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Abstract—Slow working nodes, known as stragglers, can greatly
reduce the speed of distributed computation. Coded matrix
multiplication is a recently introduced technique that enables
straggler-resistant distributed multiplication of large matrices.
A key property is that the finishing time depends only on the
work completed by a set of the fastest workers, while the work
done by the slowest workers is ignored completely. This paper
is motivated by the observation that in real-world commercial
cloud computing systems such as Amazon’s Elastic Compute
Cloud (EC2) the distinction between fast and slow nodes is often
a soft one. Thus, if we could also exploit the work completed
by stragglers we may realize substantial performance gains. To
realize such gains, in this paper we use the idea of hierarchical
coding (Ferdinand and Draper, IEEE Int. Symp. Inf. Theory,
2018). We decompose the overall matrix multiplication task into a
hierarchy of heterogeneously sized subtasks. The duty to complete
each subtask is shared amongst all workers and each subtask
is (generally) of a different complexity. The motivation for the
hierarchical decomposition is the recognition that more workers
will finish the first subtask than the second (or third, forth,
etc.). Connecting to error correction coding, earlier subtasks
can therefore be designed to be of a higher rate than later
subtasks. Through this hierarchical design our scheme exploits
the work completed by stragglers, rather than ignoring it, even
if that amount is much less than that completed by the fastest
workers. We numerically show that our method realizes a 60%
improvement in the expected finishing time for a widely studied
statistical model of the speed of computation and, on Amazon
EC2, the gain is 35%.

I. INTRODUCTION

Many data intensive problems cannot be solved in a single

computer due to limited processing power and storage. Dis-

tributed computation is necessary. In an idealized distributed

setting one would expect highly parallelizable workloads to

realize an acceleration proportional to the number of nodes.

However, in cloud-based systems, slow workers, known as

stragglers, are a bottleneck that can prevent the realization

of faster compute times [1]. Recent studies show that for

workloads that are linear algebraic in nature, the effect of

stragglers can be minimized through the use of error correction

codes [2], [3], [4], [5], [6], [7]. The underlying idea is to intro-

duce redundant computations (additional workers are needed)

such that the completion of any fixed-cardinality subset of jobs

suffices to realize the desired solution.

A trivial approach to introducing redundancy is through

replication. But, if a task can be linearly decomposed, the

opportunity arises to introduce redundancy through the use of

error correction codes such as maximum distance separable

(MDS) codes. In [2], it was shown that MDS codes can

be leveraged to design straggler-resistant methods of vector-

matrix multiplication. The ideas were extended to matrix-

matrix multiplication based on the product codes in [5]. In [3],

coded computation based on polynomial interpolation was

introduced. Such polynomial codes outperform product codes

in terms of their recovery threshold. The recovery threshold is

the number of workers that must complete their tasks to realize

the computation. The recovery threshold was further improved

in [7] through a different approach to matrix multiplication,

called MATDOT codes.

A drawback of all these methods is that they rely on the

work completed by a set of the fastest workers, ignoring

completely work completed by the slower workers. Effectively,

in these methods, stragglers are modeled as extremely slow

nodes that complete no work. In the terminology of error

correction coding, they are modeled as erasures. However,

in cloud base systems such as the Amazon Elastic Compute

Cloud (Amazon EC2), we observe partial stragglers. Partial

stragglers are slower, only able to complete partial tasks by the

time at which the faster workers have completed their entire

tasks. That said, the amount of work stragglers can complete

may be non-negligible. Thus, it can be wasteful to ignore.

The concept of exploiting stragglers has been studied in [4],

[8], [9], [10]. All these papers consider a distributed system

with a central node, called the master, and multiple worker

nodes. The partial-straggler scenario was first considered in [4]

such that each worker was assigned two groups of subtasks:

naive and coded subtasks. Non-straggler workers processed

both naive and coded subtasks, while partial stragglers only

completed naive tasks. In [8], [9], the vector matrix multi-

plication was first broken into computationally homogeneous

subtasks; each subtask was then encoded using a specific code:

an MDS code in [8] and a rateless fountain code in [9].

The central idea in exploiting stragglers is to assign each

worker multiple small subtasks rather than a single large

task. The master is able to complete the job by utilizing the

subcomputations completed by all workers, stragglers simply

contribute less. The coding method used in [8], [9] enables a

trade-off between the size of each subtask and the recovery

threshold. This means that while the size of each subtask is

1/L of the size of a single task, the master requires L times

more subtasks to be completed. The increase in the recovery

threshold increases the encoding and decoding complexity. To

reduce the complexity overhead of encoding and decoding

while preserving the goal of exploiting stragglers, [10] intro-

duced the concept of hierarchical coding by leveraging the
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sequential computing nature of workers. In [10], hierarchical

coding was applied to the vector matrix multiplication using

MDS codes.

In this paper, we apply the idea of hierarchical coding to

matrix multiplication. Before introducing the general frame-

work of hierarchical coded matrix multiplication, it helps to

recapitulate the intuition behind [10]. In hierarchical coding,

the total computation required of each worker is partitioned

into layers of sub-computations. Workers compute layers

sequentially. Due to the sequential processing, each layer has

a different finishing time, i.e, a worker will start to work on

the second layer after it finishes the first layer. Therefore,

the finishing time of the first layer is lower than that of the

second layer. Each layer is encoded using a different code

with a distinct rate such that all layers have the same expected

finishing time.

To extend the above idea to matrix multiplication we

establish an equivalence between task allocation in distributed

matrix multiplication and a geometric problem in which parti-

tioning the matrix to be computed is visualized as partitioning

a rectangle into tiles. Larger tiles correspond to higher rate

subtasks that each worker tackles first. The choice of the area

of each tile is set according to the statistics of the computing

system. The overall packing of tiles into the matrix is posed

as an optimization problem. We encode each layer using

different polynomial1 codes with distinct recovery thresholds.

In our system it does not matter which workers complete

each subtask, but we do need to know how many workers

are expected to complete each subtask. Our method realizes a

60% reduction in expected finishing time when compared to

the baseline scheme of non-hierarchical polynomial coding [3].

II. PROBLEM STATEMENT AND SYSTEM MODEL

In this section, we first provide an example to illustrate

the intuition behind our scheme. We then develop the general

hierarchical coded computation scheme in detail.

A. Motivating example

Consider the task of multiplying two matrices, A ∈ R
Nx×Nz

and B ∈ R
Nz×Ny . The computation task AB ∈ R

Nx×Ny

requires NxNzNy multiply-and-accumulate operations. Let us

suppose that we want to parallelize this task among N ≥ 8
worker nodes, by providing a number of smaller subtasks

to each. As the subtasks will be smaller, individual nodes

will require less time to finish their subtasks as compared to

computing the entire AB product; parallelization will thereby

be exploited.

In the following three scenarios we first detail the usage

of polynomial codes [3] to solve this problem. We then

present our proposed hierarchical coded matrix multiplication.

In Scenario 3, we compare our scheme with the state-of-the-art

exploit-straggler scenario [8], referred as sum-rate codes. We

comment that, the original idea of sum-rate coding [8] was

1Although we can also apply hierarchical coding to other codes, such as
MATDOT codes [7], due to space constraints herein we focus on introducing
hierarchical coded matrix multiplication in the context of polynomial codes.

introduced through the vector-matrix multiplication problem

using MDS codes [2] and was extended to the matrix multi-

plication problem using product codes [5]. However, here we

keep on using polynomial codes as the baseline, to which sum-

rate coding can be easily applied. In all cases, we allocated
NxNzNy

4 multiply-and-accumulate operations in total to each

worker. This makes each worker’s computational load equal

for a fair comparison.

Scenario 1 (polynomial codes): In the first scenario, we use

polynomial codes [3]. We decompose the rows of A and the

columns of B into two equally sized groups, AT = [AT
1 , A

T
2 ]

and B = [B1, B2], Ai ∈ R
Nx
2

×Nz and Bi ∈ R
Nz×

Bb
2

where i ∈ {1, 2}. We then assign the multiplication of

(A1 + A2n) ∈ R
Nx
2

×Nz and (B1 + B2n
2) ∈ R

Nz×
Ny
2 to

the n-th worker n ∈ [N ], where [N ] = {1, . . . , N} is the

index set of cardinality N . I.e., the n−th worker computes

(A1 +A2n)(B1 +B2n
2) requiring

NxNzNy

4 operations. It can

be shown that the outputs of any Kpoly = 4 of the N workers

is sufficient to recover the desired AB matrix computation via

polynomial interpolation [3]. We refer to Kpoly/N as the rate

of polynomial code.

Scenario 2 (hierarchical polynomial codes): In the second

scenario, we introduce hierarchical coded matrix multiplica-

tion and show it outperforms the polynomial coded approach

of Scenario 1. In our setting each worker is provided L = 4
sequentially-ordered subtasks, each of which involves

NxNzNy

16
multiply-and-accumulate operations such that the total compu-

tation load matches that of Scenario 1. Upon completion of

each subtask, the result is sent to a master node to derive the

final result AB. Importantly, in our proposed scheme, not all

workers need complete all their subtasks for the master to be

able to compute the product AB. Instead, we allow workers

to finish different number of subtasks. We term the choice of

partitioning the profile of subtasks. The profile is something

that we will optimize based on the statistics of the distribution

of computational speeds of the workers. Such optimization will

be discussed further in a later section. For illustrative reasons,

in this example we assume the (8, 4, 3, 1) profile. That is, only

K1 = 8 workers need to complete their first subtask, only

K2 = 4 workers need to finish their first and second subtasks,

and to complete layer 3 and 4, only K3 = 3 and K4 = 1
workers are required to complete their subtasks in those layers.

To generate the subtasks, we first partition the product

matrix AB into L = 4 rectangular task tiles each of which

we think of as a layer of computation. Each element of each

task tile is an inner product of a row of A and a column of

B. We partition the task tile corresponding to the l−th layer,

l ∈ [L] = [4] into Kl equally sized information tiles each of

which contains roughly
NxNy

16 inner products. Hence, the area

of task tile corresponding to lth layer is equal to al =
KlNxNy

16 .

In 1, we depict one possible partitioning into task tiles. For

example, the task tile corresponding to the first layer consists

of
8NxNy

16 inner products involving all rows of A and the first

half of the columns of B. The task tile is further partitioned

into K1 = 8 equally sized information tiles. These information



tiles A1,iB1,j , i ∈ [4] and j ∈ [2] are the product of data

chunks A1,i ∈ R
Nx
4

×Nz and B1,j ∈ R
Nz×

Ny
4 . The other layers

l ∈ {2, 3, 4} similarly partition their task tiles into information

tiles. In this example the number of information tiles for these

layers are, respectively, of 4,3, and 1.

AB =









A1,1B1,1 A1,1B1,2 A2,1B2,3 A3,1B3,4

A1,2B1,1 A1,2B1,2 A2,2B2,3 A3,2B3,4

A1,3B1,1 A1,3B1,2 A2,3B2,3 A3,3B3,4

A1,4B1,1 A1,4B1,2 A2,4B2,3 A4,4B4,4









(1)

The master encodes the data relevant to lth task tile by

applying a pair of polynomial codes (separately) to the data

chunks involved in that tile. Thus, we apply the polynomial-

code-based-approach first described in [3] on a per-task-tile ba-

sis. The polynomials thus formed are the encoded data chunks

Âl(x), and B̂l(x), l ∈ [L]. For the above example, Â1(x) =
A1,1 + A1,2x + A1,3x

2 + A1,4x
3, B̂1(x) = B1,1 + B1,2x

4,

Â2(x) = A2,1 + A2,2x + A2,3x
2 + A2,4x

3, B̂2(x) = B2,3,

Â3(x) = A3,1+A3,2x+A3,3x
2, B̂3(x) = B3,4, Â4(x) = A4,4,

and B̂4(x) = B4,4.

Worker n ∈ [N ] gets L = 4 pairs of encoded data chunks

(Âl(n), B̂l(n)) for all l ∈ [L]. The job of each worker is

to compute the encoded products Âl(n)B̂l(n) ∈ R
Nx
4

×
Ny
4 ,

working through l ∈ [L] sequentially (in order) from 1 to L,

transmitting each result to the master as it is completed.

In above example the master can recover the first task tile

as long as it received K1 = 8 encoded products Â1(n)B̂1(n)
from any of the N workers. Similarly it can recover the second

task tile as long as it receives K2 = 4 encoded products

Â2(n)B̂2(n) from any 4 of the N workers, and so forth. The

ability of the master to decode from any sufficiently-large

subset is a property of polynomial codes. E.g., the polynomial

Â1(x)B̂1(x) is a polynomial of degree 7 and therefore it can

be recovered via polynomial interpolation as long as at least 8
distinct values are known (In our setting, the values correspond

to the indices of the workers that respond.).

The advantage of our scheme follows from the different

rate applied across the jobs, 8/N , 4/N , 2/N , and 1/N in this

example and Kl

N
in general.

Scenario 3 (sum-rate polynomial codes): In sum-rate

polynomial codes we use the same partitioning as the AB
matrix depicted in 1, but the data chunks are used to generate

a single polynomial code (instead of four). The recovery

threshold of this code is KS-poly = 16. Note that we use the

term sum-rate for this approach (originally developed in [8])

to highlight the fact that the rate of this code, KS-poly/N , is

equal to the sum of the per-layer rates used in the hierarchical

code. In the above example KS-poly/N =
∑

l Kl/N and

16/N = 8/N + 4/N + 3/N + 1/N .

In the sum-rate approach we reproduce the 16 sub-

computations into which AB is divided in (1) by dividing each

of the A and B matrices into four equally sized sub-matrices.

Respectively, these are AT = [ÃT
1 , Ã

T
2 , Ã

T
3 , Ã

T
4 ] and B =

[B̃1, B̃2, B̃3, B̃4], where Ãi ∈ R
Nx
4

×Nz and B̃i ∈ R
Nz×

Bb
4

for i ∈ [4]. After partitioning, the master encodes the Ãi and

the B̃i separately using polynomial codes, to generate encoded

sub-matrices Â(x) = Ã1 + Ã2x+ Ã3x
2 + Ã4x

3 and B̂(x) =
B̃1+B̃2x

4+Ã3x
8+Ã4x

12. Worker n is then tasked to compute

4 sequentially-ordered subtasks: {Â(4n+ i)B̂(4n+ i)|i ∈ [4]}.

Due to the use of polynomial codes, the completion of any 16
subtasks enables the recovery of the AB product.

Sum-rate codes have a more flexible recovery rule than

do hierarchical codes. While for sum-rate codes, the AB
product can be recovered from any 16 completed subtasks,

in hierarchical codes the completed subtasks must follow

a specific profile (8, 4, 3, 1). However, the completion time

statistics of hierarchical codes can be quite close to that of

sum-rate codes if the profile of hierarchical codes is designed

correctly.

From a decoding perspective, the hierarchical approach is

much less complex than the sum-rate approach. In sum-rate

codes, the master needs to deal with decoding NxNy/16
polynomials of degree 16. On the other hand, in hierarchical

codes the master is required to decode four sets of polynomials

of (in the example) degrees 8, 4, 3 and 1, each set consisting of

NxNy/16 polynomials. Furthermore, when hierarchical codes

are employed decoding can be carried out either in a serial

manner or parallelized across layers. Parallel decoding is not

possible for sum-rate codes. In the numerical results of Sec IV,

we will be observe that even serial decoding of hierarchical

codes takes less time than decoding sum-rate codes. As would

be guessed, the parallel decoding time of hierarchical codes

is less than the decoding time of sum-rate codes. This is

due to the fact that in the decoding phase of hierarchical

codes, in a worst-case scenario, the master needs to deal with

decoding a polynomial code of rate 8/N . This is much less

computationally intensive than the decoding of the rate 16/N
polynomial code used in sum-rate codes.

Note that while the Ãi in sum-rate codes is equal to the

Al,i in scenario 2, for all l ∈ [4] (and similarly B̃i = Bl,i),

the extension of hierarchical coding to the general matrix

multiplication problem is not as straightforward as it is for

sum-rate codes. As will be described in next section, to make

the hierarchical generalization, we take advantage of a useful

geometric visualization in terms of partitioning the matrix to

be computed into tiles.

B. Hierarchical coded matrix multiplication

We now present our general construction. Our goal is to

compute the matrix AB where, as before, A ∈ R
Nx×Nz and

B ∈ R
Nz×Ny . Our system consists of a master and N workers.

We start by partitioning AB into L layers of computation.

As detailed below, computations relevant to each of the L
layers are shared with all N workers. Workers start working on

layer 1 and progress sequentially layer-to-layer. Each layer has

a geometric interpretation as a rectangular task tile of elements

of the AB matrix. The lth such tile is described by the set Sl =
{SAl,SBl} where SAl is a subset of consecutive elements of

[Nx] and SBl is a subset of consecutive elements of [Ny]. The

lth task tile consists of the set of inner products of the ith row



of A and the jth column of B where i ∈ SAl and j ∈ SBl.

The task tile can be visualizes as a rectangle of dimensions

|SAl| × |SBl|. We use al to denote the (integer) area of the

lth tile, i.e., al = |SAl| |SBl|. To ensure that the tiles partition

the entire AB matrix these sets must satisfy ∪l∈[L]{(i, j) ∈
SAl × SBl} = [Nx] × [Ny] and thus,

∑

l∈[L] |SAl||SBl| =
∑

l∈L al = NxNy
2. To denote the ith element of SAl we

write SAl,i, which is a row-index into the A matrix. Similarly,

SBl,j is a column-index into the B matrix.

To apply error-correction coding to the computation of

AB we divide each task tile (corresponding to one layer

of computation) into equally sized information tiles. To un-

derstand what we mean by information tile, we start by

subdividing the inputs required to compute each task tile.

The data required to compute the lth task tile (computation

layer l) consists of the rows of A and the columns of B,

respectively, indexed by SAl and SBl. We use ASAl
(BSBl

) to

denote the rows (columns) of A (B) indexed by SAl (SBl). We

next partition ASAl
(BSBl

) into Mxl (Myl) equal-sized data

chunks denoted as {Al,i | i ∈ [Mxl]} ({Bl,j | j ∈ [Myl]})3. We

can reverse the partitioning by concatenating the data chunks:

AT
SAl

= [AT
l,1 . . . AT

l,Mxl
] and BSBl

= [Bl,1 . . . Bl,Myl
].

Consider the lth computation layer. The corresponding task

tile is of dimensions |SAl| × |SBl|. The above partitioning of

ASAl
and BSBl

also partitions the lth task tile into equally-

sized (smaller) information tiles Al,iBl,j each of dimensions

|SAl|/Mxl × |SBl|/Myl. We will apply coding (a polynomial

code) across the data chunks Al,i and (separately) Bl,j with

the goal of recovering the information tiles. The information

dimension of the code used in the lth layer will correspond to

the number of the information tiles Kl = MxlMyl.

Two comments are in order. First, for the conceptual

clarity for the moment we assume that |SAl| and |SBl| are,

respectively, much larger than Mxl and Myl, and so ignore

integer effects. When we get to implementation we will need

to deal with integer effects. Second, we choose Mxl and

Myl so that al/(MxlMyl) is (approximately) constant for all

l ∈ [L]. While we need not make this choice, we make it

to keep the quanta of computation (approximately) constant

across layers. The implication is that information tiles will

be of constant area. In particular, we choose there to be

Ksum =
∑L

l=1 Kl information tiles each of (approximate)

area NxNy/Ksum. This assumption will prove useful when

computing the response times of workers and when comparing

to previous work. Note that the assumption that we keep

al/(MxlMyl) ≈ NxNy/Ksum constant does not mean that the

row- and column-dimensions of information tiles must be the

same across different layers, only the area of each information

tile is kept constant. This latter degree of flexibility will prove

extremely useful in our overall design, especially when dealing

with the integer constraints.

2We comment that task tiles can be allowed to overlap; that simply would
mean certain elements of the matrix AB would be computed in more than
one of the task-layers.

3These data chunks can themselves be thought of as tiles of the matrices.

We now define the encoding functions. As previously

mentioned we follow [3] and use polynomial codes. The

polynomials used to encode the data chunks pertinent to

the lth subtask are Âl(x) =
∑Mxl

i=1 Al,ix
i−1 and B̂l(x) =

∑Myl

j=1 Bl,jx
(j−1)Mxl . For example, if Mxl = 3 and Myl = 4

then Âl(x) = Al,1 + Al,2x + Al,3x
2 and B̂l(x) = Bl,1 +

Bl,2x
3 +Bl,3x

6 +Bl,4x
9.

The nth worker receives L pairs of encoded data chunks,

(Âl(n), B̂l(n)) for l ∈ [L]. The worker n sequentially com-

putes its L jobs, Â1(n)B̂1(n) through ÂL(n)B̂L(n), sending

completed jobs to the master as soon as they are finished.

To recover all the information tiles that make up the

lth layer of computation (and thus to recover the lth task

tile), the master must receive at least Kl = MxlMyl jobs

from the N workers, i.e., a subset of size at least Kl of

{Âl(n)B̂l(n) |n ∈ [N ]}. We can conceive of each such

small computational task as analogous to packet transmission

through parallel and independent erasure channels where the

code used in the lth channel is an (N,Kl) MDS code. We use

polynomial codes for the same reason as in previous work,

namely that the computations of the polynomials provide the

MDS property and only involve summation over data chuncks

from A (or B) and therefore is inexpensive when compared

to the computation of the products Âl(n)B̂l(n).
One can notice that K1, . . .KL are design parameters that

depend on the statistics of processing time. Given these

parameters, and the shape of the information tiles in each layer,

one then uses the procedure presented above to allocate tasks

to workers. In the following sections we discuss how to chose

the Kl and the shape of the information tiles.

III. ANALYTICAL EVALUATION

In this section, we assert a probabilistic model on the per-

job finishing time distribution of individual workers. We then

determine the finishing time distribution of our scheme as

a function of the choice of {Kl}l∈[L]. Then, we provide an

approach to optimize the choice of the Kl. Lastly, we explain

how these parameters are used in the design of a hierarchically

coded solution to matrix multiplication.

A. Finishing time model

The overall job of computing AB is complete when each

of the L layers completes. For layer l to complete, at least

Kl workers must finish their lth task. In the following we

determine the distribution of (at least) this minimal number of

tasks completing each layer. This is the finishing time.

In our analysis we assume that workers complete tasks

according to the shifted exponential distribution, previously

used in [2]. Let T1, . . . , TN be independent and identical

distributed shifted exponential random variables with scale

parameter µ and shift parameter α. Tn denotes the time the

nth worker takes to compute AB product on its own. Thus,

the probability that a worker is able to finish the AB product

by time t is P(Tn < t) = 1 − e−
1

µ
(t−α) for t ≥ α, and

P(Tn < t) = 0 else. We subdivide AB into Ksum equal-sized

information tiles. For each layer each worker must compute



the equivalent of one (encoded) information tile. The model

of computation is conditionally deterministic: the nth worker

completes one task every Tn/Ksum seconds. The realization of

the Tn sets the speed of the workers. Once those speeds are

set each worker is assumed to process equally-sized jobs in

a (conditionally) deterministic fashion. Therefore, for the nth

worker to finish tasks through the lth layer takes lTn/Ksum

seconds. Let Tn:N be the nth order statistics and τ denote the

finishing time. Then the expected finishing time is,

E[τ ] = max
l∈[L]

l

Ksum

E[TKl:N ]

≈ max
l∈[L]

l

Ksum

(

α+ µ log

(

N

N −Kl

))

. (2)

In the extended version of this paper, we will provide the

detailed proof to (2), and will discuss how to optimize the

choice of {Kl}l∈[L] to minimize the expected finishing time.

B. Practical implementation

Besides Kl, we can further optimize the Mxl and Myl

parameters to reduce the amount of data that the master

needs to distribute to the workers. While, due to space

constraints, we leave this discussion to future work, we now

present the algorithm used to minimize the communications.

Algorithm 1 selects tiles by iteratively placing rectangles of

area ⌊
Ny

Ksum
⌋KlNx in an Nx × Ny rectangle. The algorithm

avoids creating overlaps with previously placed rectangles.

The rectangle in the lth iteration is then partitioned into Kl

equally size tiles.

Algorithm 1 Partitioning of a Nx ×Ny rectangle into L task

tiles given profile {K1, . . . ,KL}, where Kl−1 ≥ Kl, Ksum =
∑L

l=1 Kl, and Nx, Nz, Ny ≫ Kl for all l ∈ [L]. Partition the

lth task tile into information tiles given {Mxl,Myl}.

Input:L, {Kl,Mxl,Myl}l∈[L], Nx, Nz, Ny,Ksum

1: for l ∈ [L]:
2: Slice the lth task tile from the remaining, un-allocated,

rows and columns such that the lth task tile contains all

Nx rows and the next leftmost ⌊
Ny

Ksum
⌋Kl columns.

3: Given {Mxl,Myl}, decompose the lth task tile into Kl

equally sized information tiles.
4: end for

We comment that the rounding error in Alg. 1 results in

Ny −
∑

l(
Ny

Ksum
− 1)Kl = Ksum extra columns. These requires

NxNzKsum additional computation to multiply A and the Ksum

last columns of B. We assign this negligible computation

(negligible since NxNyKsum ≪ NxNzNy) to the master.

IV. EVALUATION

We now numerically evaluate the performance of our

scheme. We first consider the shifted exponential model of

Sec. III. We then evaluate the performance on Amazon EC2.

We compare our results with polynomial [3] and sum-rate [8]

codes.
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Fig. 1: The expected finishing time vs. number of layers for the
shifted exponential distribution, where N = 200 and (µ, α) =
(1, 0.01).

Fig. 1 plots the expected finishing time vs. number of layers

L based on the shifted exponential distribution model with

µ = 1 and α = 0.01. In each trial we generate N independent

exponential random variable Tn, n ∈ [N ], one per worker,

each according to scale parameter µ > 0 and shift parameter

α. The best4 polynomial code, corresponding to Kpoly = 29,

achieves an expected finishing time of 5.7 msec. For the

same per-worker computation load (Ksum/L = 29), we plot

(the solid line) the performance of the hierarchical code for

different choices of L. The decrease in L illustrates the fact

that division of the job into smaller information tiles (larger

L) results in an acceleration of the computation of AB. This

observation will hold as long as the profile {Kl}l∈[L] is set

appropriately. In particular, we observe a 60% improvement

in expected finishing time for L = 16 when compared to the

best polynomial codes. Finally, we plot (the dotted line) the

expected finishing time of sum-rate coding for different L. It

can be observed that the performance of sum-rate coding lower

bounds hierarchical coding. The gap between hierarchical

codes and this bound increases as L increases. This can be

explained as follows. If the number of layers is smaller (e.g.,

L = 2) we have fewer options to set the profile of the

hierarchical code and, with higher probability, we select the

optimal profile that is close to the pattern of completions

realized by the sum-rate code. However, as L increases, the

flexibility to select optimal profile increases and chance to

getting close to the optimal pattern decreases.

We note, however, that L is a design parameter. In practice,

excessively increasing the number of layers L is not advis-

able due to the increase in decoding complexity. Decoding

complexity is governed by the complexity of interpolating a

degree-k polynomial, which is order O(k log2 k) [3].

We now discuss the Amazon EC2 results, presented in

4The best code is the code that has the minimum E[τ ] for the parameters
given in the caption (minimized over different choices of Kpoly).
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Figs. 2 and 3. We implemented decoding on a “t2.micro”

instance. The decoder solves a system of linear equations

which involves a Vandermonde matrix. Both A and B are

1000 × 1000 matrices and the average recovery threshold

per layer (respectively, Kpoly,KS-poly/L,Ksum/L for the three

schemes) is set to 10. In Fig. 2 we plot decoding time versus

number of layers. We plot (solid lines) the serial and parallel

decoding times when using hierarchical codes. Each data

point on these lines corresponds to different number of layers,

L ∈ {1, 4, 8, 16, 32}. The profile of hierarchical coding when

using a single layer (L = 1) is K1 = 10. For L > 3, this

profile is set as follows. The recovery threshold of the first

three layers are set to be the largest, i.e., Ki = 3L + 1 for

i ∈ [3], and Kj = 1 for the remaining layers (j ∈ [L− 3]+3).

One can observe that hierarchical coding can achieve a small

decoding time close to that of polynomial codes when the

decoding of each layer is conducted in parallel. While the

decoding time of hierarchical coding when decoding is carried

out serially is larger than that of polynomial codes, the

decoding time of sum-rate codes is the largest and increases

dramatically as L is increased.

In Fig. 3, we plot the sum of average finishing (computation)

and decoding times. For example, in the left hand plot it takes

on average 27.21 sec for hierarchical polynomial code to finish

enough per-layer computations and 31.18 sec to recover the

matrix multiplication; where the average time to decode is 3.97
sec. This experiment is performed in Amazon EC2 with L =
2, N = 16, and Kpoly = KS-poly/L = Ksum/L = 10. We used

N + 1 t2.micro instances and implemented our approach in

C++ using (the relatively slow) Eigen library to perform matrix

multiplication. Since in EC2 we rarely observe stragglers in

small-scale distributed system (our system includes 16 workers

and the master), we artificially delay nodes so that our design

can be tested. In this “artificial-straggler” scenario we assign

workers to be stragglers independently with probability 0.5.

Workers that are designated stragglers are assigned one more

extra computation than non-stragglers per layer (i.e., stragglers
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Fig. 3: The sum of average finishing (computation) and decoding
times of matrix multiplication of different dimensions. The lower bar
is the average finishing time; the upper is sum of average finishing
and decoding times; and the difference is decoding time.

are two times slower than non-stragglers). We repeated this

experiment for 10 iterations and in each iteration we log

the computation time required by each node to complete its

subtasks. We then add the decoding time at the master. For

three different matrix multiplication problems, we measure

the sum of average finishing and decoding times of three

distinct schemes: polynomial coding, hierarchical polynomial

coding with profile (14, 6), and sum-rate polynomial coding.

For each of the three problems we use matrix dimensions

(Nz, Ny) = (50, 20000) and respectively Nx dimensions

1000, 1250, and 1500. The average finishing times of sum-rate

and hierarchical coding are approximately the same, while the

sum of average finishing and decoding times of the hierarchical

approach yields a speedup of 5.24 sec when compared to

sum-rate approach for Nx = 1500. The hierarchical coding

achieves 35% improvements in comparison to polynomial

coding.

V. CONCLUSION

In this paper we introduce hierarchical coded matrix multi-

plication. Through this hierarchical design, our scheme can ex-

ploit the work completed by all workers, including stragglers.

To apply hierarchical coding into matrix multiplication, we

connect the task allocation problem that underlies coded matrix

multiplication to a rectangle partitioning problem. In Amazon

EC2, our scheme achieves 35% improvement in the average

finishing time when compared to the previous approach.
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