. Goel and R. Negi, “Guaranteeing secrecy using aeifiwoise,” IEEE Trans. Wireless Communvol. 7, no. 6, pp. 2180-2189,
June 2008.

March 15, 2018 DRAFT



