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Maximal Information Leakage based Privacy
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Abstract—It is often necessary to disclose training data to the
public domain, while protecting privacy of certain sensitive labels.
We use information theoretic measures to develop such privacy
preserving data disclosure mechanisms. Our mechanism involves
perturbing the data vectors in a manner that strikes a balance in
the privacy-utility trade-off. We use maximal information leakage
between the output data vector and the confidential label as our
privacy metric. We first study the theoretical Bernoulli-Gaussian
model and study the privacy-utility trade-off when only the mean
of the Gaussian distributions can be perturbed. We show that
the optimal solution is the same as the case when the utility is
measured using probability of error at the adversary. We then
consider an application of this framework to a data driven setting
and provide an empirical approximation to the Sibson mutual
information. By performing experiments on the MNIST and
FERG data-sets, we show that our proposed framework achieves
equivalent or better privacy than previous methods based on
mutual information.

Index Terms—Privacy preservation, information theoretic pri-
vacy, generative adversarial networks, auto-encoders

I. INTRODUCTION

In the area of data disclosure and information privacy, one of
the fundamental questions of interest is how much information
is leaked when an observation is made about a correlated
quantity. The observation is considered to be information
provided to a (possibly malignant) adversary, and it is in our
interest to protect the sensitive information. While disclosure
of information to an adversary may be intentional, such
as publishing statistical information regarding a data set, in
many scenarios this is unintentional, and may lead to security
breaches or leakage of sensitive information. The focus of this
paper is to address the problem of applying transformations
to sensitive data for disclosure while protecting privacy using
an information theoretic framework.

In the broader literature, privacy preserving data disclosure
is a widely explored area motivated by highly publicized
data breaches which resulted from inadequate anonymiza-
tion techniques [1] [2]. Many methods have been proposed
to statistically quantify and measure privacy, including k-
anonymity, t-closeness, Arimoto mutual information of order
∞[3], maxPX I∞(X;Z) [4] ([5] studies the same metric in a
differential privacy context) and more recently mutual infor-
mation [6][7]. Work has been done in the area of differential
privacy[8] utilizing data-driven frameworks developed in deep
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learning[9], in particular private machine learning through
noisy stochastic gradient descent(SGD) or private aggregation
of teacher ensembles(PATE) ([10], [11], [12], [13]). Prior work
also borrow from the information theory literature to design
machine learning models to achieve domain-specific goals
such as exploration in reinforcement learning [14].

Numerous adversarial learning techniques have been pro-
posed in recent years, spearheaded by the development of
generative adversarial networks(GAN) and subsequent variants
[15] [16]. Under the GAN framework, the model is composed
of a discriminator and a generator, where the discriminator’s
objective is to classify whether or not input samples are real or
generated, and the generator’s objective is to produce samples
that fool the discriminator. There have been different variations
on conditioning for the input in order to learn more flexible
spaces and provide interpretation of the input space for the
generator, as well as learning representations for specific types
of data ([17] [18] [19]).

Previous works predominantly adopt classic information-
theoretic measures like Shannon-entropy and mutual informa-
tion to quantify the amount of information leaked between
the disclosed variable and the private variable [6][7]. The
main advantage of using an information theoretic measure of
privacy is that it considers the statistical distribution of the
data. The authors use a min-max formulation of an generative
adversarial network to achieve a trade-off between distortion
and concealing private information by means of a randomized
function implemented as a neural network. A similar approach
was adopted by Huang et al[20] in which the authors consider
two losses for a similar adversarial model, the 0-1 loss and
the empirical log-loss, each corresponding to the maximum a
posteriori (MAP) adversary and the minimum cross-entropy
adversary. Their notion of using the probability of a correct
guess of an adversary as the metric was first studied in
[21] [22]. The log-loss in the model from [20] was shown
to approach the game-theoretic optimal mechanisms under
a MAP adversary, and it also recovers mutual information
privacy.

Maximal information leakage is motivated by a guessing
adversary to characterize the amount of information the public
variable Z leaks about a confidential variable C. Leakage
is defined as the logarithm of the ratio of an adversary’s
probability of a correct guess of a (randomized) function of C
denoted as Û(C) when Z is observed, to the probability of a
correct blind guess. The maximal information leakage then is
defined as the maximum leakage over all possible functions.
Since the leakage is maximized over the random variable U
with the Markov chain U−C−Z, it represents the worst case
of possible functions of U . In [23] the maximization is proven
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to admit a closed-form solution and is proven to be equal to
the Sibson mutual information of order infinity. We note that
prior works on maximal information leakage also include [24],
[3], [25].

II. PRELIMINARIES: SIBSON MUTUAL INFORMATION AND
INFORMATION LEAKAGE

Here we formally introduce the concepts of Sibson mutual
information and maximal information leakage. Rényi intro-
duced generalized definitions of Shannon entropy and KL
divergence in Rényi entropy and Rényi divergence (equation
(2)) which later was used in lossless data compression[26] and
hypothesis testing[27]. However, he did not generalize mutual
information, and several approaches have been proposed in
the literature[28]. Sibson mutual information is an information
theoretic measure based on a generalization of mutual infor-
mation, defined in equation (1) for random variables X ∈ X ,
Y ∈ Y distributed as P (X,Y ).

Iα(X;Y ) = min
QY

Dα(PY |X ||QY |PX) (1)

Dα(P ||Q) =
1

α− 1
log
(∑
a∈A

Pα(a)Q1−α(a)
)

(2)

For discrete variables, the Sibson mutual information is

Iα(X;Y ) =
α

α− 1
log
∑
y∈Y

(∑
x∈X

PX(x)PαY |X=x(y)
)1/α

(3)
This definition of Sibson mutual information in the limit as
α → ∞ is shown to be equal to the maximal information
leakage[29]

L(X → Y ) = sup
U−X−Y−Û

log
Pr(U = Û)

maxu∈U PU (u)
(4)

= log
∑
y∈Y

max
x∈X :PX(x)>0

PY |X(y|x) = I∞(X;Y ) (5)

Operationally, the information leakage is considered as the
logarithm of the multiplicative increase in an adversary’s
ability to predict U , a (randomized) function of X in Û ,
having observed Y compared to a blind guess([23], [29]). The
maximal information leakage, then, is the maximization of
the leakage over all such randomized functions U . This is a
conservative measure, and it has certain desirable properties
that are demonstrated in ([29], [23], [28]).

While mutual information is widely used (as exemplified in
related work [6] [20]), there are many scenarios where it is
unable to capture the performance of a MAP adversary for a
given mapping, as the example below demonstrates. Consider
a C variable as a 2k-bit integer distributed as a uniform
distribution over the possible 22k values (k ≥ 2), and the
following two mappings:

Z1 =

®
C, C mod 2 = 0

1, else

Z2 = C&(0k−11k+1)
where Z1 is preserved to be C if the last bit in C is 0, and
Z2 is the mapping which preserves the last k + 1 bits of C
as the logical AND operator zeros out the first k − 1 bits.
Under these mappings, one can easily compute the mutual
information as follows:

I(C;Z1) =
1

2
log(

2

1
) + 22k−1 ∗ 2−2k log(22k) = k +

1

2
I(C;Z2) = k + 1

Note that the mutual information in the two mapping is nearly
identical. In terms of an adversary’s performance, a MAP
adversary can correctly guess C, 1/2 of the time in the first
mapping, whereas the second mapping has an MAP adversary
accuracy of 1

2k−1 . When calculating the maximal information
leakage for these two mappings (c.f. example 3 of [23]) yields:

I∞(C;Z1) = log(|{z;PZ(z) > 0}|) (6)

= log(22k−1 + 1) ≈ 2k − 1

I∞(C;Z2) = log(2k+1) = k + 1 (7)
Then it is clear that the maximal leakage in the first mapping
is nearly twice that of the second mapping, which is consistent
with the fact that an adversary can guess C based on Z1 better
than based on Z2.

III. CONTRIBUTIONS

Previous approaches ([6], [20]) used conventional mutual
information as a metric to derive privatizer-adversary models
for theoretical Gaussian data and the MNIST data set. We
study the utility of using maximal information leakage as a
privacy measure in this paper.

In section IV we introduce an optimization problem for
affine transformations on Gaussian data, and show solutions
for this optimization problem, which are extended based on
the work in [20]. We then consider three different objectives
as our privacy metric (1) the MAP adversary accuracy (2)
Maximal information leakage and (3) an approximation of
Sibson mutual information; Interestingly all three metrics are
then shown to result in the same optimization problem and
thus identical affine transformation can be used regardless
of the metric. We also briefly consider an extension of the
transformation with noise, and show that global optimum are
not known analytically.

In section V we adapt our setup to be used in models where
we have access to data samples drawn from the distribution
without knowing the parameters of the distribution. Section
VI demonstrates results from synthetic Gaussian data where
we can compare with theoretical MAP adversary accuracies,
the MNIST data set, and FERG data set, and we conclude in
section VII. We propose to use an GAN-like setup where we
simultaneously train two models: (1) an adversarial classifi-
cation model which has access to the training set along with
private labels and (2) an auto-encoder to implement a ran-
domized privatizer that is subjected to a distortion constraint
and a privacy constraint using Sibson mutual information. By
carefully training both the models in tandem we show that
significant improvements can be attained in the privacy-utility
trade-off. For the FERG data set, we design a variant of
the auto-encoding model to measure the utility based on the
adversary’s ability to infer a related public variable rather than
just the reconstruction.

IV. AFFINE TRANSFORMATIONS OF GAUSSIAN DATA

In this section we use a Gaussian data setting and affine
transformations with a distortion budget identical to the setup
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used in [20] to define an optimization problem (equation
(16)) that is aimed to preserve privacy. This data setting is
chosen since the Gaussian distribution is ubiquitous in many
applications [30]. Affine transformations preserve Gaussianity
of the data, allowing the problem to be more tractable, and in
a later extension we consider a noisy transformation. We then
show that there are two solutions conditional on the distortion
budget, one of which is same as the result given by [20] in their
game-theoretic solution to the optimization when using MAP
adversary accuracy as the optimization objective. Starting
from MAP adversary accuracy as the objective function, we
demonstrate that it is equivalent to the optimization problem
of equation (16), and hence there are two solutions instead of
the one proposed in [20]. We then consider the maximal infor-
mation leakage as the objective, and reduce the optimization
to that of equation (16), thus demonstrating that its solutions
are identical to that of equation (16). We also consider Sibson
mutual information as an objective, and demonstrate that with
a numerical approximation, its optimization is again equal to
the optimization in equation (16), yielding the same solutions.
We finally consider a noisy transformation and demonstrate
that the optimization of Sibson mutual information for this
transformation does not guarantee an analytic global solution,
same as prior work [20] did with MAP adversary accuracy as
the metric for the same class of transformations.

A. Gaussian data definitions
This is a theoretical data setting where the privatizer con-

trolling the transform and the adversary inferring a private
variable both have access to the joint distributions of the public
variable X and the private variable C as P (X,C). X follows
a mixture of Gaussian distribution:
p(X|C = 0) ∼ N (µ0, σ

2), p(X|C = 1) ∼ N (µ1, σ
2) (8)

with conditional probabilities
P (C = 0) = p̃, P (C = 1) = 1− p̃ (9)

W.L.O.G. we may let µ0 ≤ µ1. The Gaussian distributions
have equal covariance for tractability purposes.

B. Affine transformation
We define the following data-dependent affine transforma-

tion:
Z = X + (1− C)β0 − Cβ1 (10)

This transformation is dependent on the parameters β0, β1, and
can be seen in Figure 1.

p(Z|C = 0) ∼ N (µ0 + β0, σ
2) = N (µ

′

0, σ
2), (11)

p(Z|C = 1) ∼ N (µ1 − β1, σ
2) = N (µ

′

1, σ
2) (12)

β0, β1 ≥ 0 (13)

µ
′

0 ≤ µ
′

1 (14)
The Z distribution conditioned on the class C are defined by
its means µ

′

0, µ
′

1 and variance σ2. The adversary knows the
distribution of Z and therefore only needs to compute its guess
via the MAP decision rule given Z.

C. Optimization problem and solutions
With the affine transformation, we define an additional

distortion constraint based on a distortion budget denoted as

P (X|C = 0) P (X|C = 1)

β0 β1

x

P (x)

Fig. 1. Binary Gaussian data and transformation vectors

D as a measure of utility:
D = {(β0, β1)|(1− p̃)β2

0 + p̃β2
1 ≤ D,β0 ≥ 0, β1 ≥ 0} (15)

Under the aforementioned transformations we consider the
following optimization problem:

max
(β0,β1)∈D

µ
′

0 − µ
′

1

2σ
. (16)

The solution to this optimization problem is

β∗0 =

 
p̃

1− p̃
D, β∗1 =

 
1− p̃
p̃

D (17)

if D satisfies
D ≤ p̃(1− p̃)(µ1 − µ0)2 (18)

and
β∗0 = (µ1 − µ0)(1− p̃), (19)
β∗1 = (µ1 − µ0)p̃

otherwise. Refer to Appendix 1 Section A for detailed solu-
tions.

In the following subsections we will consider optimizing
over the transformation specified in IV-B with three different
privacy metrics as the objective function: MAP adversary
accuracy, maximal information leakage, and Sibson mutual
information. Interestingly we will show that all three opti-
mization problems are related to (16) and the solution in this
section gives the parameters of the optimal transformation.

D. MAP accuracy as a metric

In this section we consider the optimization for the transfor-
mations in section IV-B with the MAP adversary’s accuracy
as the privacy metric, as prior work [20] has done. Their
theorem provides the solution in equation (17) but not the
solution in equation (20) when condition (18) is not satisfied.
The optimization problem is

min
(β0,β1)∈D

Pr(Ĉ = C) (20)

where Pr(Ĉ = C) is the MAP adversary’s accuracy. We can
characterize the adversary’s accuracy in terms of the distortion
constraint and the optimal transformation with the following
theorem:

Theorem IV.1. Under the binary Gaussian data scenario
with affine transformations of the data described in the set
of equations and inequalities (8) - (14) over the set D, the
adversary’s accuracy after solving the optimization for the
optimal parameters (β∗0 , β

∗
1)

(β∗0 , β
∗
1) = arg min

(β0,β1)∈D
Pr(Ĉ = C) (21)
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is

Pr∗(Ĉ = C) = p̃Q
( σ

µ
′
0 − µ

′
1

log(
1− p̃
p̃

)− µ
′

0 − µ
′

1

2σ

)
+

(22)

(1− p̃)Q
(
− σ

µ
′
0 − µ

′
1

log(
1− p̃
p̃

)− µ
′

0 − µ
′

1

2σ

)
(23)

where the Q(·) function is

Q(x) =
1√
2π

∫ ∞
x

e−
u2

2 du (24)

and the solutions β∗0 , β
∗
1 are given by equations (17), (20).

Proof: Refer to Appendix 1 Section B.

Note that the above solution is under the assumption that
µ0 ≤ µ1 and µ

′

0 ≤ µ
′

1, since the MAP decision rule would be
reversed if the means are shifted over each other. In [20], their
game theoretic solutions are the same as ours for optimization
over the MAP adversary accuracy in equation (17), but we
specify a constraint on the distortion budget D (equation (18))
that gives another solution (equation (20)) when the condition
is not satisfied.

E. Maximal Information Leakage as a metric
Now we propose using maximal information leakage as an

optimization metric, and investigate the induced optimization
problem based on the same synthetic data distributions and
affine transformation as the previous section. The optimization
solution is now given by:

(β∗0 , β
∗
1) = arg min

(β0,β1)∈D
I∞(C;Z) (25)

The following theorem relates the optimization problem to the
optimization in equation (16), and characterizes the solutions
of the optimization.

Theorem IV.2. Under binary mixture of Gaussians data
described in equations (8) - (14) over the set D, assuming
µ
′

0 < µ
′

1, the solution to minimization of maximal information
leakage is equal to

(β∗0 , β
∗
1) = arg min

(β0,β1)∈D
log
(
2Q(

µ
′

0 − µ
′

1

2σ
)
)

= (26)

arg max
(β0,β1)∈D

(µ′0 − µ′1
2σ

)
(27)

and the solutions β∗0 , β
∗
1 are given by equations (17, 20).

Proof: Under the mixture of Gaussians distribution and as-
suming that µ

′

0 < µ
′

1, we have:

I∞(C;Z) = log
(∫ z0

−∞
pZ|C=0 +

∫ ∞
z0

pZ|C=1

)
(28)

The intersection point can be found in this scenario as

z0 =
µ
′2
1 − µ

′2
0

2(µ
′
1 − µ

′
0)

=
µ
′

1 + µ
′

0

2
(29)

Hence solving the optimization objective of minimizing the
maximal information leakage subject to a distortion constraint
is equivalent to:

arg min
(β0,β1)∈D

log
(

(1−Q(
z0 − µ

′

0

σ
)) +Q(

z0 − µ
′

1

σ
)
)

(30)

= arg min
(β0,β1)∈D

log
(

(1−Q(
µ
′

1 − µ
′

0

2σ
)) +Q(

µ
′

0 − µ
′

1

2σ
)
)

(31)

= arg min
(β0,β1)∈D

log
(

2Q(
µ
′

0 − µ
′

1

2σ
)
)

= arg max
(β0,β1)∈D

µ
′

0 − µ
′

1

2σ
(32)

The optimization is the same as the one proposed in equation
(16), subject to the constraints specified in equation (14) and
(15), and yields the same results for β∗0 , β

∗
1

Therefore when optimizing the maximal information leak-
age for the defined data distribution and transformation, it
is equivalent to minimizing an adversary’s theoretical perfor-
mance, and both reduce to minimizing the normalized distance
between the means of the transformed Gaussian distributions.

F. Sibson mutual information as a metric

Here we consider affine transformations of data distributed
as a mixture of Gaussians conditioned on their class specified
in equations (8)-(14), with Sibson mutual information as
the privacy metric in the optimization. Since the maximal
information leakage is equal to the Sibson mutual information
of order ∞ [23], we will approximate it with Sibson mutual
information of order α. The goal is to solve the following
optimization problem with respect to the parameters β0, β1:

(β∗0 , β
∗
1) = arg min

(β0,β1)∈D
Iα(C;Z)

The following theorem relates the optimization of Sibson
mutual information to the optimization in equation (16) and
characterizes the solutions.

Theorem IV.3. Under binary mixture of Gaussians data
described by equations (8) - (14) over the set D, the solution
to the minimization of Sibson mutual information is equal to

(β∗0 , β
∗
1) = arg min

(β0,β1)∈D
Iα(C;Z) ≈ arg max

(β0,β1)∈D

µ
′

0 − µ
′

1

σ
(33)

and the approximate solutions β∗0 , β
∗
1 are given by

equations (17, 20).

Proof: Based on the definition of Sibson mutual information
we have:
Iα(C;Z) =

α

α− 1
log
Ä∫

z

∑
c

(PαZ|C(z|c)PC(c))1/αdz
ä

(34)

=
α

α− 1
log
Ä∫

z

(PαZ|C=0PC=0 + PαZ|C=1(1− PC=0))
1/αdz

ä
(35)

=
α

α− 1
log
Ä∫

z

PZ|C=0P
1/α
C=0(1 +

1− PC=0

PC=0

PαZ|C=1

Pα
Z|C=0

)1/αdz
ä
(36)

≈ α

α− 1
log
Ä∫

z

PZ|C=0p̃
1/αmax(1, (

1− p̃
p̃

)1/α
PZ|C=1

PZ|C=0

)dz
ä
(37)

=
α

α− 1
log
Ä∫ z0

−∞
p̃1/αPZ|C=0dz +

∫ ∞
z0

(1− p̃)1/αPZ|C=1dz
ä

(38)

z0 =

2σ2

α
log(

1− p̃
p̃

) + µ
′2
0 − µ

′2
1

2(µ′0 − µ′1)
, µ

′
0 ≤ µ

′
1 (39)

We approximate the inner term with a max function, allow-
ing us to express the integral in a piece-wise fashion. This
approximation in numerical simulations was sufficiently close
(99.8%) to the true value of the Sibson mutual information of
the same order for the case of binary Gaussian data on orders
of 20 or greater. The z0 derived under this metric is equivalent
to the one derived from maximal information leakage for high
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orders of α, and the resulting optimization is cast as

(β∗0 , β
∗
1 ) = argmin

(β0,β1)∈D

α

α− 1
log(p̃1/αQ(−z0 − µ

′
0

σ
)+ (40)

(1− p̃)1/αQ(
z0 − µ

′
1

σ
))

= argmin
(β0,β1)∈D

α

α− 1
log(p̃1/αQ(−

σ
α
log( 1−p̃

p̃
)

µ
′
0 − µ

′
1

+
µ
′
0 − µ

′
1

2σ
)+ (41)

(1− p̃)1/αQ(

σ
α
log( 1−p̃

p̃
)

µ
′
0 − µ

′
1

+
µ
′
0 − µ

′
1

2σ
))

= argmin
(β0,β1)∈D

α

α− 1
log(p̃1/αQ(

1

dα
log(

1− p̃
p̃

)− d

2
)+ (42)

(1− p̃)Q(− 1

dα
log(

1− p̃
p̃

)− d

2
)), d =

µ
′
1 − µ

′
0

σ

= argmin
(β0,β1)∈D

d = argmax
(β0,β1)∈D

µ
′
0 − µ

′
1

σ
(43)

Equation (43) is derived in the same way as Appendix 1.B
and is shown in Appendix 1.C. Note that this is the same opti-
mization as equation (16) with the same constraints specified
in equation (14) and (15), so the optimization will recover the
same solution.

Under the approximation for Sibson mutual information, we
show that in the limit as α approaches ∞, the approximation
approaches the definition for maximal information leakage.

z0 =

2σ2

α
log(

1− p̃
p̃

) + µ
′2
0 − µ

′2
1

2(µ′0 − µ′1)
, µ

′

0 ≤ µ
′

1 (44)

lim
α→∞

Iα(C;Z) ≈ lim
α→∞

α

α− 1
log
(∫ z0

−∞
p̃1/αPZ|C=0dz

(45)

+

∫ ∞
z0

(1− p̃)1/αPZ|C=1dz
)

= log
(∫ z′0

−∞
PZ|C=0dz +

∫ ∞
z′0

PZ|C=1dz
)

(46)

z′0 =
µ
′2
0 − µ

′2
1

2(µ′0 − µ′1)
, µ

′

0 ≤ µ
′

1 (47)

From theorem (IV.1-IV.3) we can infer the following corollary:

Corollary IV.3.1. Under the binary mixture of Gaussian data
and affine transformations given by equations (8) - (14), the
solutions to optimization over the adversary performance,
maximal information leakage, and Sibson mutual information
approximation are the same.

arg min
(β0,β1)∈D

Iα(C;Z) ≈ arg min
(β0,β1)∈D

I∞(C;Z) (48)

= arg min
(β0,β1)∈D

Pr(Ĉ = C) (49)

G. Extension to transformations with class-independent noise

We now consider a class of transformations with the same
initial binary mixture of Gaussian data described in equations
(8) - (9), but with the following transformation:

Z = X + (1− C)β0 − Cβ1 + γN (50)
N ∼ N (0, 1) (51)

This is an affine transformation with added Gaussian noise,
which preserves Gaussianity of the Z distribution, and still
maintains tractability for analyzing the optimization problem.
Our distortion constraint is adjusted to account for the inde-
pendent noise and is defined as

(1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D (52)
β0, β1, γ ≥ 0 (53)

Thus our optimization problem is
min Iα(C;Z) (54)

s.t. (1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D, (55)
β0, β1, γ ≥ 0 (56)

Theorem IV.4. For the data over X,C described in equations
(8), (9), and the data transformation in equation (50), the
optimal parameters β∗0 , β

∗
1 , γ
∗ are given as the solution to

minβ0,β1,γ
(µ1 − β1)− (µ0 + β0)√

σ2 + γ2
(57)

s.t. (1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D, (58)
β0, β1, γ ≥ 0 (59)

Proof: For the same approximation of the Sibson mutual
information we made in equation (37), we can calculate the
corresponding z0 when( p̃

1− p̃

) 1
α

=
exp(− 1

2
(z−µ

′
1)2

σ2+γ2 )

exp(− 1
2

(z−µ′0)2

σ2+γ2 )
(60)

Solving the above for z0 gives

z0 =
(σ2 + γ2) 1

α log( p̃
1−p̃ )

µ
′
1 − µ

′
0

+
µ
′

1 + µ
′

0

2
(61)

Therefore the optimization of Iα(C;Z) is monotonically in-

creasing in µ
′
1−µ

′
0√

σ2+γ2
. Then

(β∗0 , β
∗
1 , γ
∗) = arg min

β0,β1,γ

µ
′

1 − µ
′

0√
σ2 + γ2

(62)

= arg min
β0,β1,γ

(µ1 − β1)− (µ0 + β0)√
σ2 + γ2

(63)

= arg min
β,γ

(µ1 − µ0 − β)√
σ2 + γ2

, β = β0 + β1 (64)

The Hessian of (64) may be computed as

f(β, γ) =
(µ1 − µ0 − β)√

σ2 + γ2
, ∇2f =

[
∂2f
∂β2

∂2f
∂β∂γ

∂2f
∂γ∂β

∂2f
∂γ2

]
(65)

∂2f

∂β2
= 0 (66)

∂2f

∂β∂γ
=

∂2f

∂γ∂β
=

γ

(σ2 + γ2)
3
2

(67)

∂2f

∂γ2
= (µ1 − µ0 − β)(−1

2
)(σ2 + γ2)−

3
2 [(−3

2
)

4γ2

σ2 + γ2
+ 2]

(68)
The determinant of the Hessian of (64) is always non-positive,
thus the optimization problem is non-convex in β, γ, and global
optimum are not known.
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V. DATA DRIVEN APPROACH FOR MAXIMAL INFORMATION
LEAKAGE

A. Model overview

Given a data set consisting of N pairs of (X,C) in
{(X(n), C(n))}Nn=1, the problem is to find some (randomized)
mapping (X,C) → Z such that the privatized representation
Z leaks as little information as possible with regards to the
private variable C. The data X is assumed to be continuous,
and the private variable C is a discrete variable correlated with
X with G different possible values, often the class which X
belongs to. We use Sibson mutual information of order 20 in
our experiments. This approximation is sufficiently close to
the Sibson mutual information at order ∞ and do not result
in numerical over/underflow during the optimization. In order
to learn the mapping, we use neural networks to parameterize
the adversary g and privatizer f in an auto-encoding model
shown in Fig 2.

The presence of an adversary is to emulate an environment
where the released data is gathered by an adversary, so
the privatizer is encouraged to learn mappings based on a
privacy metric to prevent the adversary from inferring with
high accuracy. Having a trained adversary also implies that
the adversary’s posterior estimates P (Ĉ|Z) are close to the
true posterior, allowing us to make an approximation in the
calculation of empirical Sibson mutual information.

The adversary is trained to make inferences on the private
variable, and the privatizer is trained to minimize the privacy
metric and adhere to a distortion budget. For neural network
privatizers, the privatizer f(x, c) = (fµ(x, c), fΣ(x, c)) takes
data pairs (x, c) as input, and outputs the parameters of
the conditional Z distribution P (Z|X,C). We’ve chosen the
conditional Z to be Gaussian because we believe it is a flexible
distribution and allows for sampling with the method in [31].
S samples of Z are generated as inputs to the adversary
using the reparameterization trick from [31]. Another approach
to modeling the conditional latent distribution released by
the privatizer is demonstrated in [19]. The privatizer also
reconstructs X̂ from the samples of Z to let us compute
the reconstruction error component in its loss function. The
adversary g(z) outputs predictions for C in the vector P (Ĉ|Z)
given the average over the S samples of Z.

For synthetic data, we also conduct experiments with (noisy)
affine encoders, but the adversary is still represented by a
neural network. When we are using neural networks to pa-
rameterize the encoder in experiments, we measure distortion
as the average reconstruction error by default

E
x

[d(X, X̂)] =
1

N

N∑
n

d(x(n), x̂(n)) ≤ D (69)

d(x, x̂) = ||x− x̂||22 (70)
When using (noisy) affine transformations in the encoder, we
measure the distortion as

(1− p̃)β2
0 + p̃β2

1 ≤ D (71)
where the parameters of the encoder are β0, β1 and the
transform is from equation (10), or

(1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D (72)
where the parameters of the encoder are β0, β1, γ and the

X

C

Z

X̂

Ĉ
Adversary g

Privatizer f

Fig. 2. Graph representation of the adversarial privatization model

transform is from equation (50).
For experiments with the synthetic Gaussian data and

(noisy) affine transformations, measuring the expected L2
distance from the reconstruction X̂ = Z to the original X is
equivalent to measuring (1− p̃)β2

0 + p̃β2
1 up to a scaling factor

in D. This is due to the fact that on average, the expected
distortion for affine transformations from equation (70) is

1

N

N∑
n

d(x(n), x̂(n)) =
1

N

N∑
n

||x(n) − x̂(n)||22 (73)

=
1

N

N∑
n

||x(n) − z(n)||22 = (1− p̃)β2
0 + p̃β2

1 (74)

For noisy affine transformations, it is
1

N

N∑
n

||x(n) − x̂(n)||22 =
1

N

N∑
n

||x(n) − z(n)||22 (75)

= (1− p̃)β2
0 + p̃β2

1 + γ2 (76)
Thus we use the distortion metric in equations (71)(72).
However, for neural networks learning non-linear mappings of
the private representation, it is more appropriate to measure
the distortion in terms of the average reconstruction error from
equation (70).

In the data set we have N pairs of data, and throughout
training we assume the adversary is trained and generates near-
optimal posterior probability vectors to classify the private
label. The posterior probability is used as part of the empirical
loss function discussed below. Both the adversary f and the
privatizer g are neural networks each parameterized by θp and
θa.

The goal in the data-driven approach is to learn a mapping
for data pairs such that the Sibson mutual information is
low, subject to a distortion constraint. The optimal parameters
for θp, θa are found through an iterative alternating training
algorithm to keep the adversary optimal for each iteration
of optimization for the privatizer over the empirical approx-
imation of the Sibson mutual information, which are further
discussed.

B. Empirical loss
In this section we will discuss our approximation of the

maximal information leakage as a metric for a data-driven
privatization model, and compare it with mutual information.
Calculating the Sibson mutual information requires knowledge
of the posterior distribution P (C|Z) which is not easily
accessible, but due to the presence of a trained adversary, we
have access to the MAP adversary’s posterior estimate of Ĉ
after the observation of Z. Along with a predetermined prior
probability of C which the MAP adversary also has access to,
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we may approximate the Sibson mutual information by using
the empirical estimate of the posterior on Ĉ.

Iα(C;Z) =
α

α− 1
log(

∫
z

(

G∑
c

PαZ|C(z|c)PC(c))1/αdz) (77)

=
α

α− 1
log(

∫
z

(

G∑
c

PαC|Z(c|z)PαZ (z)PC(c)/PαC (c))1/αdz) (78)

=
α

α− 1
log(

∫
z

(

G∑
c

PαC|Z(c|z)P 1−α
C (c))1/αPZ(z)dz) (79)

=
α

α− 1
log
Ä∫

z

( G∑
c

PαC|Z(c|z)P 1−α
C (c)

)1/α
(80)

∗
∫
x

PZ|X(z|x)PX(x)dxdz
ä

≈ α

α− 1
log(

N∑
n

1

N

∫
z

PZ|X(z|xn) (81)

(

G∑
c

PαC|Z(cn|z)P 1−α
C (cn))

1/αdz)

≈ α

α− 1
log(

N∑
n

1

N
(

S∑
i

1

S
(

G∑
c

PαC|Z(cn|zi,n)P 1−α
C (cn))

1/α))

(82)

≈ α

α− 1
log(

N∑
n

1

N
(

S∑
i

1

S
(

G∑
c

(83)

PαĈ|Z(ĉn|zi,n, θa, θp)P
1−α
C (cn))

1/α))

=
α

α− 1
log(

N∑
n

1

N
(

S∑
i

1

S
(

G∑
c

(84)

(
PĈ|Z(ĉn|zi,n, θa, θp)

PC(cn)
)αPC(cn))

1/α))

=
α

α− 1
log(

N∑
n

1

N
(

S∑
i

1

S
EC [(

PĈ|Z(ĉn|zi,n, θa, θp)
PC(cn)

)α]1/α))

(85)
.
= j(Ĉ, Z, θa, θp) (86)

Starting with the definition of the Sibson mutual information
for a continuous Z and discrete C summed over its G
classes, we use Bayes’ rule and then expand P (Z) into∑
x P (Z|X)P (X). The summation over P (X) is approxi-

mated by the sum over the N data points. Instead of integration
over the support of Z, we average over samples of the
conditional Z distribution due to the fact that outputting and
summing over the classes C is only available through the
adversary, and the adversary takes discrete points of Z as
input. We use the estimated posterior on C in the approxi-
mation because for every iteration of optimization over the
privatizer, the adversary is trained and can produce an estimate
P (Ĉ|Z) that is close to the true distribution. In comparison,
with mutual information, we have:

I(C;Z) =

∫
z

G∑
c

PZ,C(z, c) log
(PC|Z(c|z)

PC(c)

)
dz (87)

=
N∑
n

1

N

∫
z

G∑
c

PC|Z(cn|z)PZ|X(z|xn) log
(PC|Z(cn|z)

PC(cn)

)
dz

(88)

≈
N∑
n

1

N

S∑
i

1

S

G∑
c

PĈ|Z(ĉn|zi,n, θa, θp) (89)

log
(PĈ|Z(ĉn|zi,n, θa, θp)

PC(cn)

)
(90)

We can interpret the mutual information as the Kullback-
Leibler divergence between the posterior estimate of C given
Z and the prior estimate of C, and use it as a comparative
metric denoted as ”MI” in experiments with MNIST and
FERG data. The Sibson mutual information estimate allows us
to design an adversarial model to minimize it as an objective
function when learning the privacy mapping. Our model
consists of encoder and decoders parameterized by neural
networks (represented in Fig 2), and the training procedure
are discussed in the following section.

C. Alternating training algorithm

The encoder acts as a privatizer operating under the assump-
tion that an optimal adversary is available, and optimizes to
minimize the Sibson mutual information Iα(C;Z) subject to
the distortion budget D. They are each parameterized by θp
and θa respectively. The models are trained for 2000 epochs
for synthetic data, 200 epochs for MNIST data set, and 200
for FERG data using the Adam optimizer[32]. Each epoch
consists of a pass over all data points in the training set divided
in mini-batches of size M for a total of N/M iterations,
and the empirical Sibson mutual information/cross-entropy is
computed below for each mini-batch. The adversary is trained
with its objective equation (91) for k = 20 iterations for each
iteration of training for the privatizer. The objective functions
for each component for each mini-batch of size M at iteration
t are:
La(θtp, θ

t
a) = (91)

1

M

M∑
n=1

G∑
c

1(C(n) = c)[− log(P (Ĉ(n) = c|Z(n); θta|θtp))]

Lp(θ
t
p, θ

t
a, ρt) = j(Ĉt, Zt, θta, θ

t
p) (92)

+ ρt max
{

0,
1

M

M∑
n=1

d(x̂n, xn)−D
}

j(Ĉt, Zt, θta, θ
t
p) =

α

α− 1
· (93)

log
( M∑

n

1

M

( S∑
i

1

S
(
G∑
c

(
PĈ|Z(ĉn|zi,n; θtp|θta)

PC(cn)
)αPC(cn))1/α

))
The adversary’s loss is dependent on the posterior estimate
P (Ĉ|Z; θta|θtp), conditioned on the privatizer network’s gener-
ated representation of Z; the privatizer’s loss depends on the
posterior estimate P (Ĉ|Z; θtp|θta), conditioned on the adver-
sary network’s prediction of Ĉ. The empirical estimate of the
Sibson mutual information is derived from equation (86) for
a mini-batch of size M .

For synthetic data, the distortion measure is the distortion
budget

E
x

[d(X, X̂)] = (1− p̃)β2
0 + p̃β2

1 (94)
for an affine privatizer, and

E
x

[d(X, X̂)] = (1− p̃)β2
0 + p̃β2

1 + γ2 (95)



8

for a noisy affine privatizer. For synthetic data using a neural
network privatizer and for real-world data, we use the L2
distance specified in equation (70), and the penalty coefficient
ρt increases with the number of iterations t. The algorithm is
given in Algorithm 1.

Algorithm 1 Alternate training for privacy-preserving adver-
sarial model
Input: M,S,N, k,D, {ci}, {xi}
Output: θTp , θTa
θ0
p ← N (0, I), θ0

a ← N (0, I), t = 0
while t ≤ T do
ρt = 10t

T + 1
θt,0a ← θta
for (j = 0; j < k; j + +) do
θt,j+1
a ← fAdam(∇θaLa(θtp, θ

t,j
a , ρt)) {fAdam is the

output from one update of the Adam optimizer on the
adversary’s loss component}

end for
θt+1
a ← θt,k−1

a

θt+1
p ← gAdam(∇θpLp(θtp, θt+1

a , ρt)) {gAdam is the
output from one update of the Adam optimizer on the
privatizer’s loss component}
t← t+ 1

end while
return θTp , θ

T
a

The reason for iterating over the training of the adversary k
times for each iteration of the privatizer training is to ensure
that the adversary is sufficiently trained, and produces the
posterior probabilities of the private labels that are able to
classify them well. The inner loop updates the parameters
of the adversary network k times according to the adversary
loss La to maintain a trained adversary for every time the
privatizer’s parameters are updated. Therefore the privatizer
can operate under the assumption that a trained adversary is
present, as specified in the design of this model. In practice
we used k = 20 for training for synthetic data and k = 10 for
MNIST and FERG data. The following section demonstrates
the use of Sibson mutual information as the privacy metric in
an adversarial model with synthetic and real-world data and
our experimental results.

VI. EXPERIMENTS

We conduct experiments with 1-D synthetic data drawn
from a Bernoulli-Gaussian distribution, the MNIST data set
and the FERG data set, where the private variable is the class
of the data point, and this section reports the results which
show that Sibson mutual information offers equivalent or
favorable performance in comparison with mutual information.
All of the models below are trained with stochastic gradient
descent of the loss function with mini-batches of data using
the Adam optimizer[32] on default hyper-parameter settings
with Algorithm 1.

A. Synthetic data
Synthetic data is generated by drawing from a Bernoulli

prior distribution with p̃ = 1 − p̃ = 0.5 for the class of

each data point, and conditioned on the class for each point,
the X variable is drawn from a Gaussian distribution with
parameters N (3, 1) and N (−3, 1) for 15000 points. Of those
points, 10000 are used for training, and 5000 are used for
validation. For the synthetic data, we consider the encoder as
affine (section IV-F), affine with noise (section IV-G), or a
fully connected neural network with layers of (4, 2) hidden
units which map a 1 dimensional X into the two parameters
of the 1 dimensional Z which is distributed as a Gaussian. We
average over a sample of 12 points from the Z distribution
and feed to the decoder, a fully connected neural network with
layers of (4,2) hidden units in the reconstruction and inference
branch respectively. The outputs of the decoder are X̂ and
P (C|Z), where the adversary aims to minimize the cross-
entropy loss, the encoder aims to minimize the privacy metric,
subject to a reconstruction constraint. For optimization, we use
the Adam optimizer[32] on our algorithm with a learning rate
of 10−3 and a mini-batch size of M = 500 over 1000 epochs.

We implement a wide range of encoders using both Sibson
mutual information and mutual information as the privacy
metric for the synthetic data set described previously. With
affine transformations, we show the theoretical MAP adversary
accuracy based on the solutions of optimizing for maxi-
mal information leakage (equation (23)(17)(20)), which we
demonstrated was equal to the solutions with MAP adversary
accuracy and Sibson mutual information (Corollary IV.3.1).
This is the theoretical baseline that data-driven approaches aim
to approximate. We then implement a data-driven model with
an affine encoder and a neural network adversary with two
layers of (4, 2) hidden units with ReLU activations and show
the MAP adversary’s accuracy over various distortion budgets
as measured by equation (71). This model follows Algorithm
1 and uses equation (91)(92) as the losses. As a comparison
we include the MAP adversary accuracy for the data-driven
GAP framework [20] which minimizes the mutual information
for the same affine transformation. We also implement a noisy
affine encoder described by the transform (50) that optimizes
the Sibson mutual information, and plot the adversary accuracy
over the distortion budget. This model variant is trained with
Algorithm 1, the adversary uses the loss in equation (91), and
the privatizer uses equation (92) but with equation (75) in
its distortion budget term. From Fig 3 we can see that the
data-driven models with Sibson mutual information achieve
adversary accuracies that closely approximate the theoretical
accuracy, and the discrepancy between the GAP framework’s
accuracy and the theoretical one may be due to their approach
not training the adversary sufficiently.

Finally, we implement a simple neural network encoder
and adversary with Sibson mutual information as the privacy
metric. The encoder takes in (X,C) pairs as input and has two
layers of (4, 2) hidden units with ReLU activations, while the
decoder has two branches of (4, 2) hidden units with ReLU
activations in each branch, and outputs (X̂, P (Ĉ|Z)). This is
again trained with Algorithm 1 and uses the losses in equation
(91)(92). We compare this with the mutual information metric
using the same model, but the empirical mutual information
from equation (90) instead of (86) when calculating the
privatizer loss from equation (92). The adversary’s accuracy
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for both metrics are plotted in Fig 3 labeled as ”(NN)”. We
see that Sibson mutual information offers greater privacy than
mutual information for the same distortion, as measured by the
lower adversary accuracy and both are lower than the (noisy)
affine transformations due to the fact that the mapping learned
by a neural network encoder is more complex.

The actual values of the distortion and adversary accuracy
can be seen in Table I. Due to the non-linearity of our data-
driven model with a neural network encoder, we conduct
further experiments to illustrate the viability of using maximal
information leakage as the privacy metric.

TABLE I
SYNTHETIC DATA RESULTS COMPARED WITH THE GAP FRAMEWORK[20],

DISTORTION VS. ADVERSARY ACCURACY

Distortion
Budget

GAP
accuracy

Experimental
Distortion

Sibson MI
accuracy
(Affine)

Experimental
Distortion

Sibson MI
accuracy
(Affine
with noise)

1 0.9742 0.738 0.980 0.936 0.975
2 0.9169 1.340 0.965 1.56 0.951
3 0.8633 2.904 0.900 2.31 0.926
4 0.8123 3.174 0.882 3.08 0.885
5 0.7545 3.750 0.850 4.80 0.784
6 0.7122 4.570 0.800 5.38 0.741

Experimental
Distortion

Sibson MI
Accuracy (NN)

Experimental
Distortion

MI accuracy
(NN)

0.867 0.9745 1.67 0.942
1.76 0.9283 2.62 0.921
2.19 0.8218 3.64 0.868
2.24 0.6486 4.02 0.778
3.05 0.5600 4.60 0.735
4.43 0.5377 5.05 0.724

5.31 0.629

Fig. 3. Synthetic Gaussian data adversary accuracy rate vs distortion budget

B. MNIST data

The MNIST data consists of 60000 gray-scale images of
pen-written digits and their corresponding digit label, where
the images are 28 × 28 binary arrays, and the digit label
is a one-hot vector of length 10. 50000 data points are
used for training, and 10000 are used for validation. For the
MNIST data, we implemented a 3-layer convolutional neural
network for the encoder, a 4-layer deconvolutional network
for the decoder’s reconstruction branch, and a fully connected
network with two layers of (512, 256) hidden units with ReLU
activation for the decoder’s inference branch, as can be seen in
Fig 4. The convolutional layers in the encoder consist of (32,
64, 128) filters of length 5, one dropout layer and two fully

sample ∼
N (µ, Σ)

µ, Σ

Ĉ

X̂

X

C

Z

(28,28)

(28,28)

(10,1)

(10,1)

(128,1)

(1024) (512) (256)

(512) (256)

Fig. 4. MNIST data-driven privatization model, numbers in braces represent
tensor dimensions

connected layers to output the dimensions for the parameters
of Z. The privatized representation Z is a 128 dimensional
isotropic Gaussian whose parameters (µz,Σz) are generated
by the encoder.

The deconvolutional network branch for the decoder con-
sists of (128, 64, 32, 1) deconvolutional filters of length
(3, 5, 5, 5), and the inference branch of the decoder has
fully connected layers of (512, 256) hidden units with ReLU
activations. The inference metric for the adversary is cross-
entropy as in equation (91) and the privacy metrics are Sibson
mutual information (equation (86)) and mutual information
(equation (90)) as comparison. For optimization, we use the
Adam optimizer[32] on our algorithm with a learning rate of
10−3 and a mini-batch size of M = 500 over 200 epochs and
k = 20.

As the distortion budget is increased, we can achieve various
points along the privacy-utility trade-off curve, as measured
by the adversary accuracy against distortion seen in Fig 5.
With a distortion budget that was enforced by an increasing
penalty coefficient in equation (92), we were able to obtain
adversary performances varying between random guessing
(∼ 10%) and a trained classifier (> 90%), as seen in Fig
5, and Sibson mutual information consistently outperforms
mutual information at almost all distortion levels. We also
conduct further experiments to show that as the order of the
Sibson mutual information increases, we obtain better privacy
and lower adversary accuracies from Fig 5. Visualizations
of the reconstructed digits can be seen in the supplementary
materials.

C. FERG data

For the FERG data[33] which consists of computer-
generated faces of varying facial expressions, we pre-process
the images into 50 × 50 gray-scale images and use them as
inputs. We use two output labels, one for the regular task
of predicting the expression, and the other for identifying
the person’s name. There are 7 different expressions, and 6
identities, thus our model’s decoder component consists of two
branches, one for the regular variable Y and one for the private
variable C. The distortion budget is the cross-entropy of the
regular task label Y with the output Ŷ , and subject to this
budget the privatizer minimizes the Sibson mutual information
for its parameters θp. The decoder inference branch acts as an
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Fig. 5. MNIST data adversary accuracy rate vs distortion budget of L2
reconstruction (lower is better)

adversary that minimizes its cross-entropy for the private task
over its parameters θa. The distortion budget portion of the
loss function is enforced as a penalty coefficient that increases
with the number of iterations, same as equation (92).

The encoder consists of a neural network with 5 layers of
1024 hidden units with ReLU activations and 10% dropout
rate that maps the input gray-scale image into the parameters
for a 512 dimensional isotropic Gaussian Z distribution which
is then averaged over a sample of 12 points. This is used as
input to the decoder which outputs predictions for the two
tasks via two branches, each consisting of fully connected
neural networks of 3 layers of the same configuration of
(1024, 1024, 512) hidden units with 10% dropout rate. The
decoder outputs predicted probability vectors, one over the
regular labels and one over the private labels. The optimization
of the privatizer is subject to a budget on the cross-entropy
loss for the regular task as a measure of the utility while
the adversary’s objective is to minimize the cross-entropy of
the private task with respect to the private branch parameters.
Experiments for both Sibson mutual information and mutual
information were conducted for distortion budgets ranging
from 0.2 to 1.8, and the range was selected based on pre-
liminary experiments. The adversary is trained for k = 20
iterations for every iteration of training for the privatizer, and
the entire model is trained over 200 epochs with the Adam
optimizer with a learning rate of 1e− 3 and a mini-batch size
of 1000.

The accuracy for regular and private tasks are plotted for
both metrics over the experimental distortion budget calculated
from the validation set. From Fig 6 we can see that with differ-
ent distortion budgets the model may leak little or substantial
information with respect to the private variable, ranging from
random guessing (∼ 25%) for the private task and little
utility for the regular task (∼ 45%), to high probability
(> 90%) of correctly guessing the regular label and (∼ 30%)
for the private task. When using mutual information as the
comparison metric, we find that the adversary performs on

par in the public task but better in the private task across
multiple distortion budgets, indicating worse privatization. We
also plot the regular task versus private task accuracy for both
metrics in Figure 7, showing that Sibson mutual information
provides more privacy than mutual information when holding
the regular task accuracy fixed.

Fig. 6. FERG model variant: accuracy rate vs distortion budget, when
distortion is measured by log-loss of regular task

Fig. 7. FERG model variant: regular task accuracy vs private task accuracy,
when distortion is measured by log-loss of regular task

We also consider one variant of this model that reconstructs
the input, reducing it to the same as the previous experiment
with MNIST data set. It uses a deconvolutional network using
the same configuration as the MNIST data model with an extra
fully connected layer to output the same dimensions as the
input image. Then the privatizer is minimizing the Sibson
mutual information subject to the reconstruction distortion
budget from equation (70) while the adversary is trained
to infer the private task. With this variant, the model was
able to achieve various degrees of privacy-utility trade-off
(23% to 77% adversary accuracy) based on a preset range of
distortions as seen in Fig 8. It offers comparable or better
privatization performance compared to mutual information
again, as demonstrated by the lower adversary accuracy. Since
this model variant aims to reconstruct X , we visualize the
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results in the supplementary materials as shown in Fig. 14
for the original images. As the distortion budget increases,
the model’s reconstruction becomes increasingly blurry in
Fig. 15, 16. Another variant which is under development
combines the reconstruction of the input with a regular task,
and the overall distortion loss is a combination which the
privatizer and adversary are trained to minimize within a
budget. This model variant incentivizes the overall model to
maintain a faithful reconstruction up to a degree and retain
information useful towards accuracy in the regular task, while
still minimizing the Sibson mutual information between the
privatized representation and the private variable.

Fig. 8. FERG data adversary accuracy rate vs distortion budget on X (lower
is better), Sibson MI of order 20

VII. FUTURE WORK AND CONCLUSION

For a theoretical data distribution scenario using affine trans-
formations, we show that using maximal information leakage
and Sibson mutual information as an optimization objective
results in the same optimization problem as that of optimizing
the MAP adversary accuracy, thus the optimal privatization
mechanisms are equivalent. The experiments we conduct
demonstrate that Sibson mutual information as a numerical
proxy to maximal information leakage is an effective privacy
metric for data-driven models to learn privacy mappings in
order to reduce adversary performance. A possible future
direction is to incorporate the decoded reconstruction as a
generator for ”natural” privatized data samples as determined
by a discriminating network instead of measuring the recon-
struction error by a set distortion metric. If the reconstruction
from the privatizer can be used as a generated sample fed
to a separate discriminator network, the discriminator can be
trained to distinguish between real data samples and privatized
data. The goal then, for the privatizer, is to learn a mapping that
minimizes Sibson mutual information and has 50% probability
of being classified as a real data sample. We hope that this
work will lead to wider usage of maximal information leakage
in data disclosure systems and lead to stronger anonymization
of user data.

VIII. APPENDIX 1

A. Solution to optimization problem in section 4

From the data setup and the optimization problem

max
(β0,β1)∈D

µ
′

0 − µ
′

1

2σ
(96)

we can rewrite as optimization over the parameters directly
max

(β0,β1)∈D
β0 + β1 s.t. (1− p̃)β2

0 + p̃β2
1 ≤ D, (97)

β0 + β1 ≤ µ1 − µ0, β0 ≥ 0, β1 ≥ 0 (98)
The feasible region is defined by

(1− p̃)β2
0 + p̃β2

1 ≤ D, (99)
β0 ≥ 0, β1 ≥ 0 (100)

when the equations β0+β1 = µ1−µ0 and (1−p̃)β2
0+p̃β2

1 = D
has no more than one solution, or

D ≤ p̃(1− p̃)(µ1 − µ0)2 (101)
Under this situation, the distortion constraint is active, by
applying the Karuhn-Kush-Tucker (KKT) conditions to

max
(β0,β1)∈D

(β0 + β1) + γ[(1− p̃)β2
0 + p̃β2

1 −D] (102)

we have the following equations to solve for:
1 + 2γ∗(1− p̃)β∗0 = 0 (103)
1 + 2γ∗p̃β∗1 = 0 (104)

(1− p̃)β∗20 + p̃β∗21 −D = 0 (105)
Solving this set of equations for the variables β∗0 , β

∗
1 , γ
∗ gives

the optimal transformation parameters:

β∗20 =
p̃

1− p̃
D, β∗21 =

1− p̃
p̃

D (106)

Otherwise the distortion budget constraint is not active and we
may find a specific solution by setting the maximum distortion
to

D = p̃(1− p̃)(µ1 − µ0)2 (107)
then our expressions for the optimal parameters are:

β∗0 =

 
p̃

1− p̃
D = (µ1 − µ0)(1− p̃) (108)

β∗1 =

 
1− p̃
p̃

D = (µ1 − µ0)p̃ (109)

A general expression can be found by solving for the inter-
section of the distortion constraint (1− p̃)β∗20 + p̃β∗21 −D = 0
and p̃(1 − p̃)(µ1 − µ0)2 = D which in this case yields two
solutions:

β∗0 = p̃(µ1 − µ0)±
»
D + p̃(1− p̃)(µ1 − µ0)2 (110)

β∗1 = µ1 − µ0 − β0 (111)
All the points along the line segment with the endpoints of
the two solutions for (β∗0 , β

∗
1) are optimal.

B. Proof of Theorem 4

Proof: Under the assumption that µ
′

0 ≤ µ
′

1 we may compute
the adversary’s theoretical performance via a MAP decision
rule:
Pr(Ĉ = C) (112)

= p̃

∫ z0

−∞
P (Z|C = 0)dz + (1− p̃)

∫ ∞
z0

P (Z|C = 1)dz

(113)

z0 =
σ2

µ
′
0 − µ

′
1

log
(1− p̃

p̃

)
+
µ
′

0 + µ
′

1

2
(114)
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where z0 is derived by solving for p̃P (Z|C = 0) = (1 −
p̃)P (Z|C = 1) under the MAP rule.
Pr(Ĉ = C) (115)

= p̃
(

1−Q
(z0 − µ

′

0

σ

))
+ (1− p̃)Q

(z0 − µ
′

1

σ

)
(116)

= p̃Q
(
− z

′

0 − µ
′

0

σ

)
+ (1− p̃)Q

(z′0 − µ′1
σ

)
(117)

= p̃Q
(
− σ

µ
′
0 − µ

′
1

log(
1− p̃
p̃

) +
µ
′

0 − µ
′

1

2σ

)
(118)

+ (1− p̃)Q
( σ

µ
′
0 − µ

′
1

log(
1− p̃
p̃

) +
µ
′

0 − µ
′

1

2σ

)
= p̃Q

(1

d
log(

1− p̃
p̃

)− d

2

)
+ (1− p̃)Q

(
− 1

d
log(

1− p̃
p̃

)− d

2

)
(119)

d =
µ
′

1 − µ
′

0

σ
=
µ1 − µ0 − (β0 + β1)

σ
(120)

We note that from
∂(1−Q(x))

∂x
= −∂Q(x)

∂x
(121)

=
1√
2π

exp(−x
2

2
) (122)

it is possible to compute the partial derivative w.r.t. d
∂Pr(Ĉ = C)

∂d
(123)

= −p̃ 1√
2π

exp
Ä
−
(
− d

2
+

log( 1−p̃
p̃

)

d

)2
/2
ä(
− 1

2
−

log( 1−p̃
p̃

)

d2
)

(124)

− (1− p̃) 1√
2π

exp
Ä(d

2
+

log( 1−p̃
p̃

)

d

)2
/2
ä(
− 1

2
+

log( 1−p̃
p̃

)

d2
)

= −p̃ 1√
2π

exp
Ä
− d2

8
+

log( 1−p̃
p̃

)

2
−

log(2 1−p̃
p̃

)

2d2

äÄ
− 1

2
−

log( 1−p̃
p̃

)

d2

ä
(125)

− (1− p̃) 1√
2π

exp
Ä
− d2

8
−

log( 1−p̃
p̃

)

2
−

log(2 1−p̃
p̃

)

2d2

äÄ
− 1

2
+

log( 1−p̃
p̃

)

d2

ä
= − 1√

2π
exp
Ä
− d2

8
−

log(2 1−p̃
p̃

)

2d2

ä
p̃ exp

Ä log( 1−p̃
p̃

)

2

äÄ
− 1

2
−

log( 1−p̃
p̃

)

d2

ä
(126)

− 1√
2π

exp
Ä
− d2

8
−

log(2 1−p̃
p̃

)

2d2

ä
(1− p̃) exp

Ä log( 1−p̃
p̃

)

2

äÄ
− 1

2
−

log( 1−p̃
p̃

)

d2

ä
= − 1√

2π
exp
Ä
− d2

8
−

log(2 1−p̃
p̃

)

2d2

äî
p̃

…
1− p̃
p̃

(
− 1

2
−

log( 1−p̃
p̃

)

d2
)

(127)

+ (1− p̃)
…

p̃

1− p̃
(
− 1

2
+

log( 1−p̃
p̃

)

d2
)ó

= − 1√
2π

exp
Ä
− d2

8
−

log(2 1−p̃
p̃

)

2d2

äî√
p̃(1− p̃)(−1

2
)
ó
> 0

(128)
Note that the objective is monotonically increasing in d, so
directly minimizing the adversary’s performance is equivalent

to the optimization problem specified in subsection IV-C. The
solution of this optimization is therefore the same as the
solution in section A of Appendix 1.

C. Derivation of monotonocity in Equation (43)

Proof: With our approximation of Sibson mutual informa-
tion, we have the optimization

arg min
(β0,β1)∈D

α

α− 1
log(p̃1/αQ(

1

dα
log(

1− p̃
p̃

)− d

2
)+ (129)

(1− p̃)Q(− 1

dα
log(

1− p̃
p̃

)− d

2
)) (130)

= arg min
(β0,β1)∈D

α

α− 1
log f(d, α, p̃), d =

µ
′

1 − µ
′

0

σ
(131)

(132)
Much like the previous section, here we will prove that
optimization of the objective function above is also equivalent
to equation (43) by computing the derivative w.r.t. d:
∂f(d, α, p̃)

∂d
(133)

= −p̃1/α 1√
2π

exp
(
−
(
− d

2
+

log( 1−p̃
p̃ )

dα

)2
/2
)

(134)

(
− 1

2
−

log( 1−p̃
p̃ )

d2α

)
− (1− p̃)1/α 1√

2π
exp

(
−
(d

2
+

log( 1−p̃
p̃ )

dα

)2
/2
)

(
− 1

2
+

log( 1−p̃
p̃ )

d2α

)
= − 1√

2π
exp

(
− d2

8
−

log(2 1−p̃
p̃ )

2d2α2

)
(135)

[
p̃1/α exp

( log( 1−p̃
p̃ )

2α

)(
− 1

2
−

log( 1−p̃
p̃ )

d2α

)
+ (1− p̃)1/α exp

(
−

log( 1−p̃
p̃ )

2α

)(
− 1

2
+

log( 1−p̃
p̃ )

d2α

)]
= − 1√

2π
exp

(
− d2

8
−

log(2 1−p̃
p̃ )

2d2α2

)
(136)

[
p̃1/α exp

( log( 1−p̃
p̃ )

2α

)(
− 1

2
−

log( 1−p̃
p̃ )

d2α

)
+ (1− p̃)1/α exp

(
−

log( 1−p̃
p̃ )

2α

)(
− 1

2
+

log( 1−p̃
p̃ )

d2α

)]
= − 1√

2π
exp

(
− d2

8
−

log(2 1−p̃
p̃ )

2d2α2

)
(137)

[
p̃1/α(

1− p̃
p̃

)
1
2α

(
− 1

2
−

log( 1−p̃
p̃ )

d2α

)
+ (1− p̃)1/α(

p̃

1− p̃
)

1
2α

(
− 1

2
+

log( 1−p̃
p̃ )

d2α

)]
= − 1√

2π
exp

(
− d2

8
−

log(2 1−p̃
p̃ )

2d2α2

)[
p̃(1− p̃)

] 1
2α (138)

(
− 1

2
−

log( 1−p̃
p̃ )

d2α
+
(
− 1

2
+

log( 1−p̃
p̃ )

d2α

))
> 0

Thus the optimization objective is monotonically increasing in
d, and is equivalent to equation (43).
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SUPPLEMENTARY MATERIALS

Visualizations of MNIST data reconstructions
Below in Figures 9-13 are shown visualizations of the

MNIST digits, from the original image to reconstructions with
increasing distortion budgets. They are outputs from the model
under Sibson mutual information as the private metric.

Fig. 9. MNIST data samples

Fig. 10. MNIST data reconstructions with a 0.02 distortion budget on X
(Sibson MI)

Visualizations of FERG data reconstructions
Below in Figures 14-16 are shown visualizations of the

FERG reconstructions, from the original image to reconstruc-

Fig. 11. MNIST data reconstructions with a 0.04 distortion budget on
X(Sibson MI)

Fig. 12. MNIST data reconstructions with a 0.06 distortion budget on
X(Sibson MI)

tions with low and high distortion budgets. They are outputs
from the model under Sibson mutual information of order 20
as the private metric.
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Fig. 13. MNIST data reconstructions with a 0.08 distortion budget on
X(Sibson MI)

Fig. 14. FERG data samples

Fig. 15. FERG data reconstructions with a 0.006 distortion budget on X

Fig. 16. FERG data reconstructions with a 0.01 distortion budget on X
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