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Abstract

Massive MIMO has been recognized as a key technology for 5G systems due to its

high spectral efficiency. The capacity and optimal signaling for a MIMO channel

under the total power constraint (TPC) are well-known and can be obtained by

the water-filling (WF) procedure. However, much less is known about optimal

signaling under the per-antenna power constraint (PAC) or under the joint power

constraints (TPC+PAC). In this thesis, we consider a massive MIMO Gaussian

channel under favorable propagation (FP) and obtain the optimal transmit covari-

ance under the joint constraints. The effect of the joint constraints on the optimal

power allocation (OPA) is shown. While it has some similarities to the standard

WF, it also has number of notable differences. The numbers of active streams and

active PACs are obtained, and a closed-form expression for the optimal dual vari-

able is given. A capped water-filling interpretation of the OPA is given, which is

similar to the standard WF, where a container has both floor and ceiling profiles.

An iterative water-filling algorithm is proposed to find the OPA under the joint

constraints, and its convergence to the OPA is proven.

The robustness of optimal signaling under FP is demonstrated in which it becomes

nearly optimal for a nearly favorable propagation channel. An upper bound of the

sub-optimality gap is given which characterizes nearly (or ε)-favorable propagation.

This upper bound quantifies how close the channel is to the FP.

A bisection algorithm is developed to numerically compute the optimal dual vari-

able. Newton-barrier and Monte-Carlo algorithms are developed to find the opti-

mal signaling under the joint constraints for an arbitrary channel, not necessarily

for a favorable propagation channel.

When the diagonal entries of the channel Gram matrix are fixed, it is shown that

a favorable propagation channel is not necessarily the best among all possible

propagation scenarios capacity-wise.

We further show that the main theorems in [1] on favorable propagation are not

correct in general. To make their conclusions valid, some modifications as well as

additional assumptions are needed, which are given here.
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Chapter 1

Introduction

Wireless communication technology is one of the actively growing fields today, and

has become of increasing interest for both academia and industry. A lot of research

has been done in recent years to find solutions for challenges in this technology

as the number of users and the demand for wireless communication consistently

increases [2], [3], [4]. As an example, it has been forecasted that the number of

smartphone subscriptions will be around 7 billion in 2024 [5], and many of these

will need high-rate wireless communication capabilities. So, providing sufficient

data rates for these wireless users is an important issue.

MIMO (multiple-input multiple-output) technology is one wireless communication

technology in which both receiver and transmitter devices are equipped with mul-

tiple antennas, and this technology provides significant benefits, such as providing

high data rates. As an example, Fig. 1.1 shows the performance of MIMO chan-

nels in terms of data rates. In this figure, the data rates are shown for different

SNR (signal-to-noise ratio) values when the fixed bandwidth of the channel is 1

MHz. It can be seen that the data rates increase significantly by increasing the

number of antennas, without extra bandwidth or extra power.

1
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Figure 1.1: Data rate vs. SNR. The bandwidth of the channel is 1 MHz
(reconstructed from [2]). As an example, the bandwidth of WiFi devices is
around 20 MHz. In this case, the rate is scaled by 20 for this SNR.

In real systems, there are always some constraints that need to be addressed. These

constraints affect the channel capacity1. Finite power is one of the constraints that

limit the channel capacity. From a practical point of view, the total transmit power

constraint (TPC) and per-antenna power constraint (PAC) should be satisfied

in MIMO channels. The former constraint is determined by the limited power

available from the power supply, and the latter is practically important since the

amplifier for each antenna has a limited power budget. However, the optimal

transmit covariance over a MIMO channel under the joint power constraints (i.e.,

TPC+PAC) is still unknown in general, except for some special cases (e.g., multi-

input single-output (MISO) channels, full-rank optimal transmit covariance).

Massive MIMO (or large-scale antenna systems) is a new deployment for wireless

communication [4]. This is considered as a key technology for 5G systems in order

to provide high-rate communication to users [6]. In massive MIMO, the base

station is equipped with a large number of antennas, which enables remarkable

benefits. One of them is orthogonality of the wireless channel, which is due to

1The channel capacity is the maximum achievable data rate that reliable communication can
be achieved.
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favorable propagation. In this case, signal processing becomes very simple; for

example, the performance of linear signal processing schemes becomes optimal [7].

Both theory and measurement-based results show that favorable propagation (or

more precisely, nearly favorable propagation) is obtained for many cases as long

as the number of BS antennas is sufficiently large [8], [7].

In this thesis, we study massive MIMO channels with additive white Gaussian noise

(AWGN) under the joint total and per-antenna power constraints (TPC+PAC).

This case is motivated by practical implementations, in which both the TPC and

PAC constraints should be satisfied simultaneously.

1.1 Main Contributions

The main contributions of this thesis are summarized below.

• A closed-form expression for optimal signaling in a massive MIMO chan-

nel under favorable propagation and the joint total and per-antenna power

constraints is obtained.

• The robustness of the optimal signaling under favorable propagation is estab-

lished, which is nearly optimal under approximately favorable propagation.

• Monte-Carlo and Newton-barrier algorithms are developed which compute

optimal signaling under the joint power constraints for general MIMO chan-

nels, not necessarily ones under favorable propagation. A bisection algorithm

is developed to find the optimal dual variable.

• Reference [1] is studied in more detail, and its main theorems are shown to

need some modifications to make their conclusions valid.

Based on the research reported here the following papers have been published/-

submitted.
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• M. Khojastehnia, S. Loyka, F. Gagnon, ”Massive MIMO Channels Under the

Joint Power Constraints”, The Canadian Workshop on Information Theory

(CWIT), Hamilton, Ontario, Canada, June 2-5, 2019.

• S. Loyka, M. Khojastehnia, ”Comments on ”On Favorable Propagation in

Massive MIMO Systems and Different Antenna Configurations” [1]”, ac-

cepted in IEEE Access.

• M. Khojastehnia, S. Loyka, F. Gagnon, ”Robust Optimal Signaling for

Massive MIMO Channels”, submitted to 45th International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 2020).

Additionally, the following papers have been submitted. They study optimal sig-

naling in a wiretap MIMO channel (related to the thesis, but not included).

• M. Khojastehnia, S. Loyka, ”Comments on ”Precoding for Secrecy Rate

Maximisation in Cognitive MIMO Wiretap Channels” [1]” accepted in Elec-

tronics Letters.

• M. Khojastehnia, S. Loyka, ”Comments on ”AN-Aided Secrecy Precoding

for SWIPT in Cognitive MIMO Broadcast Channels ”” submitted to IEEE

Communications Letters.

1.2 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2: Literature Review

This chapter presents the literature review on MIMO channels. It is shown that

considering the joint total and per-antenna power constraints is practically impor-

tant, because the transmitter power supply is limited and each antenna uses its

own amplifier which operates with limited power as well. Optimal signaling under
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the joint power constraints (TPC+PAC) is known just for some special cases, and

these are presented in this chapter. Some known results regarding favorable prop-

agation in massive MIMO channels are discussed, and specifically, both theory

and measurement-based results show that massive MIMO implies an approximate

orthogonal channel for many realistic propagation scenarios.

Chapter 3: Channel Model and Optimal Signaling

The standard model of a discrete-time fixed AWGN MIMO channel is given, which

is the basis of the analyses in this thesis. In this chapter, we consider three different

power constraints: (i) total power constraint, (ii) per-antenna power constraint,

and (iii) joint total and per-antenna power constraint. Optimal signaling for a

MIMO channel under the total power constraint is given, which is on the chan-

nel eigenmodes. In this case, the OPA is obtained by the water-filling procedure.

The optimal transmit covariance under PAC or under the joint power constrains

(TPC+PAC) is not known in general, except in some special cases (MISO chan-

nels, full-rank solution). The definitions of favorable propagation, nearly FP, and

asymptotically FP are given. Under favorable propagation, the channel is orthog-

onal. The off-diagonal entries in the channel Gram matrix are non-zero but small

under nearly FP. Under asymptotically FP, the normalized inner product of each

two distinct channel vectors converges to zero as the number of antennas grows.

Chapter 4: Optimal Signaling Under Favorable Propagation

In this chapter, a closed-form solution of the optimal signaling under favorable

propagation and the joint power constraints (TPC+PAC) is obtained. It is shown

that the optimal transmit covariance matrix is diagonal, and that its diagonal

entries are the minimum of two terms: the first one is the per-antenna power

constraints, and the second represents the WF procedure. It is shown that the

optimal dual variable responsible for the TPC in the WF procedure is greater than

that under the joint power constraints. Closed-form expressions for the numbers

of active PACs and active streams are given. A geometric interpretation of the
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OPA under the joint power constraints (TPC+PAC) is proposed. The OPA can be

interpreted by pouring water into a container which has floor and ceiling profiles.

Additionally, an iterative water-filling algorithm is proposed, and we show that

the algorithm converges to OPA under the joint power constraints (TPC+PAC)

for a favorable propagation channel. The weighted problem under the joint power

constraints (TPC+PAC) is considered in which each user has a different allocated

bandwidth as well as a different grade of service. In this case, the OPA is found

analytically in a closed form.

Chapter 5: Nearly Favorable Propagation and Robustness

This chapter determines the robustness of the optimal signaling to deviations from

FP. It is shown that optimal signaling under FP is nearly optimal under nearly

favorable propagation. The upper bound of the sub-optimality gap becomes small

when nearly favorable is obtained. Based on this, a new definition of nearly (or

ε)-favorable propagation is given. It quantifies how close a channel is to favorable

propagation one.

Chapter 6: Numerical Algorithms

We develop some algorithms to find the optimal signaling for a general MIMO

channel under the joint power constraints (TPC+PAC). The first one is the bisec-

tion algorithm, which can find the optimal dual variable responsible for the TPC.

This algorithm computes a root of a monotonic continuous function. At each step

of the algorithm, the upper or lower bound of the root are redefined, and the width

of the uncertainty interval around the root decreases. This process continues until

this uncertainty becomes sufficiently small, and hence an estimate of the root is

close enough to its actual value. Second, we develop a Newton-barrier method.

This method is powerful in solving convex optimization problems such as finding

the optimal transmit covariance under the joint power constraints (TPC+PAC)

in the general case. In this algorithm, the logarithmic barrier function is used
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to add the inequality constraints to an objective function. Third, we develop a

Monte-Carlo algorithm which obtains the channel capacity by randomly sampling

a large number of transmit covariance matrices and selecting the best covariance.

We demonstrate via an example that CVX can give incorrect results for the ca-

pacity under the joint power constraints.

Chapter 7: A Study of Favorable Propagation

We consider the case that Gram matrices of orthogonal and non-orthogonal chan-

nels have the same diagonal entries. In this case, when the beamforming is optimal,

it is shown that the capacity of the orthogonal channel is less than that of the re-

ceptive non-orthogonal channel. So, among all channels with the same diagonal

Gram matrix entries, favorable propagation is not necessarily the best capacity-

wise. Finally, we comment on [1] and show that the main theorems there are not

correct in general. Some modifications and additional assumptions are proposed

to make the conclusions valid.



Chapter 2

Literature Review

In this chapter, the capacity for a Gaussian channel is reviewed. We show that

the joint total and per-antenna power constraints are practically important, and

some known results regarding optimal signaling under these constraints are pre-

sented. Also, by using theory-based and measurement-based results, it is shown

that favorable propagation is obtained for many cases of massive MIMO channels.

2.1 Point-to-Point Wireless Channel

Point-to-point communication is one type of wireless communication system in

which a base station (BS) serves a user. In this deployment, both the receiver

(Rx) and the transmitter (Tx) may have multiple antennas [9]. The simplest case

is when both Tx and Rx have a single antenna and it is called a single-input

single-output (SISO) channel. Fig. 2.1 shows a SISO channel with additive white

Gaussian noise (AWGN).

8
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Figure 2.1: Gaussian SISO channel

The model for a discrete-time memoryless (frequency flat) Gaussian SISO channel

for time-invariant systems is as follows1:

yt = h · xt + ξt (2.1)

where yt and xt are the received and transmitted signals at discrete time t, respec-

tively; ξt is the white Gaussian noise, and h is the fixed channel gain between Tx

and Rx (for simplicity, the time index t will be removed in later notations).

Claude Shannon showed that there is a maximum achievable rate over a noisy

channel at which one can communicate with an arbitrarily small error probability,

and this maximum achievable rate is called the capacity of the channel [2], [3],

[11]. Reliable communication can be achieved for any rate less than the capacity;

however, error probability cannot be arbitrary small for any rate greater than the

capacity.

The channel capacity for the AWGN SISO channel is as follows:

C = ln(1 + γ) [nat/s/Hz] (2.2)

1In a digital communication system, at first, the information from the source is converted
into bits, in which both sampling and quantization processes are applied. At this stage, the
data is discrete in time. After that, the source coding and the channel coding are used and code
symbols are obtained. In the next step, discrete-time signals are converted to continuous-time
signals by using the pulse-modulation process and a baseband waveform is generated. To reach
the carrier frequency, bandpass modulation is used and a baseband signal converts to a bandpass
signal. The achieved signal is propagated into a channel, and the receiver uses reverse processes
to obtain the intended information [10].
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where C is the channel capacity, γ is the SNR at Rx [2], [12], [13], and nat is a unit

of information where natural logarithms are used instead of base 2 logarithms.

Multiple-input multiple-output (MIMO) technology has been extensively used in

the wireless communication industry, since it yields benefits such as increasing the

data rate without extra SNR or bandwidth [2]. MIMO technology is included in

the industrial standards in already existing systems such as 4G. In particular, long-

term evolution (LTE) or 4G systems are designed in which both the receiver and

the transmitter may have multiple antennas [14]. Additionally, this is considered

as one of the key technologies for 5G systems in the form of massive MIMO (a

large number of antennas) [6], and there has been research interest in massive

MIMO since about 2010.

The channel capacity increases significantly by using multiple antennas at both

Tx and Rx instead of a single antenna. In this case, Gaussian signaling has been

proven to be optimal for AWGN MIMO channels [2], [15]. Fig. 2.2 shows an

example of a MIMO channel where m and n are the numbers of Tx and Rx

antennas respectively. We denote H = [h1,h2, ...,hm] as the channel gain matrix,

where hi is the channel gains vector from i-th Tx antenna to each Rx antennas

(see (3.1) for the details of the channel model).

Figure 2.2: Gaussian point-to-point MIMO channel
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2.2 Power Constraints

In reality, there are some design requirements which need to be considered. Limited

available power is one of them. The capacity and the optimal signaling over a

fixed Gaussian MIMO channel under the total power constraint (TPC) are well-

known. The optimal signaling is on the channel eigenmodes and the optimal power

allocation (OPA) is obtained by the water-filling (WF) procedure [2], [3], [15]. The

following reasons highlight the importance and motivation of considering the total

transmit power constraint: (i) power supply is limited, (ii) the Tx power affects

the battery life; (iii) for environmental safety, the total Tx power should be less

than a certain amount; and (iv) high-level Tx power causes more interference.

For example, in cellular communication, increasing the base station power creates

more interference for other cell users [16], [17], [18].

The per-antenna power constraint (PAC) is another constraint motivated by prac-

tical design concerns, since each Tx antenna has its own amplifier with a limited

power budget. This is shown in Fig. 2.3, in which each antenna can also be consid-

ered as a single-antenna user. Hence, this consideration also applies to multi-user

MIMO channels.

Figure 2.3: MIMO channel under the PAC

The optimal transmit covariance over a fixed MIMO channel under the PAC is

not known in general, except for some special cases (e.g., rank-1 channels, MISO

channels, full-rank solution). In the following, the results of past studies regarding
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optimal signaling under the PAC will be discussed. This includes some proper-

ties of optimal signaling and some numerical algorithms to find the optimal Tx

covariance2.

Reference [19] shows that the optimal Tx covariance of a MISO channel under the

PAC is rank-1 (i.e., the beamforming is optimal). Also, the beamforming is optimal

for a MISO channel under the TPC3. In this case, the optimal Tx covariance has

only one non-zero eigenvalue. This result is achieved where the channel gains are

fixed and known to both the TX and the Rx. Under the TPC only, the phase of the

beamforming vector matches with that of the channel vector, and its amplitude is

dependent on the channel coefficient. However, under the PAC, the amplitude of

the beamforming vector is not dependent on the channel vector and their phases

are matched. Under the PAC, the per-antenna optimal power allocation are equal

to the respective PACs (this is also seen for MISO wiretap channels under the PAC

[21]4). Also, in MISO channels, the capacity under the TPC is greater than that

under the PAC when the total Tx power constraint is equal to the sum per-antenna

power constraints. This is also the case for the ergodic capacity.

In a MISO channel with the i.i.d. (independent identical distribution) Rayleigh

fading propagation model where the channel is only known at the Rx, independent

signaling is optimal under the PAC, and the OPA is equal to the per-antenna

power constraints [19]. This is also the case under the TPC only, and the power

is uniformly allocated to all antennas [15]. In this propagation channel, if all the

PACs are the same, then the uniform power allocation is also optimal under the

PAC.

In the case of fixed MIMO channels under the PAC with full channel state infor-

mation (CSI), a closed-form expression for the optimal Tx covariance is obtained

2The diagonal entries of the optimal transmit covariance determine the optimal power allo-
cation for antennas, and its eigenvectors characterize the beam directions which are optimal [2]
(see (3.4) for the precise definition of the optimal transmit covariance matrix).

3When the transmit strategy is beamforming, the signal is transmitted with a certain complex
weight from each antenna, and weights are entries of the beamforming vector [20].

4In wiretap MIMO channels, Gaussian signaling is shown to be an optimal Tx strategy [22].
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as a function of the dual variable [23]. Also, the paper proposes an iterative nu-

merical algorithm to find the optimal dual variable. In this setting, the rank of

the optimal Tx covariance is upper-bounded by that of the channel matrix. A

similar result for the optimal Tx covariance rank is also used for the proof of the

beamforming optimality in MISO channels under the PAC [19]. As mentioned be-

fore, the optimal Tx covariance under the TPC only is on the channel eigenmodes;

however, this is not the case under the PAC [23].

The optimal signaling and capacity for MIMO channels under the PAC are ob-

tained in [24], where both channel and Tx covariance are full-rank. The paper also

obtains the optimal Tx covariance when the transmitter has two antennas and the

channel is full-rank. In this case, as long as the difference between two singular

values of the channel is sufficiently large, rank-1 transmission is optimal (i.e., the

beamforming is optimal).

The ergodic capacity for a Gaussian fading MISO channel under the PAC is ob-

tained in [25], where full CSI at both Rx and Tx is assumed (i.e., instantaneous

realization of the channel is known for both the Rx and the Tx). It is shown that

the beamforming is optimal in this setting. This result is obtained by using the

Lagrange dual representation of the problem.

Reference [26] explores Rayleigh fading massive MIMO channels with independent

identical distribution, and an equal gain transmission (EGT)-based scheme is pro-

posed to satisfy the PACs. When the number of BS antennas converges to infinity

for a downlink channel, the paper finds the gap for the following values: (i) the

sum-rate achieved by the proposed EGT-based scheme under the PAC; and (ii)

the sum-rate achieved by the maximum ratio transmission (MRT) scheme under

the TPC. This gap is proportional to the number of users. Note that in massive

MIMO, the channel is nearly orthogonal, which will be discussed later in Section

2.4.

Reference [27] looks at two problems in fixed MIMO channels with the per-antenna

power constraint: (i) finding the optimal beamformers, which minimizes the per-

antenna power under the signal to interference and noise ratio (SINR) constraint;
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and (ii) maximizing the region of the achievable rate under the PAC. It is shown

that both problems can be solved by their uplink dual representations with un-

certain noise5. This duality property also holds when there is a power constraint

for a subset of antennas. The paper proposes several numerical algorithms to find

solutions to the above problems.

In a multiuser MIMO setting, there is a rate for each user, and the maximum of the

total rate for reliable communication is the sum capacity, which shows the largest

sum rate. A closed-form solution for the optimal sum capacity under the PAC is

obtained in [28], where there are two users in a fixed MIMO channel. To do so, the

paper shows that the following two problems are equivalent: (i) optimal downlink

sum capacity under the PAC; and (ii) optimal uplink sum capacity under the TPC

with uncertain noise [27], [29]. Also, the number of active users is obtained. To

maximize the sum rate under the PAC, reference [28] gives a closed-form expression

for the optimal downlink precoder.

Reference [30] considers two problems in a fixed multi-user MIMO under the PAC:

(i) maximizing the weighted sum rate; and (ii) maximizing the minimum individual

user rate. Both problems’ formulations are non-convex, and hence difficult to

solve analytically. For each problem, a numerical algorithm is proposed, and the

algorithm’s convergence is also proven. The proof is based on the convexity of

equivalent problems. It is shown that the results in the paper can also be used for

other optimization problems with different power constraints such as per-group

power constraint.

The effect of the i-th Tx antenna on mutual information is found in [31]. Based

on that, mutual information under the PAC is maximized (i.e., the capacity is

achieved) when the transmitted per-antenna powers equal the respective per-

antenna constraints. The paper proposes a numerical algorithm to find the ca-

pacity, and its convergence to the optimal point is proven. Simulation results

show that after around 3 iterations, the algorithm reaches 99% of the capacity.

5Here, uncertain noise means that the noise covariance is diagonal and that the diagonal
entries depend on the channel and the power constraint. Also, duality means that the gap
between the optimal value of the original problem and that of the Lagrange dual problem is
zero.
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Reference [32] proposes an iterative numerical algorithm to find the sum capacity

for a MIMO multiple access channel (MIMO-MAC) under the PAC. This algorithm

is based on finding the optimal Tx covariance for a single-user MIMO under the

PAC. The convergence of this algorithm to the sum capacity is proven, and sim-

ulation examples show that the complexity of the algorithm is linearly dependent

on the number of users.

Reference [33] analyzes the sum rate under the PAC by using a zero-forcing (ZF)

scheme. For the two-user setting, a closed-form expression for the sum capacity is

achieved that is based on the water-filling (WF) procedure.

Maximization of the signal to leakage plus noise ratio (SLNR) under the PAC

can also be considered, which is a non-convex problem and is more difficult to

solve analytically compared to that under the TPC. Reference [34] finds a semi-

closed form solution for the desired precoder, and the robustness of the solution

is investigated by considering the imperfectly known CSI at the Tx.

Reference [35] looks at cooperative downlink MIMO channels under the PAC when

an MMSE (minimum mean square error) beamformer is used. The paper proposes

an iterative algorithm to find the optimal design for the beamformer, and has a

lower complexity compared to alternative ones. The suggested algorithm solves a

sequence of sub-problems in which the PAC is considered for only one antenna.

The convergence of the algorithm to the optimal solution is proven.

2.2.1 Optimal Transmit Covariance Under the Joint Power

Constraints

In this thesis, we consider joint power constraints, i.e., combined total and per-

antenna power constraints. This is practically important, since the amplifier for

each antenna has limited power and the total Tx power is also limited. In this

case, the capacity and the optimal Tx covariance are not known in general, except

for some special cases (MISO channels, full-rank solution). In the following, we

will review some properties of the optimal signaling under the joint constraints
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(TPC+PAC), and some numerical algorithms will be reviewed that can find the

optimal Tx covariance.

Reference [36] shows that under full CSI, the beamforming is optimal for a fixed

MISO channel under the joint power constraints (TPC+PAC). The phase of the

beamforming vector matches that of the channel vector, which is also shown in

[16]. This is also the case for the following cases: (i) fixed MISO channels under

the PAC [19]; (ii) fixed MISO channels under the TPC, PAC, and per-group power

constraint [37]; and (iii) MISO wiretap channels under the TPC, under the PAC, or

under the joint power constraints (TPC+PAC) with 2 Tx antennas [21]. Reference

[36] shows that for MISO channels under the joint constraints, the TPC is active

as long as the total power constraint is less than the sum per-antenna power

constraints, which is also shown in [16]. This is also observed for MISO wiretap

channels [21] and MIMO channels [38] under joint power constraints (TPC+PAC).

Reference [36] obtains a closed-form expression for the optimal signaling under

the TPC+PAC constraints for the case of 2 Tx antennas. In [36], a numerical

algorithm is proposed for a MISO channel in order to find the optimal signaling

under the joint constraints. This algorithm is based on the following property for

MISO channels: if for some antennas, the OPA under the TPC alone violates the

PACs, then their OPAs under the joint power constraints are equal to their per-

antenna constraints. This property also holds for a MISO wiretap channel under

the joint constraint [21].

Closed-form expressions for the optimal signaling and the capacity for a fixed

MISO channels under the joint constraints are given in [16], which completes the

result in [36]. For active PACs, the amplitudes of the beamforming vector entries

depend only on power constraints, and for the inactive PACs, they depend on the

channel gains [16]6. This observation is different from that under the PAC only, in

which the amplitude of the beamforming vector does not depend on the channel

vector, as discussed in [19]. In the case of the same PACs, the optimal signaling is

a combination of EGT and MRC (maximum ratio combining), where the former is

6Active PACs means that the OPA for the receptive antennas is set to be equal to the PACs,
while the rest of the antennas are considered as inactive PACs.
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responsible for the active PACs and the latter is responsible for the inactive PACs.

Also, sufficient and necessary conditions of the optimality of the individual MRC

and EGT are found.

Isotropic signaling is optimal under the joint constraints (TPC+PAC) for a fading

channel when its distribution is right unitary-invariant7 [16]. This is the more gen-

eral result for the fading channel under the PAC, in which the isotropic signaling

is also optimal [19].

Reference [17] comments on the ergodic capacity for MIMO channels under the

PAC and a long-term power constraint when CSI is available for both the BS and

the users8. The condition in which the PAC or the long-term TPC are inactive is

found. Also, the sub-optimal expression for the optimal signaling is found by the

following procedure: to satisfy the PACs, it is assumed that the eigenvalues of the

Tx covariance are limited, instead of the diagonal entries. Note that the covariance

matrix is Hermitian, and the bounded eigenvalues of a Hermitian matrix indicate

the bounded diagonal entries. But, the converse does not necessarily hold [39].

In the case of identical PACs, a full-rank optimal Tx covariance for a fixed MIMO

channel under the joint TPC+PAC is obtained in [40]. A necessary condition for

the optimality of full-rank Tx covariance is found. The off-diagonal entries of the

optimal Tx covariance are the same as those for the inverse of the channel Gram

matrix. The diagonal entries of the optimal transmit covariance are the minimum

of two terms: (i) the OPA under the TPC only; and (ii) the OPA under the PAC

only. However, the optimal dual variable responsible for the TPC under the joint

power constraint is not necessarily the same as that in the WF procedure (TPC

only). The number of active PACs is obtained, where this increases with the total

power constraint. It is shown that in the case of a rank-deficient channel, the

optimal Tx covariance may not be unique. Also, having a full-rank channel is

not a necessary condition for the optimality of the full-rank Tx covariance. It is

7There is no Tx correlation in this model, while Rx correlation is allowed. In this model, an
i.i.d. Rayleigh fading MIMO channel is a special case.

8Long-term power constraint means that the statistical mean of the Tx power should be less
than a certain value that is equivalent to the TPC when the channel is constant.
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analytically proven that isotropic signaling is an optimal Tx strategy in a high-

SNR regime.

Although the optimal signaling for a fixed MIMO channel under the joint power

constraints (TPC+PAC) is still unknown in the general case, reference [38] pro-

poses a numerical algorithm to find the optimal Tx covariance. This algorithm is

similar to that in [36], but it is more general and can be used for MIMO channels.

The algorithm in [38] produces a decreasing array of rates which converges to ca-

pacity after a finite number of steps. The proof of convergence to the capacity is

shown.

In addition to the TPC and PAC, one can also consider a per-group power con-

straint. In this case, to find the amplitude of the optimal beamforming vector in

MISO channels, reference [37] proposes an algorithm which is similar to those in

[36], and [38]. The case of the full-rank Tx covariance and the full-rank channel

is studied in [37], and a closed-form expression for the off-diagonal entries of the

optimal Tx covariance is obtained. As well, the diagonal entries can be found by

an algorithm which is also similar to those in [36], and [38]. For the case of 2

Tx antennas, a closed-form solution of the optimal signaling is found. For general

MIMO channels, an algorithm is proposed to find the optimal signaling, which is

shown to have lower complexity in comparison to the known algorithms.

Reference [41] proposes an algorithm to find the optimal Tx covariance that max-

imizes energy efficiency for MISO channels under the joint power constraints

(TPC+PAC). This case is also studied in [18], in which three constraints are

assumed: PAC, TPC, and total consumption power constraints. Some algorithms

are proposed to find the optimal signaling for both cases of linear and non-linear

high-power amplifiers.

The optimal transmission strategy for a MIMO channel under the TPC is well-

known, and is on the channel eigenmodes, and the optimal power allocation is via

the water-filling procedure. However, there is no closed-form expression for optimal

Tx covariance under the PAC or under the joint power constraints (TPC+PAC) in

general, while some special cases have been solved (e.g., MISO channels, full-rank
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optimal Tx covariance matrix). In this thesis, we consider the problem of finding

the optimal Tx covariance for a massive MIMO channel under the joint constraints,

which is a convex problem. In this case, convex optimization algorithms can be

used, but they provide very limited insights into the problem. Most importantly,

the numerical complexity of these algorithms grows in general as O(m6), where the

square Tx covariance has m columns. For example, if m increases 10 times, the

complexity increases 106 times, and hence these numerical algorithms are complex

to implement for a real-time massive MIMO. Therefore, an analytical solution for

the optimal Tx covariance is desired.

2.3 Massive MIMO Channels

MIMO channels are normally classified into three groups [4]. The first is point-to-

point MIMO channels, in which both transmitter and receiver can have multiple

antennas (one user at Tx and one user at Rx). The second is multiuser MIMO,

in which a BS serves multiple users and each user may have multiple antennas

(shown in Fig. 2.4, where it is assumed that each user has one antenna). In a

multiuser setting, each user transmits an independent data stream. The third one

is Massive MIMO, which is a type of multiuser MIMO but with the number of

BS antennas being much larger than the number of users (n � m). In this case,

simple linear processing techniques are nearly optimal, which is another difference

between massive MIMO and conventional multiuser channels [4], [9].

Figure 2.4: Gaussian multiuser MIMO channel
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Massive MIMO is an indispensable technology for 5G systems [6] in order to com-

pensate for limited bandwidth availability when the number of users of wireless

channels will consistently increase [4]. References [42], [43], and [7] describe mas-

sive MIMO, where hundreds of BS antennas serve tens of users. A practical ex-

ample in [43] uses 128 BS antennas for 4 users. In the following, we will review

some properties and advantages of massive MIMO channels.

2.3.1 Favorable Propagation and Massive MIMO

A wireless channel is not orthogonal in general, and hence it needs advanced

signal-processing schemes to eliminate multiuser interference. However, in massive

MIMO and under favorable propagation, a channel is orthogonal. Specifically,

favorable propagation (FP) is defined as when the inner products of the different

channel vectors are zero [9], and hence simple signal-processing schemes (e.g.,

MRC, ZF) become optimal.

In the cases of both non-line-of-sight (non-LOS) propagation with i.i.d Rayleigh

fading and LOS propagation, it is observed that FP is approximately achieved

when the number of BS antennas is large [8] (i.e., massive MIMO)9. In a real

environment, the propagation likely occurs between LOS and non-LOS, and hence

we expect that FP exists in massive MIMO channels [8]. This is also observed in

measurement-based results [44] (more details regarding FP will be provided in the

next section).

2.3.2 Signal-Processing Schemes

In MIMO channels, non-linear signal processing techniques such as successive in-

terference cancellation (SIC) and dirty-paper coding (DPC) are used when there

exists interference between users. It is observed that when n ≈ m, there is a

9In an LOS massive MIMO channel, there are some rare cases in which FP is not obtained
(see Section 2.4 for more details). To resolve this problem, user selection techniques can be used,
and then the FP conditions are satisfied [7].
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significant mismatch between the capacity achieved by DPC/SCI and the spectral

efficiency achieved by ZF (i.e., linear signal processing). However, as the number

of BS antennas increases, the gap between them decreases [8]10. Note that there

is no interference between users in FP, since they are orthogonal to each other.

As mentioned before, simple signal-processing schemes become optimal in massive

MIMO channels under FP. Maximum ratio combining (MRC) is one of them, which

maximizes the power of the intended signal, as the MRC processor coherently

combines the components of the signal. Zero forcing is another method which

removes interference signals from other users with the loss of array gain. Another

approach is MMSE, which is a balance between ZF and MRC [8] (see [45], [46] for

more detail regarding the optimality of using linear signal processing schemes in

massive MIMO).

2.3.3 Spatial Resolution

In massive MIMO channels, there exists a high level of spatial resolution, which

follows from using a large number of BS antennas. Hence, in massive MIMO,

separating two close users is easier than that in regular MIMO [43]11.

2.3.4 Hardware Impairments

Eliminating the sources of undesired signals at the BS is an important issue in

MIMO channels. Specifically, noise at the receiver and interference signals from

other users are added to the intended signal. Also, distortion of the intended signal

at the receiver due to hardware impairments is undesired. Hardware impairment

usually causes an additive distortion at the BS. It is shown that the additive

distortion at BS disappears as the number of BS antennas grows [47]. So in

10Note that the time division duplex (TDD) mode is used in canonical Massive MIMO channels,
which implies a duality between received-signal combining and transmission precoding [9], [8].

11The spatial resolution depends on the size of the BS antenna array. Hence, if the size of the
antenna array increases as the number of antennas grows, then spatial resolution also increases.
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massive MIMO, hardware precision is not required to be high-level compared to

that in regular MIMO [8].

2.4 Favorable Propagation

As previously mentioned, channel vectors corresponding to different users are or-

thogonal in a favorable propagation channel. This means that H+H is diagonal,

where H+ is the Hermitian conjugate of H. In the following, we will review the

literature regarding the existence of FP when a large number of antennas is used.

Both theory-based and measurement-based results will be reviewed.

Reference [42] shows that the effects of fast fading can be eliminated by using a

large number of BS antennas12. To show this, let H be the channel matrix, as

follows:

H = GG̃
1/2

(2.3)

where G models fast fading with zero mean and unit variance, and real diagonal

G̃ represents attenuation and shadow fading13. Then:

1

n
H+H = G̃

1/2
( 1

n
G+G

)
G̃

1/2
(2.4)

Based on the law of large numbers, when the number of antennas is sufficiently

large, we observe that:

1

n
G+G→ I, as n→∞ (2.5)

and for random variables, → denotes convergence in probability. Hence, in mas-

sive MIMO, the effect of fast fading vanishes as n grows large. This case is called

12In fast fading, the change of channel is significant, as the distance between a signal and
receiver varies with the scale of the wavelength [42].

13In shadow fading, the change of channel is slow over space [42].
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asymptotically favorable propagation (AFP), where H+H is approximately diag-

onal (see Section 3.4 for a precise definition of favorable propagation).

Reference [7] looks at two types of propagation channels: (i) independent Rayleigh

fading, and (ii) uniform random LOS. It is shown that AFP is obtained in both

environments except for a rare case under LOS. This unlikely case occurs when

sin(θi)−sin(θj) is linearly dependent on n−1 (θi denotes the angle of arrival for the

i-th user). In this case, in order to achieve AFP, some users should be removed,

in which each beam has one user terminal.

Reference [48] analyzes channel orthogonality for three types of antenna arrays

when the number of antennas is large: (i) uniform linear arrays (ULA); (ii) uniform

planer arrays (UPA); and (iii) uniform circular arrays (UCA). In a correlated fading

channel14, AFP is achieved for ULA and UPA when the sets of dominant paths

do not have an intersection with each other. Here, dominant paths are defined

when the path gains are linearly dependent on the number of antennas. In LOS

propagation, the channel offers AFP for ULA and UPA, but does not offer it for

UCA.

Note that the channel models in each paper are not necessarily the same. For

example, [7] uses a model of large-scale fading and small-scale fading, and [48]

uses the virtual channel model (see [50] for more details regarding the virtual

channel model).

To investigate AFP conditions, we need to analyze the normalized inner product

of the channel vectors. Reference [51] finds its first and second-order moments

when n grows large, as follows:

E
{

1

n
hi

+hj

}
→ 1

4d0
(2.6)

V ar

{
1

n
hi

+hj

}
→ 1

2d0

(
1− 1

8d0

)
− ε, i 6= j (2.7)

where E{·} and V ar{·} denote expectation and variance respectively, correction

term ε is proportional to d−20 , and d0 denotes the space for the BS antennas in

14In this case, there exists a correlated fading between each two antennas [49].
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the ULA pattern. Here, (2.6) and (2.7) are obtained under uniform random LOS

propagation. It can be seen that the mean of the normalized inner product is

proportional d−10 , which means that AFP is obtained as the space for BS antennas

increases without limit. More precisely, if d0 → ∞ as n → ∞, then AFP is

achieved for massive MIMO, but if d0 is fixed as n → ∞ (i.e., the antenna array

has limited space), then the channel vectors are not orthogonal to each other. It

is worth mentioning that d0 is proportional to the number of antennas in [48], and

hence this observation coincides with the results in [48].

The case of co-located users is studied in [52]. In this paper, users are considered

to be located in a circular region, and the authors show that AFP conditions

hold as the number of BS antennas grows large. Also, the approximated closed-

form expressions for the mean and variance of n−1hi
+hj are derived. In this

case, the results reveal that a large number of antennas is needed to satisfy the

AFP conditions. The following is an example for a 5m cluster radius under LOS

propagation when the BS is equipped with a ULA of antennas. The space between

the BS and cluster of users is 100 m. For this setting, E{n−1hihj} ≈ 0.02 and

V ar{n−1hihj} ≈ 0.03 for 640 BS antennas. So, in the case of co-located users,

a very large number of BS antennas is needed to achieve AFP. Additionally, a

very large number of antennas implies a large size, since the spacing between the

antenna elements is typically around λc/2, where λc is the carrier wavelength.

Hence, in order to reduce the size, high-frequency transmission is more preferable

(i.e., small λc).

In each cell of cellular massive MIMO, there is one BS which serves a subset

of users, and the BS has a large number of antennas. Cell-free massive MIMO is

another deployment, in which there is a large number of access points (APs). Also,

all APs are distributed over an area which serve all users coherently. Reference

[53] studies this case, and defines AFP for cell-free massive MIMO as follows:

h+
i hj(

E{||hi||2|di}E{||hj||2|dj}
)1/2 → 0 as n→∞, i 6= j (2.8)
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where E{||hi||2|di} denotes conditional expectation; || · || denotes the Euclidean

norm; n is the total number of antennas (the number of APs multiplied by the

number of antenna per AP); and di denotes a distance vector from the i-th user to

all APs’ antennas. The paper shows that the AFP condition in (2.8) is achieved

as n increases (whether by increasing the number of APs or antennas per AP).

The normalized inner product in (2.8) decreases as the path loss becomes smaller

or the distance between users increases.

Reference [54] considers a sparse massive MIMO and analyses the normalized inner

product of the different channel vectors. The analyses reveal that the first and

second moments of this inner product become small for a sufficiently large number

of antennas.

Reference [55] shows that AFP conditions are satisfied in most cases of semi-

correlated Ricean channels (which is a more general propagation model compared

to i.i.d. fading and LOS). To show this, a mean value of inter-user interference

power is analyzed. However, if there exists alignment between LOS component

and users’ covariances, then AFP conditions do not hold in massive MIMO. In

these unlikely scenarios, the alignment vanishes by removing correlated users.

To determine how close the channel is to AFP conditions, reference [56] proposes

a cumulative distribution function (CDF) of the normalized inner product of the

channel vectors:

Prθ = Pr

{
|hi+hj|
n

> θ

}
(2.9)

where the right-hand side is the probability that the normalized inner product is

greater than or equal to θ. As n grows large, if this CDF converges to zero for all

θ > 0, then the channel offers AFP. The paper shows that an upper bound of this

CDF becomes smaller when the spatial correlation between the users decreases15.

15An upper bound of this CDF is found by using Chebychev’s inequality [56], [57].
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So far, we have reviewed some theory-based results which show that AFP is at-

tained in massive MIMO. Next, we will review some measurement-based results

regarding this subject.

Some papers determine the singular value spread (SVS) in order to to investigate

the channel orthogonality in massive MIMO. This is defined as the ratio of the

largest channel singular value to the smallest one. If this ratio is one, then the

channel is orthogonal (i.e., favorable propagation). When determining a channel’s

orthogonality, using SVS can be misleading in some cases. For example, consider

a diagonal channel matrix where the ratio of maximum and minimum diagonal

entries is large. In this case, the channel is orthogonal, but the SVS is large.

Another example is a rank-deficient orthogonal channel in which SVS is infinite

[58] (since the minimum singular value is zero). In both examples, channels offer

favorable propagation (even without n → ∞), but the SVS is much larger than

one. Note that to make sure that channel norms do not affect the SVS, the channel

needs to be normalized [7].

Reference [44] obtains measurement-based results for massive MIMO for these

settings: (i) all users are located close to each other with LOS propagation or non-

LOS propagation, and (ii) LOS propagation while the distance between users is

greater than that in the previous case. For both cases, it is seen that SVS decreases

as the number of BS antennas increases. The smallest SVS occurs for non-LOS

propagation with rich scattering, even when the users are close to each other. On

the other hand, LOS propagation with near-located users has the largest SVS.

With the same number of BS antennas, the measurement show that SVS has a

smaller value with the ULA antenna pattern compared to UCA. This is expected,

since ULA provides more angular resolution in comparison with UCA when the

number of antennas and the spacing between antenna elements are the same in

both ULA and UCA. However, in this case, the size of the ULA is larger than

that of the UCA. The measurements in [43] also show that SVS decreases as the

number of BS antennas grows.
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Now let us show the results of a practical setting at 2.6 GHz for massive MIMO

[59]. In this case, the antennas are in the ULA pattern, and the distance be-

tween any given two is half of the carrier wavelength. In both non-LOS and LOS,

SVS decreases as the number of antennas increases from 20 to 128. The CDF

of SVS in both types of propagations are almost similar to that in an i.i.d chan-

nel. However, the SVS in LOS propagation is larger than that in non-LOS. This

is expected because the theory-based results for massive MIMO also show that

favorable propagation is not achieved in some extreme cases of LOS propagation.

The following is another example from a real situation [60] where there are 6

single-antenna users, 3 of them indoors and 3 outdoors. The BS is indoors with a

circular configuration and fc = 2.6 GHz, where fc denotes the carrier frequency. It

is shown that with 6 BS antennas, the difference between the largest and smallest

channel singular values is about 26dB. This difference reduces to 7dB when the

BS is equipped with 128 antennas. So, the SVS decreases as the number of BS

antennas increases from 6 to 128.

Reference [61] looks at massive MIMO at a millimeter-wave band, and obtains

some results based on real measurement data of fc = 60 GHz with 100 BS anten-

nas. In this setting, the SVS is about one when BS serves 4 users. However, this

becomes around three for 8 users. This shows that the SVS is small as long as the

number of BS antennas is large compared to the number of users. The measured

data in [58] also show that as the number of users grows, more BS antennas are

needed in order to have a smaller SVS.

Channel orthogonality (i.e., favorable propagation) can also be determined by the

value of the correlation coefficient between any given two distinct channel vectors.

This is defined as follows:

ci,j =
|h+
i hj|2

||hi||2.||hj||2
(2.10)

where ci,j = 0 indicates the orthogonality of hi and hj. Reference [62] used this

coefficient for real measurement data, with ULA (vertical and horizontal) and UPA

antenna patterns. In both indoor and outdoor settings, the correlation coefficient
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becomes smaller as the number of BS antennas grows (this observation is also seen

from the measurement data in [58]). For example, in the indoor case, ci,j ≈ 0.1

with 10 BS antennas, and reduces to 0.02 with 64 BS antennas. Also, ci,j from

the measurement data is almost the same as that in the i.i.d. channel, which is

considered as a standard reference. Based on this investigation, the horizontal

antenna array yields the smallest value of correlation coefficient, and the vertical

antenna array yields the largest.

It is worth mentioning that (2.6)-(2.10) are measures to quantify the orthogonality

of the channel. For example, let us assume that all vectors are normalized such

that ||hi|| =
√
n (note that hi has n elements). Then:

h+
i hj

||hi||.||hj||
=

1

n
h+
i hj (2.11)

where the magnitude of the left-hand side in (2.11) is the square root of the

correlation coefficient in (2.10), and the exception and the variance on the right-

hand side are the same as in (2.6) and (2.7) respectively.

Reference [63] shows that the ergodic sum rate is maximized when the channel

is orthogonal (i.e., favorable propagation). In the paper, the measured data is

collected for both indoor and outdoor settings at fc = 5.6 GHz in the LOS propa-

gation. The channel matrix is normalized to get a more valid result, and it is seen

that the ergodic sum rate gets close to its upper bound by increasing the number

of BS antennas. Since this upper bound is achieved in FP, we can see that FP is

obtained as the number of antennas increases. As a practical example, the ergodic

sum rate reaches around 95% of its upper bound (95% of the ergodic sum rate

under FP conditions) for the following setting: the low-SNR regime when number

of BS antennas is around 6 times of the number of users. An empirical formula is

proposed in order to see how close the channel is to FP.

Measurement data for the channel Gram matrix in the two-user setting is reported

in [64]. It is observed that the ratio of its off-diagonal entry to the diagonal entry

decreases as the number of antennas grows. In other words, the Gram matrix

becomes nearly diagonal for a sufficiently large number of BS antennas (i.e., the
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channel matrix becomes nearly orthogonal). In this measurement, the carrier

frequency is 2.6 GHz (i.e., cellular frequency).

Favorable propagation has been studied in detail both theoretically and exper-

imentally. In particular, the channel offers approximately FP in many cases of

massive MIMO as long as the number of BS antennas (or APs antennas) is suf-

ficiently large compared to the number of users. These cases include both LOS

and non-LOS propagation as well as both millimeter-wave and cellular bands. In

some scenarios such as co-located users, more BS antennas are needed to obtain

approximately FP. In this case, or when n/m is not sufficiently large, a proper

antenna pattern such as ULA or UPA can be used in order to have FP. These

antenna patterns should have high angular resolutions. Nevertheless, based on

theory and measurement-based results, when n ≥ 10m, the channel propagation

is reasonably close to favorable propagation (i.e., orthogonal channel) in a massive

MIMO. There are some rare cases where FP is not achieved in a massive MIMO;

for example, when two users are in exactly the same direction as seen from the

BS. It is shown that to obtain FP in these scenarios, user selection techniques can

be used.

2.4.1 Summary

Multiple-input multiple-output (MIMO) wireless channels bring benefits such as

increased data rate. The maximum achievable rate over a noisy channel is called

channel capacity, at which reliable communication is achieved. In practical sys-

tems, there are always some constraints that limit the channel capacity, of which

one is limited power supply at the transmitter, which implies total transmit power

constraint (TPC). Another is the per-antenna power constraint (PAC), which is

practically important since each antenna has its own amplifier with a limited power

budget. The capacity and optimal signaling for a fixed MIMO channel under the

joint total and per-antenna power constraints are not known in general, except

in some special cases (e.g., full-rank transmit covariance, MISO channels). These
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known solutions, in addition to some optimal signaling properties, have been re-

viewed in this chapter. Also, some numerical algorithms have been reviewed that

can be used to obtain the optimal signaling under the joint power constraints

(TPC+PAC).

Massive MIMO is a type of multi-user MIMO in which the number of BS an-

tennas is large. For many propagation scenarios, theory-based and measurement-

based results show that the channel becomes approximately orthogonal in massive

MIMO. The channel orthogonality is known as favorable propagation (FP). For

example, asymptotically favorable propagation is obtained for many cases in LOS,

Rayleigh fading, and Ricean massive MIMO channels. Measurement data show

that favorable propagation can be obtained for massive MIMO channels for both

millimeter-wave and cellular bands.



Chapter 3

Channel Model and Optimal

Signaling

The model of a discrete-time memoryless fixed Gaussian MIMO channel is as

follows1:

y = Hx + ξ (3.1)

where y ∈ Cn,1, x ∈ Cm,1 are the received and transmitted signals; ξ ∈ Cm,1 is the

i.i.d. circularly-symmetric additive white Gaussian noise at the receiver of unit

variance (hence, the signal power is also the SNR); H = [h1,h2, ...,hm] ∈ Cn,m

is the channel gain matrix known to both the transmitter (Tx) and the receiver

(Rx) and hi is the i-th column of H; we assume that hi 6= 0 for all i2; (H)ij (i.e.,

the ij-th entry of H) is the channel gain from the j-th Tx antenna to the i-th Rx

antenna; the channel is fixed over the period of transmission while it may change

for the next transmission; m and n are the number of antennas at the transmitter

and the receiver, respectively. Fig. 3.1 shows an example of a MIMO channel

when there are 2 Tx antennas and 4 Rx antennas.

1Here, no convolution is needed, since this is a model of memoryless (frequency flat) channel.
Also, time index t is removed for the simplicity (see (2.1)).

2Since hi = 0 means that the i-th Tx antenna is disconnected, and hence it does not affect
the channel capacity.

31
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Figure 3.1: MIMO channels with 2 Tx antennas and 4 Rx antennas

Gaussian signaling was proven to be optimal in this case [15]. For a given channel

matrix and Tx covariance matrix R = E{xx+} ∈ Cm,m, the maximum achievable

rate is as follows:

C(W,R) = ln |I + WR| (3.2)

where W = H+H ∈ Cm,m is the Gram matrix of H. The channel capacity for a

given W is an optimization problem over R, as follows:

C(W) = max
R∈SR

ln |I + WR| (3.3)

where SR is the feasible set of Tx covariance matrices. The optimal Tx covariance

R∗(W) for channel W is:

R∗(W) = arg max
R∈SR

ln |I + WR| (3.4)

The eigenvectors of R∗(W) determine the optimal beam directions and its eigen-

values give the optimal power allocation for these beams [2]. The optimal Tx

covariance matrix R∗(W) also determines a linear precoder at the transmitter

(see [65] for more details).
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3.1 Total Power Constraint (TPC)

The consideration of the TPC is important, since there is a limited power supply,

and also the transmit power affects the battery life. The feasible set under the

TPC is:

SR = {R : R ≥ 0, trR ≤ PT} (3.5)

where PT is the maximum total Tx power. In this case, the optimal signaling

is on the right singular vectors of H, and the optimal power allocation (OPA) is

obtained by the standard water-filling (WF) procedure [15] that will be reviewed

below.

To find the optimal Tx covariance under the TPC, we use eigenvalue decomposition

(EVD). The EVD of W is as follows:

W = UWΛWU+
W (3.6)

where UW is a unitary matrix that consists of the eigenvectors of W (which are

also the right singular vectors of H), and ΛW is the diagonal matrix, its diagonal

entries are equal to the eigenvalues of W, as follows:

ΛW = diag{λ1(W), λ2(W), ..., λm(W)} (3.7)

where λi(W) is the i-th eigenvalue of W and we assume that they are in decreasing

order. The optimal Tx covariance matrix R∗(W) under the TPC is as follows:

R∗(W) = UWΛ∗U+
W (3.8)

where Λ∗ = diag{p∗i,WF} is the diagonal matrix in which the diagonal entries are

determined by the water-filling (WF) procedure, as follows:

p∗i,WF =
(
µ−1WF − λ

−1
i (W)

)
+

(3.9)
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where (x)+ = max(x, 0), p∗i,WF is the OPA for the i-th stream under the TPC and

µWF can be obtained from the TPC:

trR∗(W) =
m∑
i=1

(
µ−1WF − λ

−1
i (W)

)
+

= PT (3.10)

Finding µWF from the above equality can be illustrated as pouring water into a

container (see Fig. 3.2). The container has a floor profile in which the height of

each level is determined by λ−1i (W), and the total amount of water is determined

by PT . As can be seen from this figure, the deeper levels get more water com-

pared to the shallower ones. In other words, larger channel eigenmodes (which

correspond to stronger streams) get more power in comparison to the smaller ones

(which represent weaker streams). The optimal power allocation can be repre-

sented by the height of the water as measured from the surface of the stairs, and

the ”water level” µ−1WF is found by the height of water from the ground [66].

Figure 3.2: Geometric interpretation of the water-filling procedure
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3.2 Per-Antenna Power Constraint (PAC)

Each antenna at the transmitter is connected to its own amplifier, which has

limited power. This motivates the consideration of the PAC. In this case, the

feasible set takes the form

SR = {R : R ≥ 0, (R)ii ≤ P1i} (3.11)

where P1i is the power constraint for the i-th antenna. While the problem has a

deceivingly simple appearance, no closed-form solution for optimal Tx covariance

is known in general, but only in some special cases (e.g., MISO channels, rank-1

channels, full-rank solution).

3.3 Joint Power Constraints (TPC+PAC)

The case of the joint constraints (TPC+PAC) is motivated by practical issues. As

mentioned in the previous chapter, the TPC is important to consider since there

is a limited power budget at the transmitter. Here, the PAC is important since

each antenna has its own amplifier with limited power. Here, we consider the joint

power constraints with the following feasible set

SR = {R : R ≥ 0, trR ≤ PT , (R)ii ≤ P1i} (3.12)

In this thesis, we use SR as in (3.12), unless stated otherwise.

The optimal Tx covariance for the problem in (3.3) under the joint power con-

straints in (3.12) is still an open problem, and a solution is known only for some

special cases such as MISO channels and full-rank solution. Since the problem

is convex, the optimal solution can be found by using iterative algorithms such

as the Newton-barrier method [66] or the ones that were discussed in the litera-

ture review in the previous chapter. However, these numerical algorithms give us



Chapter3. Channel Model and Optimal Signaling 36

very limited engineering insights into the problem, and their numerical complexity

grows in general as O(m6), meaning that they have high complexity for large m.

3.4 Favorable Propagation (FP)

Massive MIMO is a new technology that has promising advantages, including

high-rate communication for multi-user systems [4]. In particular, simple linear

processing schemes become optimal under favorable propagation [9]. Specifically,

favorable propagation is defined as follows [9]:

h+
i hj = 0, i 6= j (3.13)

In other words, the column vectors of the channel matrix Hn×m are orthogonal to

each other, and hence W becomes diagonal, and W = H+H = DW . In practice,

these conditions are rarely satisfied exactly, but only approximately, which we

term nearly (or approximately)-favorable propagation (NFP):

h+
i hj ≈ 0, i 6= j (3.14)

The main difference between FP and NFP is characterized as follows: under FP, all

off-diagonal entries of W are zero, while under NFP they are non-zero but small.

While (3.13) and (3.14) are very restrictive for standard MIMO (small n), they

are not restrictive but quite typical for massive MIMO, as demonstrated in the

literature. Both theory-based and measurement-based results show the existence

of approximately favorable propagation for many cases of massive MIMO channels,

as discussed in the literature review. Specifically, the measurement-based results in

[8], [44], [63], and [64] show the existence of approximately favorable propagation

in cellular and millimeter-wave bands for massive MIMO, and the theory-based

results in [42], [7], [52], and [55] show that favorable propagation is approximately

satisfied for many cases in Rayleigh fading, LOS, and Ricean massive MIMO
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channels. Hence, while considering an orthogonal channel W = DW for regular

MIMO is a significant restriction, this is not the case for massive MIMO.

Favorable propagation can also be characterized asymptotically in a massive MIMO

setting:

1

n
h+
i hj → 0, i 6= j, as n→∞ (3.15)

which is called asymptotically favorable propagation (AFP) [9], where W becomes

approximately diagonal for sufficiently large but finite n.

3.5 Summary

In this chapter, we described the model for discrete-time fixed Gaussian MIMO

channels that is the basis of our analyses. Three different power constraints are

considered. The first is the total power constraint (TPC), which is motivated by

a limited transmit power budget. The optimal signaling under the TPC is on

the channel eigenmodes, and the optimal power allocation can be obtained by the

standard water-filling procedure. The second is the per-antenna power constraint

(PAC), which is motivated by practical design, in which each Tx antenna has its

own amplifier with a limited power budget. The optimal Tx covariance under the

PAC is not known in general, except in some special cases (e.g., MISO channel, full-

rank optimal Tx covariance). The third is the combined TPC and PAC, which

is practically important and is motivated by the limited power in transmitter

and per-antenna amplifiers. The optimal Tx covariance under the joint power

constraints (TPC+PAC) is not known in general, except in some special cases

(e.g, full-rank optimal signaling, MISO channels). We formulated the problem,

which involves finding the optimal Tx covariance under favorable propagation and

the joint total and per-antenna power constraints.

In favorable propagation (FP), the channel becomes orthogonal. In practice and

in massive MIMO channels, the favorable propagation conditions can hardly be
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satisfied exactly, but only approximately. We term this case as nearly-favorable

propagation (NFP), in which the off-diagonal entries of the channel Gram matrix

are small but non-zero. Additionally, FP can be imposed asymptotically, which is

known as asymptotically favorable propagation (AFP). In this case, the normalized

inner product of each two distinct channel vectors converges to zero as the number

of antennas grows.



Chapter 4

Optimal Signaling Under

Favorable Propagation

In this chapter, we consider a massive MIMO channel under favorable propagation

and obtain a closed-form expression for the optimal transmit covariance under

the joint power constraints (i.e., the total power constraint and the per-antenna

power constraints). We discuss the difference between the optimal power allocation

(OPA) under the joint constraints with that under the TPC alone (water-filling

procedure). Under the joint constraints, a geometric interpretation of the OPA is

proposed, as well as an iterative water-filling algorithm in order to compute the

OPA.

4.1 Optimal Signaling Under the Joint Total and

Per-Antenna Power Constraints

Here, we find the optimal Tx covariance under favorable propagation as well as

the joint constraints (TPC+PAC). To be more precise, we consider the following

39
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problem:

C(DW ) = max
R∈SR

ln |I + DWR| (4.1)

where

SR = {R : R ≥ 0, trR ≤ PT , (R)ii ≤ P1i} (4.2)

We assume the channel to be orthogonal (i.e., W = H+H = DW ) because of the

FP, and SR is the feasible set of Tx covariance matrices (TPC+PAC). The next

theorem gives the optimal Tx covariance for the problem in (4.1). To this end, let

gi = ||hi||2 > 0 and pi ≥ 0 be the i-th diagonal entry for W and R respectively1.

Theorem 1. Consider an orthogonal channel, W = DW = diag{gi}. The unique

optimal Tx covariance R∗(DW ) under the joint power constraints in (4.2) for the

problem in (4.1) is the diagonal matrix, as follows:

R∗(DW ) = diag{p∗i } (4.3)

where p∗i is the optimal power allocation for the i-th Tx antenna:

p∗i = min
{
P1i, (µ

−1 − g−1i )+
}

(4.4)

where µ ≥ 0 is the Lagrange multiplier responsible for the total Tx power: (i)

if PT ≥
∑m

i=1 P1i, then µ = 0 and all PACs are active, i.e. p∗i = P1; (ii) if

PT <
∑m

i=1 P1i, and then µ > 0 can be found as a solution of the following equation

(the TPC):

m∑
i=1

min
{
P1i, (µ

−1 − g−1i )+
}

= PT (4.5)

1The results which are based on channel orthogonality also apply for an orthogonal frequency
division multiplexing (OFDM) system.
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The channel capacity is:

C(DW ) =
m∑
i=1

ln(1 + gip
∗
i ) (4.6)

Proof. See Appendix.

From Theorem 1, we can also find the optimal Tx covariance under the individual

TPC or PAC when W = DW . To obtain the OPA under the TPC only from

Theorem 1, we need to consider P1i ≥ PT , and then the PACs become redundant.

Therefore, the effect of the PACs is removed. To see this, we consider the OPA

in (4.4) and take the limit for P1i →∞. Then, the first term in min in (4.4) (i.e.,

P1i) disappears. Hence, under the TPC, the diagonal entries of the optimal Tx

covariance matrix are found by:

p∗i,WF = (µ−1WF − g
−1
i )+ (4.7)

where p∗i,WF is the OPA for the i-th stream under the TPC only (the standard

WF procedure [15], [66]), and µWF is the optimal dual variable responsible for the

total power constraint under the TPC.

On the other hand, to obtain the optimal power allocation under the PAC only,

we need to consider PT ≥
∑m

i=1 P1i in order to eliminate the effect of the TPC. In

this case, µ = 0 and min
{
P1i, (µ

−1 − g−1i )+
}

= P1i, and hence the TPC becomes

redundant (i.e., the second term in min disappears). Therefore, under the PAC,

the diagonal terms for the optimal Tx covariance matrix are p∗i,PAC = P1i. Here,

p∗i,PAC is the OPA for the i-th stream under the PAC only.

From Theorem 1, we observe that independent signaling is optimal under the

joint power constraints (TPC+PAC) and FP. Note that both R∗(DW ) and DW

are diagonal matrices, so that the optimal Tx covariance and the Gram matrix of

the channel have the same eigenvectors. While this is not the case under the joint

power constraints for general MIMO channels [16], it is always the case under the

TPC only. Theorem 1 shows that the eigenvectors of the optimal Tx covariance
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matrix are the standard basis vectors, so the need for feedback is significantly

reduced since the optimal power allocation p∗i is only required at Tx.

It is seen that the OPA in (4.4) is the minimum of two terms; one represents the

PACs (i.e., P1i), and the second represents the standard WF procedure (i.e., under

the TPC alone (µ−1− g−1i )+). However, the water level µ−1 under the joint power

constraints (TPC+PAC) is not necessarily the same as that under the TPC, except

when the optimal signaling under the joint power constraints coincides with the

water-filling procedure (i.e., all PACs are inactive).

The non-linear equation in (4.5) can be solved via a bisection algorithm, since its

left-hand side is decreasing in µ. We will provide more details about the bisection

algorithm in Chapter 6.

The next corollary gives the actual transmitted power under the joint power con-

straints, i.e., the value of trR∗(DW ).

Corollary 1. In Theorem 1, the actual transmitted power is as follows:

m∑
i=1

p∗i = min

{
PT ,

m∑
i=1

P1i

}
(4.8)

Proof. Follows from Theorem 1 by considering two possible cases: PT ≥
∑m

i=1 P1i,

in which the TPC is inactive, and
∑m

i=1 p
∗
i =

∑m
i=1 P1i ≤ PT or PT <

∑m
i=1 P1i, in

which the TPC is active, and
∑m

i=1 p
∗
i = PT <

∑m
i=1 P1i.

In the standard WF procedure under the TPC alone, the actual transmitted power

is always equal to PT . However, it is not necessarily the case under the joint power

constraints.

The next proposition gives the number of active streams (i.e., streams with p∗i > 0).

Proposition 1. Let {gi} be in decreasing order, i.e., g1 ≥ g2.... For the problem

in (4.1), the number m+ of active streams is as follows:

m+ = max{j : uj < PT} (4.9)
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where:

uj =

j∑
i=1

min
{
P1i, (g

−1
j − g−1i )

}
, 1 ≤ j ≤ m, (4.10)

and p∗i > 0 for 1 ≤ i ≤ m+ and p∗i = 0 for i > m+.

Proof. See Appendix.

It should be pointed out that uj is increasing in j. So, (4.9) facilitates an algo-

rithmic implementation for finding the number m+ by verifying the inequality for

increasing j. Then, the algorithm stops at the largest j, satisfying the inequality,

starting from j = 1.

Since R∗(DW ) is a diagonal matrix, its rank is equal to the number of non-zero di-

agonal entries. Hence, rank
(
R∗(DW )

)
= m+. From Proposition 1, active streams

are stronger than inactive ones, i.e., gi is larger for active streams. This is also seen

in the WF procedure (see Chapter 3 for more details regarding the WF procedure).

In the next proposition, a sufficient and necessary condition for the optimality of

beamforming is given.

Proposition 2. Let {gi} be in decreasing order. For the problem in (4.1), the

rank-1 transmission (beamforming) is optimal, i.e., m+ = 1 if and only if:

PT ≤ min
{
P11, (g

−1
2 − g−11 )

}
(4.11)

In this case, R∗(DW ) = PTe1e
T
1 .

Proof. Follows from Proposition 1.

Under (4.11), p∗1 = PT , p∗i = 0 for any i ≥ 2. This shows that only one stream is

active, and that is the strongest one, i.e., g1 = ||h1||2.

Under the TPC only, the beamforming is optimal if and only if:

PT ≤ (g−12 − g−11 ) (4.12)
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and this follows from (4.11) when P1i ≥ PT (i.e., the PACs become redundant

and the first term in min in (4.11) disappears). By comparing (4.12) and (4.11),

we can see that the optimality of rank-1 transmission under the joint power con-

straints is similar to that under the TPC only, and both occur at low-SNR (small

PT ). However, the SNR threshold under the joint power constraint is lower than

that under the TPC alone. If the beamforming is optimal under the joint power

constraints, it is also optimal under the TPC only, but the converse is not true in

general (i.e., (4.11) leads to (4.12), but not vice versa in general).

The next proposition gives a sufficient and necessary condition for the optimality

of full-rank transmission.

Proposition 3. For the problem in (4.1), the full-rank transmission is optimal,

i.e., m+ = m (p∗i > 0 for any i) if and only if:

PT >
m∑
i=1

min{P1i, g
−1
m − g−1i } (4.13)

Proof. Follows from Proposition 1.

Under the TPC only, the full-rank transmission is optimal if and only if:

PT >
m∑
i=1

(g−1m − g−11 ) (4.14)

where (4.14) can be obtained from (4.11) when P1i ≥ PT . By comparing (4.13)

and (4.14), it is observed that the optimality of full-rank transmission occurs at

high SNR for both scenarios. However, the SNR threshold is lower for the case

of the joint power constraints. If all streams are active under the TPC alone

(the WF procedure), then they are also active under the joint power constraints

(TPC+PAC), but the converse is not necessarily true. However, at low SNR, if the

beamforming is optimal under the joint power constraints, then it is also optimal

under the TPC only.

In the next proposition, the number of active PACs is determined in a closed form.
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Proposition 4. Consider active streams, i.e., p∗i > 0, and arrange them so that

{g−1i + P1i} is in increasing order, i.e., g−11 + P11 ≤ ... ≤ g−1m+
+ P1m+. For the

problem in (4.1), the number mPAC of active PACs is as follows:

mPAC = max

{
j : vj ≥

m+∑
i=1

P1i − PT
}

(4.15)

where:

vj =

m+∑
i=j

(
(g−1i + P1i)− (g−1j + P1j)

)
, 1 ≤ j ≤ m+, (4.16)

and p∗i = P1i for 1 ≤ i ≤ mPAC and p∗i < P1i for i > mPAC. No PAC is active,

i.e., p∗i < P1i for any i, if and only if:

v1 <

m+∑
i=1

P1i − PT (4.17)

and p∗i = P1i for any i, i.e. R∗(DW ) = diag{P1i}, if and only if:

PT ≥
m∑
i=1

P1i (4.18)

Proof. See Appendix.

Note that vj is decreasing in j, so that mPAC can be obtained by verifying the

inequality for increasing j.

Proposition 4 shows that by increasing PT , at first the PACs become active for the

streams with smaller g−1i + P1i, and hence no more power can be given to those.

Then, the excess power is re-distributed to other streams with larger g−1i + P1i.

This shows the main difference between the standard WF procedure and that in

(4.4), which we call here capped WF (see Figs. 4.2-4.4).

Next, we show an unusual property of the optimal dual variable µ under the joint

power constraints (TPC+PAC).
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Corollary 2. If PT <
∑m

i=1 P1i, the dual variable µ is not necessarily unique,

while the optimal power allocation is always unique.

Proof. The proof of the uniqueness of the optimal solution is based on the strict

convexity of the problem (see Appendix for the proof of Theorem 1 regarding the

strict convexity of the problem). To show the non-uniqueness of µ, let us consider

the following example: {gi} = {200, 100, 1, 0.5}, PT = 1, and P1i = 0.5 for any

i. Here, u2 = 1/200 < PT and u3 = 1 = PT , so that (4.9) implies m+ = 2. To

find mPAC from Proposition 4, note that
∑m+

i=1 P1i − PT = 0 and v2 = 0, so that

(4.15) implies mPAC = 2. In this example, the number of active streams equals

the number of active PACs, i.e., m+ = mPAC = 2, so the unique optimal power

allocation for this channel is as follows:

p∗i =

0.5 for i = 1, 2

0 for i = 3, 4

(4.19)

and from Theorem 1, observe that:

min
{

0.5, (µ−1 − 0.005)+
}

= min
{

0.5, (µ−1 − 0.01)+
}

= 0.5 (4.20)

min
{

0.5, (µ−1 − 1)+
}

= min
{

0.5, (µ−1 − 2)+
}

= 0 (4.21)

so that:

µ−1 − 0.01 ≥ 0.5 (4.22)

µ−1 − 1 ≤ 0 (4.23)

Hence, µ−1 can be any in the interval [0.51, 1].

The optimal dual variable responsible for the total power constraint is always

unique in the standard WF (under the TPC alone), while this is not the case

under the joint power constraints (TPC+PAC).
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The optimal dual variable µ is unique under a certain condition. In this case, µ

can be expressed in a closed-form (see Proposition 5). To do so, consider active

streams and let IPAC be the set of streams with active PAC and IPAC be the set

of streams with inactive PAC, so that:

IPAC = {i : p∗i = P1i} (4.24)

IPAC = {i : 0 < p∗i < P1i} (4.25)

where IPAC and IPAC have (m+−mPAC) and mPAC elements respectively. To find

IPAC , we find all p∗i > 0 from Proposition 1. Then, we remove those streams with

p∗i = P1i by using Proposition 4. Furthermore, IPAC is found by Proposition 4.

The next proposition gives a closed-form expression for the optimal dual variable

µ when it is unique.

Proposition 5. If m+ 6= mPAC, i.e., m+ > mPAC (for active antennas, at least

one PAC is inactive), then µ in (4.5) for the problem in (4.1) is unique and can

be expressed as:

µ−1 =
1

m+ −mPAC

(
PT +

∑
i∈IPAC

g−1i −
∑

i∈IPAC

P1i

)
(4.26)

where IPAC and IPAC are as in (4.25) and (4.24).

Proof. Here, the TPC is active since m+ > mPAC . Then,

PT =
m∑
i=1

p∗i =
∑

i∈IPAC

P1i︸ ︷︷ ︸
p∗i=P1i

+
∑

i∈IPAC

(µ−1 − g−1i )

︸ ︷︷ ︸
0<p∗i<P1i

(4.27)

Hence, (4.26) follows after some simple manipulations.

The following proposition shows the effect of the joint constraint (TPC+PAC) on

the dual variable µ.

Proposition 6. Let µ and µWF be the dual variables responsible for the total power

constraint under the joint TPC+PAC constraints and the TPC alone, respectively.
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Then, for the same PT , the following holds:

µ ≤ µWF (4.28)

The strict inequality occurs if at least one PAC is active.

Proof. See Appendix.

In a convex problem, the sensitivity of the optimal value with respect to changes

in a constraint is determined by its receptive dual variable [66]. A smaller dual

variable shows less sensitivity, and a larger one shows more sensitivity. Therefore,

µ ≤ µWF implies that the OPA under the joint constraints (TPC+PAC) is less

sensitive to the variations of PT compared to that under the TPC alone (the

standard WF).

Next, we show that if some streams exceed P1i in the standard WF, then for these

streams, the transmitted per-antenna powers equal the respective PACs.

Corollary 3. Under the same PT , if p∗i,WF ≥ P1i, then p∗i = P1i.

Proof. The proof is based on Proposition 6, as follows:

µ−1 ≥ µ−1WF (4.29)

(µ−1 − g−1i )+ ≥ (µ−1WF − g
−1
i )+ = p∗i,WF (4.30)

Hence, if p∗i,WF ≥ P1i, then (µ−1 − g−1i )+ ≥ P1i. So,

p∗i = min
{
P1i, (µ

−1 − g−1i )+
}

= P1i (4.31)

This property was also shown in [36], [38], [37], and [21]. However, here we

present a simpler proof which gives us additional insight, i.e., the optimal dual

variable responsible for the total Tx power constraint under the joint constraints

(TPC+PAC) is less than that under the TPC alone (see Proposition 6).
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4.2 Same Per-Antenna Power Constraints

In this part, we consider identical PACs, i.e., P1i = P1. This is motivated by the

fact that all Tx antennas are usually equipped with the same amplifiers. Here,

Theorem 1 and Propositions 1-4 apply directly with P1i = P1.

From Proposition 4 and in the case of identical PACs with P1i = P1, the isotropic

signaling R∗(DW ) = P1Im is optimal under the joint power constraints if and only

if:

PT ≥ mP1 (4.32)

In this case, no feedback is needed, since P1 is known at Tx. This is in contrast

to the standard WF, where the uniform power allocation is not optimal in general

at any finite value of PT (unless all gi are the same).

The next proposition gives a simpler closed-form expression for the dual variable

µ when P1i = P1.

Proposition 7. Consider identical PACs and let {gi} be in descending order. If

m+ 6= mPAC, then µ is unique and can be expressed as follows:

µ−1 =
1

m+ −mPAC

(
PT +

m+∑
i=mPAC+1

g−1i −mPACP1

)
(4.33)

where m+ and mPAC are as in (4.9) and (4.15).

Proof. Follows via the same approach as in the proof for Proposition 5.

Fig. 4.1 shows the OPA of Theorem 1 for the following example:

{gi} = {30, 1, 0.7, 0.5}, P1 = 0.8 (4.34)
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Figure 4.1: The capacity [nat/s/Hz] of the orthogonal MIMO channel in
(4.34) under the PAC, the TPC, and the joint power constraints. The numbers
of active streams and active PACs under the joint power constraints are also
shown.

It is observed that when P1 is fixed and PT increases, the numbers of active streams

and active PACs also increase. In the case of joint constraints, the capacity is

upper-bounded, as follows:

C(DW ) ≤ min
{
CTPC(DW ), CPAC(DW )

}
(4.35)

where CTPC(DW ) and CPAC(DW ) are the capacities under the TPC alone and

the PAC alone, respectively. Fig. 4.1 shows that the upper bound is tight almost

everywhere except for the transition region. This upper bound is also tight when

the TPC or the PAC is inactive, i.e., for small PT when mPAC = 0 and C(DW ) =

CTPC(DW ), or for large PT when mPAC = m and C(DW) = CPAC(DW). Also,

C(DW ) ≈ CTPC(DW ) when PT ≤ 2, and C(DW ) ≈ CPAC(DW ) when PT ≥ 3.

This implies that at low-SNR, the TPC is the dominant constraint, while the

PAC is dominant at high-SNR. Hence, we can use the upper bound in (4.35) as
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an approximation for any PT , as follows:

C(DW) ≈ min
{
CTPC(DW ), CPAC(DW )

}
(4.36)

4.3 Capped Water-Filling Interpretation

As mentioned in Chapter 3, the standard WF procedure can be compared to

pouring water into a container with a certain floor profile which is determined by

the inverse of the channel gains. The optimal power allocation in Theorem 1 can

also be compared to pouring water into a container which has a ceiling profile in

addition to a floor profile. Fig. 4.2 shows this geometric interpretation. The floor

profile is the same as for the standard WF, and is given by {g−1i }. In the case of

identical PACs (i.e., P1i = P1), the ceiling profile is the same as the floor profile

but lifted up by P1. Adding the ceiling to the container yields a re-distribution of

the extra water as follows: when one part of the container is full, the water goes

to other higher parts. The water level µ−1 is determined by the total available

water (i.e., PT ) and the floor and ceiling profiles. Specifically, in Fig. 4.2, µ−1 is

measured by the distance between the ground and the water surface in the second

and third parts. Hence, the water level is affected by the presence of the ceiling,

except when all PACs are inactive. As is shown in Fig. 4.2, the OPA for each

stream is given by the height of the water from the bottom of the respective parts,

and cannot exceed P1.

When the water is poured into the container, the lowest part is filled first, where

the lowest part corresponds to the strongest channel gains (i.e., g1). This shows

the behavior of the OPA in the low-SNR regime. After that, water goes to the

second-lowest part. This process continues until all the available water (i.e., PT )

is used. When the lowest part is full, the excess water goes to other higher parts.

Hence, there is more water in the higher parts (corresponding to weaker streams)

compared to the standard WF. The behavior of the capped WF is exactly like the



Chapter4. Optimal Signaling Under Favorable Propagation 52

standard WF if all PACs are inactive, i.e., when no levels are full. This condition

is given in (4.17).

Figure 4.2: Geometric interpretation of the capped water-filling procedure.
The water level is affected by the presence of the ceiling as well as the floor
profiles. Here, the water has reached the ceiling of the first part, and so the
excess water goes to the second and third parts.

Now, let us explore the geometric interpretation of the example in Corollary 2,

in which the dual variable µ is not unique. As can be observed from Fig. 4.3,

the first and second parts are full, while there is no water on the other parts. In

this case, µ−1 can be anything between the ceiling height of the second part and

the floor height of the third part, i.e., µ−1 ∈ [0.51, 1]. So, choosing µ−1 from this

interval does not change the water allocation in the container. For example, let

µ−1 = 0.75. Then, the first and second parts are full, while the other parts are

empty. If we reduce (or increase) PT by a small value, then µ−1 is unique and

is determined by the elevation of the water surface at the second (or third) level.

This example is a degenerate case in which for all active streams, all PACs are

active (i.e., m+ = mPAC).
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Figure 4.3: Capped water-filling interpretation when µ is not unique. For
active streams, all PACs are active, i.e., m+ = mPAC = 2.

In the case of different PACs, the OPA in (4.4) can also be interpreted by the

capped WF procedure. Here, the ceiling profile is not the same as the floor profile

(see Fig. 4.4), and for each part, it is lifted from the floor profile by the value of

P1i. It is observed that lower levels do not necessarily get more water, and this

depends on the height of the ceiling. For example, in Fig. 4.4, we can observe that

p∗1 < p∗2, but the first part is deeper than the second one. Once the third-lowest

part (corresponding to the weakest stream) is full, water goes back to the second-

lowest part (representing a stronger stream). However, in the case of identical

PACs, water always goes from lower parts to higher parts.
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Figure 4.4: Capped water-filling for the case of different PACs. Also, p∗1 < p∗2,
but g1 > g2.

4.4 Iterative Water-Filling Algorithm

In this section, we wish to answer the following question: how can the optimal

signaling under the joint power constraints in Theorem 1 be found by using the

standard WF procedure? First, note that if PT ≥
∑m

i=1 P1i, then p∗i = P1i, which is

the trivial solution. Otherwise, we can find the OPA in Theorem 1 via Algorithm

1 below.

In this algorithm, the channel gains g = {gi}, and the joint power constraints

(i.e., {P1i} and PT ) are the inputs. First, the optimal signaling under the TPC

alone (i.e., PT ) is computed via the standard water-filling procedure. After that,

we check whether the optimal signaling under the TPC alone satisfies the PACs or

not. If yes, then the OPA under the joint power constraints (TPC+PAC) is found,

which is the same as the standard WF. Otherwise, some streams in the standard

WF procedure (TPC alone) violate the PACs. For these streams, the OPA under

the joint constraints follows the PACs (see Corollary 3). We can remove these
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streams, since p∗i is known for them. Hence, there is a new optimization problem

with a smaller total power constraint, while the number of streams is also reduced.

This process continues until all the PACs are satisfied which we here call the

”iterative water-filling” algorithm.

The proposed algorithm is summarized below, where WF{g, PT} is the standard

WF for streams g under the total power constraint PT . Let us consider the t-

th step of the algorithm, in which the OPA under the TPC alone (the standard

WF) is computed. δp∗t = {δp∗i,t} is the OPA under the TPC alone, and It =

{i : δp∗i,t > P1i} is the set of streams that exceed the PACs. At the end of

step t, some streams are removed, as mentioned before. The power allocated to

them is denoted by ∆t+1 =
∑

i∈
⋃t

j=1 Ij

P1i, and the remaining streams belong to

gt+1 =
{
gi : i 6∈

⋃t
j=1 Ij

}
.

Algorithm 1 Iterative water-filling (TPC + PAC)

Require: g, P1i, PT

if PT ≥
∑m

i=1 P1i then

1. p∗i,1 = P1i for any i

else

2. g1 = g, ∆1 = 0 and t = 0

repeat

3. t := t+ 1

4. δp∗t = WF{gt, PT −∆t}

5. It = {i : δp∗i,t > P1i}

6. p∗i,t = P1i, if i ∈
⋃t
j=1 Ij. Otherwise, p∗i,t = δp∗i,t.

7. gt+1 =
{
gi : i 6∈

⋃t
j=1 Ij

}
8. ∆t+1 =

∑
i∈

⋃t
j=1 Ij

P1i

until It = ∅

end if

In the t-th step, p∗i,t is the allocated power for the i-th stream that satisfies the

PAC. When the algorithm stops, all allocated powers satisfy the PAC and the
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TPC (see Proposition 8). There are m streams, which is a finite value, and so the

algorithm stops (i.e., It = ∅) at most after m steps.

Figure 4.5: Iterative water-filling algorithm
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To prove the convergence of this algorithm to the OPA under the joint power

constraints, we use the following Lemmas. To this end, let k be the number of

iterations in Algorithm 1.

Lemma 4.1. Let µ−1t be the water level in the WF procedure at the t-th step in

Algorithm 1. Then, the following holds if PT <
∑m

i=1 P1i,

µ−11 ≤ µ−12 ≤ ... ≤ µ−1k (4.37)

i.e., {µ−1t } is an increasing sequence.

Proof. See Appendix.

The next Lemma shows that full power PT is indeed used when the algorithm

stops under active TPC.

Lemma 4.2. For Algorithm 1, the following holds if PT <
∑m

i=1 P1i.

m∑
i=1

p∗i,k = PT (4.38)

Proof. See Appendix.

The next proposition shows that the iterative WF algorithm converges to the OPA

under the joint power constraints in (4.4).

Proposition 8. When Algorithm 1 stops after k iterations, then {p∗1,k, p∗2,k, ..., p∗m,k}

is the optimal power allocation under the joint total and per-antenna power con-

straints in (4.4) (i.e., p∗i,k = p∗i for any i).

Proof. See Appendix.

After this work had been finished, we became aware of similar algorithms intro-

duced in [36], [38], and [37]. Reference [36] developed a similar algorithm for MISO

channels in order to find the optimal signaling under the joint power constraints
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(TPC+PAC), while [38] introduced a similar iterative algorithm for MIMO chan-

nels at high SNR. Reference [37] developed a similar algorithm to find the optimal

signaling under the TPC, PAC, and per-group power constraints for three cases:

(i) MISO channels; (ii) full-rank MIMO channels with full-rank optimal Tx covari-

ance; and (iii) MIMO channels with 2 Tx antennas. Reference [67] also proposed

a version of Algorithm 1 for the weighted problem (see Section 4.5 for the problem

statement). In [67], it is shown that the KKT (Karush-Kuhn-Tucker) conditions

for the convex problem (capacity under joint TPC+PAC constraints for orthogo-

nal channels) are satisfied by using the algorithm, and hence the algorithm finds

the solution to the optimization problem. In this thesis, however, our proof gives

us insights into the problem as follows: the optimal dual variable responsible for

the TPC in the standard WF decreases at each step. This continues until all power

allocations satisfy the joint total and per-antenna power constraints (see Lemma

4.1).

The performance of the algorithm was evaluated for many cases, and here we

present a representative example. To do so, let us consider the following channel:

{gi} = {2.1, 1.4, 0.9}, {P1i} = {0.11, 0.31, 0.34}, PT = 0.7 (4.39)

Table 4.1 shows the algorithm’s results for the example (4.39).
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Step 1

δp∗i,1 : 0.47 0.23 0 µ−11 = 0.95 I1 = {1}

p∗i,1 : 0.11 0.23 0

Step 2

δp∗i,2 : 0.49 0.1 µ−12 = 1.2 I2 = {2}

p∗i,2 : 0.11 0.31 0.1

Step 3

δp∗i,3 : 0.28 µ−13 = 1.39 I3 = ∅

p∗i,3 : 0.11 0.31 0.28

Table 4.1: Results of the iterative WF for the example (4.39)

The example shows that the algorithm stops after 3 steps, i.e., I3 = ∅. In Step

1, the OPA under the TPC alone (the standard WF) for the first stream violates

the PAC, i.e., δp∗1,1 > P1i. Hence, P11 is allocated to that stream, and then it is

removed for Step 2. After that, the WF procedure is applied to the remaining

streams, i.e., Streams 2 and 3, under the residual power PT − ∆1 = 0.59. This

process is repeated for the third step. Finally, we observe that all streams satisfy

the PACs, and the OPA is attained under the joint power constraints (TPC+PAC).

As expected, {µ−1t } is an increasing sequence.

4.5 Weighted Rate Maximization

In massive MIMO channels, each user may have a different bandwidth ∆fi. Also,

some users may have a higher grade of service compared to others. Let αi be a

coefficient that shows the allocated bandwidth and a level of priority for the i-th
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user, and be as follows:

αi = si
∆fi
∆f

(4.40)

where ∆f is the total bandwidth of the system and a larger si means that the i-th

user has a higher grade of service. Thus, we consider a weighted rate maximization

problem, as follows:

C(αi, gi) = max
pi∈Sp

m∑
i=1

αi ln(1 + gipi) (4.41)

where Sp is the feasible set (TPC+PAC), and:

Sp =

{
{pi} : pi ≥ 0,

m∑
i=1

pi ≤ PT , pi ≤ P1i

}
(4.42)

If all users have the same bandwidth and priority allocated, then the αi are the

same, which was explored before in Theorem 1. The optimal power allocation for

this problem under the TPC alone was obtained in [67]. Here, however, the OPA

under the joint power constraints (TPC+PAC) is obtained in the next Theorem.

Theorem 2. The optimal power allocation for the problem in (4.41) under the

joint power constraints in (4.42) is as follows:

p∗i = min
{
P1i, (αiµ

−1 − g−1i )+
}

(4.43)

where µ ≥ 0. If PT ≥
∑m

i=1 P1i, then µ = 0; if PT <
∑m

i=1 P1i, then µ > 0 can

be obtained as a solution of
∑m

i=1 p
∗
i = PT . The channel capacity is as in (4.41),

with pi = p∗i .

Proof. Follows via the same approach as that in Theorem 1.

The next propositions give the closed-form expressions for m+ and mPAC for the

problem in (4.41).



Chapter4. Optimal Signaling Under Favorable Propagation 61

Proposition 9. Let {αigi} be in descending order. The number m+ of active

streams for the problem in (4.41) is as follows:

m+ = max{j : uj < PT} (4.44)

where:

uj =

j∑
i=1

αi min

{
P1i

αi
,
(
(gjαj)

−1 − (giαi)
−1)} (4.45)

and p∗i > 0 for i ≤ m+ and p∗i = 0 for i > m+.

Proof. The optimal power allocation p∗i in (4.43) can be expressed as follows:

p∗i = αi min

{
P1i

αi
,
(
µ−1 − (αigi)

−1)
+

}
(4.46)

Then, (4.44) follows via the same approach as in the proof for Proposition 1.

Proposition 10. To find the active PACs, we consider the active streams obtained

from the previous proposition, i.e., p∗i > 0. Let {ci} be as follows:

ci =
g−1i + P1i

αi
(4.47)

and let {ci} be in ascending order, i.e., c1 ≤ c2 ≤ ... ≤ cm+. Then, the number

mPAC of active PACs for the problem in (4.41) is determined as follows:

mPAC = max

{
j : vj ≥

m+∑
i=1

P1i − PT
}

(4.48)

where:

vj =

m+∑
i=j

αi(ci − cj) (4.49)

and p∗i = P1i for 1 ≤ i ≤ mPAC, p∗i < P1i for i > mPAC. No PAC is active if and

only if: v1 <
∑m+

i=1 P1i − PT .
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Proof. The optimal power allocation p∗i in (4.43) for the active streams can be

expressed as follows:

p∗i = αi min

{
0,
(
µ−1 − g−1i + P1i

αi

)}
+ P1i (4.50)

Then, (4.48) follows via the same approach in the proof for Proposition 4.

Note that uj is increasing in j and vj is decreasing in j. Hence, they can be

obtained by the approaches in Propositions 1 and 4. If m+ 6= mPAC , then µ−1 is

uniquely determined, as follows:

µ−1 =

( ∑
i∈IPAC

αi

)−1(
PT +

∑
i∈IPAC

g−1i −
∑

i∈IPAC

P1i

)
(4.51)

where IPAC and IPAC are as in (4.25) and (4.24). This expression can be obtained

via the same approach as in Proposition 5.

For the problem in (4.41), rank-1 transmission (beamforming) is optimal if and

only if u2 ≥ PT and all Tx power is allocated to the largest {αigi}. All streams

are active if and only if um < PT and the OPA is p∗i = min{P1i, αiµ
−1 − g−1i }. If:

um < PT and v1 <
m∑
i=1

(P1i)− PT (4.52)

then all streams are active and none exceeds the PACs. Hence, the optimal power

allocation reduces to p∗i = αiµ
−1 − g−1i .

4.6 Summary

The optimal Tx covariance matrix under the total power constraint (TPC) and

per-antenna power constraints (PAC) is obtained for a favorable propagation chan-

nel, and it is diagonal, i.e., independent signaling is optimal. The optimal power

allocation is the minimum of two terms: the first one represents the PACs and the
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second represents the water-filling (WF) procedure. The dual variable responsi-

ble for the TPC is less than that for the standard WF. In this case, the optimal

Tx covariance under the joint TPC and PAC constraints is less sensitive to the

variations of the total power constraint compared to that in the standard WF.

This follows from the fact that in a convex problem, a smaller dual variable shows

less sensitivity of the optimal value with respect to the variations of the imposed

constraint [66].

The numbers of active streams and active PACs are found analytically. It is

shown that active streams are stronger than inactive ones (which is also the case

in the standard WF). The conditions of optimality of beamforming and full-rank

transmission are obtained.

To gain more insights, a geometric interpretation of the optimal power allocation

is proposed. It is similar to the standard WF, but the container has a ceiling in

addition to the floor. The ceiling profile is elevated from the floor profile by the

values of the PACs, and this results in the capped water-filling interpretation.

An iterative WF algorithm is proposed in order to find the optimal power allocation

under the joint power constraints (TPC+PAC) by using the standard WF. The

convergence to the optimal solution is proven.

Finally, the weighted problem under the joint power constraints is considered. The

optimal power allocation is analytically attained in a closed form.



Chapter 5

Nearly Favorable Propagation

and Robustness

In the previous chapter, the optimal Tx covariance under the joint power con-

straints was obtained for favorable propagation channels (i.e., W = DW ). In

practice, the conditions of favorable propagation can be only approximately satis-

fied. Specifically, large but finite numbers of antennas result in non-zero and small

off-diagonal entries of W. So, it is important to note the effect of non-zero and

small off-diagonal entries of W on capacity and optimal signaling. In this chapter,

we consider the case that off-diagonal entries of W are not zero, and quantify the

sub-optimality of signaling in Theorem 1 by establishing an upper bound for the

rate loss. We show that as long as off-diagonal entries of W are small enough, the

rate loss (sub-optimality gap) of using R∗(DW ) instead of true optimal signaling

R∗(W) is also small. So, the independent signaling in Theorem 1 is robust with

respect to small off-diagonal entries of W. To do so, we consider nearly-favorable

propagation as defined in (3.14), where non-zero but small values are allowed.

Also, the channel gain is always bounded due to the law of energy conversion, i.e.,

σ1(W) = σ2
1(H) < ∞. Further note that the Tx covariance matrix is bounded

since the total Tx power is limited, i.e.,

σ1(R) ≤ tr(R) ≤ PT <∞ (5.1)

64
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where σ1(R) is the spectral norm of R.

To show the robustness property, we first obtain the general bound for the sub-

optimality gap when the covariance R∗(W0) (which is optimal signaling for the

channel W0) is applied to channel W. To this end, let C(W) = C
(
W,R∗(W)

)
be

the capacity of channel W with its optimal covariance R∗(W), and C
(
W,R∗(W0)

)
is the maximum rate achieved by the Tx covariance R∗(W0) on the channel W.

Then, the sub-optimality gap (rate loss) is as follows:

∆C(W,W0) = C
(
W
)
− C

(
W,R∗(W0)

)
(5.2)

The next proposition gives the upper-bound of the sub-optimality gap in (5.2).

Proposition 11. Let ∆W = W −W0 and σ1
(
R∗(W)

)
, σ1
(
R∗(W0)

)
≤ PT . If

σ1(∆W)PT < 1, then the sub-optimality gap ∆C(W,W0) is bounded as follows:

0 ≤ ∆C(W,W0) ≤ m ln
(1 + σ1(∆W)PT

1− σ1(∆W)PT

)
(5.3)

where σ1(∆W) is the largest singular value of ∆W. Hence:

∆C(W,W0)→ 0 as σ1(∆W)→ 0 (5.4)

Proof. See Appendix.

This is a generic result, and the upper bound can be applied for any two MIMO

channels (not only massive MIMO channels). This bound can be considered for

the channel estimation where W0 is a channel estimate and W is the true channel.

It shows that as long as the difference ∆W between two channels is small, the

rate loss ∆C(W,W0) is also small.

Proposition 11 implies that if W0 is close to W (i.e., σ1(∆W)→ 0), then R∗(W0)

is the sub-optimal Tx covariance for channel W. However, it can be shown that
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∆C(W,W0) → 0 does not result in R∗(W0) → R∗(W), which means that in

general, R∗(W) is not a continuous function1.

The continuity property of C(W) is shown in the next Lemma.

Lemma 5.1. For the bounded channel W0 and the bounded Tx covariance matrix,

the following holds:

lim
W→W0

C(W) = C(W0) (5.5)

It follows that: (i) C(W) is a continuous function; and (ii) C(W,R) is jointly

uniformly-continuous for bounded W and R (see (9.72) for the definition of the

joint uniform continuity).

Proof. See Appendix.

This Lemma shows that if two channels converge to each other, their capacities

also converge.

The next lemma shows the robustness property of the optimal signaling under

favorable propagation in Theorem 1.

Corollary 4. The following hold for any bounded Tx covariance and DW :

C(W)→ C(DW ), ∆C(W,DW )→ 0 as σ1(W−DW )→ 0 (5.6)

Furthermore, if σ1(W−DW )PT < 1, then:

∆C(W,DW ) < ε if σ1(W−DW ) < δε =
1

PT

eε/m − 1

eε/m + 1
(5.7)

Proof. Follows from Proposition 11 and Lemma 5.1.

1Here, W0 →W means that the norm of ∆W tends to zero, and we use the spectral norm
(the largest singular value), since all matrix norms are equivalent when the size of a matrix is
finite [68]. This is the case in the considered problem because W,W0 ∈ Cm,m and m <∞.
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Further note that (5.7) implies that δεPT < 1, which is consistent with the as-

sumption of σ1(W−DW )PT < 1.

This corollary shows that the rate loss C(W,DW ) is small as long as σ1(W−DW ) is

small enough2. Hence, R∗(DW ) is robust with respect to small off-diagonal entries

of W (i.e., W is nearly orthogonal).

Fig. 5.1 shows that δε is decreasing in m and PT . When PT = 10 and for any

W > 0, the figure shows that ∆C(W,DW ) < 10−2 as long as σ1(W−DW ) < 10−5.
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Figure 5.1: δε vs. ε for different values of m and PT . In all cases, δεPT < 1.

In fact, the bound in (5.7) can be considered as a quantitative definition of nearly-

favorable propagation, which makes (3.14) precise; i.e., the channel offers nearly

(or ε)-favorable propagation if σ1(W−DW ) < δε.

Corollary 5. If σ1(W −DW ) < δε, then |h+
i hj| < δε for any i 6= j, i.e., small

σ1(W−DW ) implies small off-diagonal entries of W

2Here, W−DW is a Hermitian matrix with zero diagonal and its off-diagonal entries are the
same as in W.
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Proof. See Appendix.

This Corollary justifies the definition of nearly-favorable propagation.

In the next section, we will consider some examples in which the exact value of

the rate loss will be numerically obtained.

5.1 Examples

Here, we present some examples in which the signaling in Theorem 1 is applied

to non-orthogonal MIMO channels (i.e., W 6= DW ). We compute C
(
W,R∗(W)

)
and C

(
W,R∗(DW )

)
in order to demonstrate the near-optimality of R∗(DW ) when

it is applied to W. The high-SNR and low-SNR regimes are considered, as well

as different numbers m of Tx antennas.

5.1.1 Example for m = 2

First, we consider the low-SNR regime (small PT ) for the following channel:

W =

 3 a

a 2

 , PT = 1, {P1i} = {0.8, 0.6} (5.8)

Fig. 5.2 shows the capacity of channel W and the rate achieved by Tx covariance

R∗(DW ) (signaling in Theorem 1) on channel W. The signaling R∗(W) is obtained

by the Newton-barrier algorithm (see Chapter 6 for more details). This shows that

when the value of a becomes smaller, the difference between the capacity C(W)

and the rate C
(
W,R∗(DW )

)
also becomes smaller. Fig. 5.3 shows the exact value

of the rate loss [%] versus the off-diagonal entry a of W. We observe that the rate

of R∗(DW ) is close to the capacity when a is not too large. For a ≤ 1.6, the rate

loss is less than 10%, which means that even for a large value of a, about 90% of

the capacity is achieved by the signaling R∗(DW ) (the largest possible value of a

is
√

6 ≈ 2.4, for which W ≥ 0). Fig. 5.3 shows that as a → 0, the rate loss gets
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close to zero, which was expected from (5.6). This example illustrates that the

rate loss is small as long as the off-diagonal entries of W are not too large, which

shows the robustness of R∗(DW ) for channel W when a is not too large.
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Figure 5.2: The capacity C(W) and the rate C
(
W,R∗(DW )

)
at low-SNR vs.

off-diagonal entry a when m = 2. The channel is as in (5.8).
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Figure 5.3: The sub-optimality gap (rate loss) [%] when signaling R∗(DW ) is
applied to W. The gap is small as long as a is not too large. The channel is as
in (5.8).
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Next, we consider the same channel W in (5.8) at high SNR (large PT ) for the

following setting:

W =

 3 a

a 2

 , PT = 20, {P1i} = {15, 10} (5.9)

Fig. 5.4 shows that the rate C
(
W,R∗(DW )

)
is almost the same as the capacity

C(W) for a ≤ 2, which includes the large values of a. Fig. 5.5 shows that the rate

loss is less than 1% for a ≤ 2 and is less than 15% for the largest possible value

of a (i.e., a ≈ 2.4). Comparing Fig. 5.3 with Fig. 5.5, we can see that signaling

R∗(DW ) is more robust with respect to a at high SNR compared to low SNR.

However, in both cases, the rate loss is small as long as the off-diagonal entries of

W are not too large.
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Figure 5.4: The capacity C(W) and the rate C
(
W,R∗(DW )

)
vs. off-diagonal

entry a when m = 2. The channel is as in (5.9).
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Figure 5.5: The rate loss [%] when signaling R∗(DW ) is applied to W. The
channel is as in (5.9). Observe that even when a is large (i.e. a = 2), the rate
loss is small.

5.1.2 Example for m = 4

Fig. 5.6 shows the rate loss for the channel in (5.10) for different values of PT and

P1i.

W =


2 −0.3a 0.5a −1.3a

−0.3a 4 1.6a 0.2a

0.5a 1.6a 5 −0.7a

−1.3a 0.2a −0.7a 3

 , {P1i} = PT [0.4, 0.2, 0.3, 0.7] (5.10)

Here, the sub-optimality gap is shown for both positive and negative values of a.

In this example, the off-diagonal entries of W are not the same, and W ≥ 0 for

a ∈ [−1.5, 1.8]. To compare the rate loss at low SNR with that at high SNR, we

consider different values of PT and P1i. As can be seen from Fig. 5.6, the rate loss

is small as long as a is not large. In particular, when −0.4 ≤ a ≤ 0.4, the rate loss

is less than 10% for any values of PT . This shows that as PT increases (i.e., the

SNR increases), the rate loss decreases. So, the signaling R∗(DW ) is more robust



Chapter5. Nearly Favorable Propagation and Robustness 72

with respect to off-diagonal entries of W at high SNR compared to low SNR. Also,

the rate loss is less than 10% for −1 ≤ a ≤ 1 and PT ≥ 1.
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Figure 5.6: The rate loss ∆C(W,DW ) for the channel in (5.10) for different
off-diagonal entry values of W, PT , and P1i.

5.1.3 The Distribution of Sub-Optimality Gap for Differ-

ent Channel Realizations

Here, the rate loss is obtained for different channel realizations. In this section,

we consider the scenario where the off-diagonal entries of W are not necessarily

small but the sum of their magnitudes is less than the respective diagonal entry.

This is quantified as follows:

(W)ii ≥
∑
j 6=i

|(W)ij|, for any i (5.11)

where W is diagonally dominant3.

3Note that strictly diagonally dominant matrices are full-rank [68]. Hence, if W is strictly
diagonally dominant, i.e., (W)ii >

∑
j 6=i |(W)ij |, then it is full-rank.
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In order to obtain different diagonally dominant matrices, matrix A ≥ 0 is gener-

ated, in which the entries have a Gaussian distribution of unit variance and zero

mean. Then, W is set such that:

(W)ij = (A)ij, i 6= j (5.12)

(W)ii = max

{
(A)ii,

∑
j 6=i

|(A)ij|
}

(5.13)

so that W is diagonally dominant, which can also be represented as follows:

W = A + diag{ai} (5.14)

where:

ai = max

{
0,
∑
j 6=i

|(A)ij| − (A)ii

}
(5.15)

Hence, W ≥ 0, since both A and diag{ai} are positive semi-definite matrices.

Fig. 5.7 shows the rate loss [%] for 1,000 randomly-generated W ∈ R5,5, where

PT = 3 and {P1i} = {1.5, 0.5, 1, 0.5, 1}. The rate loss is always less than 6%, and

is less than 1% for around 700 channel realizations. Fig. 5.8 shows the rate loss

for the same setting, where (W)ii ≥ 1.2
∑

j 6=i |(W)ij|. In this case, the rate loss is

less than 1% for around 900 channel realizations, which means that the number of

channel realizations with a very small rate loss increases as (W)ii/
∑

j 6=i |(W)ij|

increases.
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Figure 5.7: The rate loss [%] for 1,000 channel realizations with randomly-
generated W ∈ R5,5 where: (W)ii ≥

∑
j 6=i |(W)ji|, PT = 3 and {P1i} =

{1.5, 0.5, 1, 0.5, 1}.

Figure 5.8: The rate loss [%] for 1,000 channel realizations with randomly-
generated W ∈ R5,5 where: (W)ii ≥ 1.2

∑
j 6=i |(W)ji|, PT = 3 and {P1i} =

{1.5, 0.5, 1, 0.5, 1}.
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5.2 Summary

The robustness of optimal signaling under favorable propagation (FP) is studied.

In particular, we study the case of ”nearly-favorable propagation” (NFP) in which

the channel is nearly orthogonal. We show that optimal signaling under favorable

propagation (orthogonal channels) is nearly-optimal under NFP. The upper bound

of the sub-optimality gap is obtained, which becomes small under NFP. Nearly

(or ε)-favorable propagation is analytically defined, which can be used as a new

measure of favorable propagation. This measure quantifies how close the channel

is to FP. Some examples are presented which verify that the optimal Tx covariance

under FP is nearly optimal under NFP.



Chapter 6

Numerical Algorithms

In this chapter, we develop some numerical algorithms that can be used to compute

the followings: (i) the optimal dual variable µ, and (ii) the optimal transmit

covariance under the joint constraints, in which the channel is not necessarily

orthogonal. The first one is the bisection algorithm, which is useful to find the

dual variable µ with desired accuracy. Then, the Newton-barrier algorithm will be

reviewed, which can be used to attain the optimal solution for convex optimization

problems. The last one is the Monte-Carlo algorithm, which searches for the

optimal signaling among a large number of feasible Tx covariance matrices. Also,

it is shown that CVX can give the incorrect results for the capacity under the joint

power constraints.

6.1 Bisection Algorithm

In addition to the closed-form expression for the dual variable µ in (4.51), we can

also numerically find it. Recall the optimal power allocation for an orthogonal

MIMO channel under the total and per-antenna power constraints, i.e., p∗i =

min
{
P1i, (αiµ

−1 − g−1i )+
}

(see Theorem 2). As previously mentioned, if PT ≥∑m
i=1 P1i, then µ = 0. Otherwise

∑m
i=1 p

∗
i = PT and the dual variable µ > 0 can

be numerically obtained by the bisection algorithm, described below.

76
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Let f(x) be as follows:

f(x) =
m∑
i=1

min
{
P1i, (αix

−1 − g−1i )+
}
− PT (6.1)

where f(x) is a continuous monotonic function and is decreasing in x, and the

bisection algorithm works with monotonic functions. Let µ be the root of f(x)

(i.e., f(µ) = 0). To find the root, let us take any lower and upper bound of µ

such that µl ≤ µ ≤ µu. Hence, for any x between the lower and upper bounds, we

observe:

µu − µl ≥ |µ− x| (6.2)

We find the value of f(x), where x is as follows:

x =
µl + µu

2
(6.3)

If f(x) = 0, then µ = x. Otherwise, we can redefine the upper or lower bound of

µ as follows:

• µl = x if f(x) > 0

• µu = x if f(x) < 0

Hence, the difference between the new lower and upper bounds decreases, and the

new uncertainty interval around µ is reduced. So, an estimate x of the root gets

closer to the actual root µ with each iteration of the bisection algorithm. This

process continues until the desired uncertainty interval is achieved, i.e., µu−µl ≤ ε,

and hence from (6.2), |µ− x| ≤ ε. This shows that the difference between actual

root and its estimation is not greater than ε.

Fig. 6.1 shows the first 3 steps of the bisection algorithm. In this figure, µlk

and µuk are the improved lower and upper bounds of µ at the k-th step of the

algorithm, and ∆k = µuk−µlk and µ′k = (µlk +µuk)/2 are the uncertainty interval
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and an estimation of the root at the k-th step, respectively. In step one, we see

that the value of the function at (µl1 + µu1)/2 is less than zero, and hence the

upper bound of the root is updated as follows:

µu2 =
µl1 + µu1

2
(6.4)

and µl2 = µl1. So, the uncertainty interval is decreased by a factor of two in one

step, and after the k-th step, the uncertainty interval becomes:

∆k =
∆1

2k
(6.5)

where ∆1 is the uncertainty interval in step one. So, the convergence of the

algorithm is exponential.
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Figure 6.1: The first 3 steps of the bisection algorithm
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Reference [66] shows that to attain ε-accuracy, N steps are necessary, where:

N =

⌈
log2

(µu − µl
ε

)⌉
(6.6)

and d·e denotes the ceiling [69]. To initialize the bisection algorithm, we need

lower and upper bounds for µ (i.e., the values of µl and µu for the first step in the

bisection algorithm), which are given in the next proposition.

Proposition 12. If PT <
∑m

i=1 P1i, then µ is bounded as follows:

0 < µ < max
i
{αigi} (6.7)

Proof. The lower bound follows from the dual feasibility. The upper bound follows

from (4.43) since there exists at least one active stream. Hence, αiµ
−1 − g−1i > 0

for some i.

In the following, we summarize the bisection algorithm.

Algorithm 2 Bisection algorithm

Require: f(x), µl = 0, µu = maxi{αigi}

repeat

1. x = (µl + µu)/2

2. If f(x) > 0 , then µl = x. If f(x) < 0 , then µu = x. Terminate if

f(x) = 0

until |µu − µl| < ε

We can also use |f(x)| < ε as a stopping criteria [69].

Now, we illustrate the performance of the bisection algorithm for the following

example:

{gi} = {10, 2, 3, 1.5}, {αi} = {1, 1.5, 0.5, 1}, {P1i} = {1, 1.2, 0.3, 0.8} (6.8)

Here, the bisection algorithm is used when the TPC is active (i.e., PT <
∑

i P1i =

3.3), otherwise µ = 0. Also, |f(x)| < ε is the stopping criteria, with ε = 10−8. As
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is shown in Fig. 6.2, both the bisection algorithm and the closed-form expression

in (4.51) give the same value of µ. Fig. 6.3 shows that the bisection algorithm

gives the same results for the capacity, m+, and mPAC as compared with their

analytical expressions. We can see that m+ 6= mPAC when the TPC is active, and

hence µ > 0 is unique.
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Figure 6.2: The dual variable µ for the example in (6.8) that is achieved by
its analytical expression and the bisection algorithm.
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Figure 6.3: The capacity [nat/s/Hz], m+, and mPAC for the example in (6.8).
Both the closed-form expressions and the bisection algorithm give the same
results.

6.2 Newton-Barrier Algorithm

In this section, we briefly explain the Newton-barrier method, which is a powerful

tool for solving convex problems [66]. Recall the optimization problem in (3.3)

under the joint power constraints (TPC+PAC):

P1: C(W) = max
R≥0, trR≤PT , (R)ii≤P1i

ln |I + WR| (6.9)

In (6.9), the objective is concave function and inequality constraints are convex

functions, and hence (6.9) has the standard form of convex problems. So, we

can use the Newton-barrier method to find the optimal signaling in (6.9) for any

W ≥ 0 [66]. In this method, the firm inequality constraints are converted to soft

constraints, and then they are added to the objective function [70]. To do so, the

inequality constrained problem P1 is transformed into unconstrained problem, as
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follows:

P2: max
R

ft(R) (6.10)

where

ft(R) = ln |I + WR|+ ψ1(R) + ψ2(R) +
m∑
i=1

ψ1i(R) (6.11)

ψ1(R) =
1

t
ln |R| (6.12)

ψ2(R) =
1

t
ln(PT − trR) (6.13)

ψ1i(R) =
1

t
ln
(
P1i − (R)ii

)
(6.14)

where t determines the gap between the optimal values of the unconstrained prob-

lem P2 and the original problem P1 (see (6.16) below). Here, ψ1(R), ψ2(R), and

ψ1i(R) are logarithmic barrier functions, and as the variables approach the bound-

ary of the feasible set, values of these functions go to −∞ (see [66] for more detail).

The KKT (Karush-Kuhn-Tucker) condition for the unconstrained problem P2 is:

∇Rft = 0 (6.15)

Let R∗t (W) be the optimal point for the unconstrained problem P2 for a fixed t.

The gap between the solution for P1 and that for P2 is upper bounded as follows:

|ft
(
R∗t (W)

)
− C(W)| ≤ b

t
(6.16)

where b is a certain constant depending on the inequality constraints in P1 [66].

Hence, the gap can be made arbitrarily small by selecting a large value for t. So,

C(W) can be determined with any desirable accuracy [66].

Here, since R∗t (W) is a Hermitian matrix, its lower-triangular entries and upper-

triangular entries are complex conjugate pairs. So, to reduce the number of vari-

ables, only the lower-triangular entries of R∗t (W) ≥ 0 are considered. This can

be obtained by x = vech(R), where operator vech picks up the lower-triangular
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entries of R from the first column to the last column [70], [71].

The KKT condition in (6.15) for the variable x becomes:

r(x) = ∇xft = 0 (6.17)

The solution for r(x) = 0 can be obtained by iteratively solving the 1st-order

approximation of r(x), which is expressed as follows:

r(xk + ∆x) ≈ r(xk) +Dr∆x = 0 (6.18)

where xk is the current feasible variable, ∆x is its update, and Dr is the 1st-order

derivative of r(x):

Dr =
∂r(x)

∂x
= ∇2

xxft (6.19)

After computing the values of ∇2
xxft and r(xk), the value of ∆x is obtained as a

solution of the following equation:

−r(xk) = ∇2
xxft∆x (6.20)

which follows from (6.18) and (6.19). Here, the non-singularity of ∇2
xxft can be

proved by using a method similar to that in [70]. Hence, the system of linear

equations in (6.20) has a unique solution ∆x. Having both xk and the step ∆x,

the variable xk+1 for the next step is as follows:

xk+1 = xk + s∆x (6.21)

where s is the step size, which can be computed by a backtracking line search [66].

The residual norm ||r(xk)|| reduces at each step because of the following property

[66]:

d

ds
||r(xk + s∆x)|| = −||r(xk)|| < 0, (6.22)
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Hence, for sufficiently small s, the residual norm gets close to zero as the algorithm

iterates (i.e., k increases). So, the optimal point R∗t (W) for the optimization

problem in (6.10) can be determined with any desired accuracy.

In practice, at first, the unconstrained problem is solved with an certain initial

feasible covariance R and initial value of t (for instance, t0 = 100 in order to

initialize the Newton-barrier method for the example in (6.26)). Then, t increases

and the unconstrained problem is solved again for the new t. In this step, the

previous solution for the covariance is considered as the current initial variable.

In this algorithm, t increases until it reaches tmax, in which tmax is large enough

to obtain any desired gap according to the upper bound of the gap in (6.16) [66].

Since the gap between the solutions for the unconstrained problem P2 and the

original one P1 is proportional to t−1, we observe that:

ln |I + WR∗t (W)| → C(W) as t→∞ (6.23)

The gradient and Hessian of the first and second terms of ft(R) (i.e., ln |I + WR|

and ln |R|) are analytically determined in [70]. Also, determining them for ln
(
P1i−

(R)ii
)

is straightforward, since:

∂

∂x
ln
(
P1i − x

)
=

1

x− P1i

(6.24)

So, we need to find only the expressions for the gradient and Hessian of ln |PT−trR|

with respect to x = vech(R), which are analytically determined in the Appendix1.

To this end, we need a variable to initialize the algorithm, i.e., x0 = vech(R0),

which has to belong to the feasible set (the joint total and per-antenna power

constraints). Here, we propose R0 = diag{rii}, where rii is as follows:

rii = amin

{
P1i,

PT
m

}
(6.25)

1In addition to analytical expressions for the gradient and Hessian, one can also use numerical
computations to obtain them.
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where R0 ∈ SR, and hence a can be any value in the interval [0,1]. Here, we select

a = 1/2, since with this constant, the initial value is not too close to the boundary

of the feasible set. In the results from simulations with a = 1/2, we observed that

the algorithm converges reasonably fast. The mentioned Newton-barrier algorithm

is briefly summarized below.

Algorithm 3 Newton-barrier algorithm

Require: x0, ε > 0, t0 > 0, κ > 1, 0 < ν < 0.5, 0 < β < 1, tmax > t.

1. Set t = t0.

repeat (barrier method)

2. Set k = 0.

repeat (Newton method)

3. Find ∆x via (6.20) using r(xk) and computing ∇2
xxft at xk

4. Set s = 1

repeat (backtracking line search to the find step size s)

5. s := βs

until |r(xk + s∆x)| ≤ (1− νs)|r(xk)| & Rk ∈ SR
6. Update variable: xk+1 = xk + s∆x

7. Set k := k + 1

until |r(xk)| ≤ ε.

8. Set the new initial value, i.e. x0 := xk

9. t := κt (a larger t)

until t ≥ tmax.

The last xk is the solution for the optimization problem with a desired accuracy.

In each iteration of the backtracking line search, the residual norm is decreased

linearly, which is determined by ν [%], and the reduction in s is controlled by the

parameter β. At each step of the barrier method, the value of t increases by the

factor κ. Also, t0 is the initial value for t.
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Figure 6.4: Newton-barrier algorithm
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We ran many simulations in order to examine the performance of the Newton-

barrier algorithm, and the following example is a representative case. Recall the

example in (5.8) with a = 1:

W =

 3 1

1 2

 , PT = 1, {P1i} = {0.8, 0.6} (6.26)

Fig. 6.5 shows the residual norm for increasing t. For each value of t, the residual

norm decreases quickly as more Newton steps are completed. This means that

after several Newton steps, the KKT condition for the unconstrained problem in

(6.15) is satisfied with ε-accuracy. In particular, R∗t (W) is attained after around

5 to 10 steps. Fig. 6.6 shows that the algorithm converges to the rate 1.609

[nat/s/Hz] after around 10 Newton steps. This convergence rate also coincides

with the convergence rate achieved by the Monte-Carlo algorithm in the next

section.
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Figure 6.5: Convergence of the Newton-barrier algorithm for the example in
(6.26). Here, ν = 0.3, β = 0.5, t0 = 100, κ = 5, tmax = 107, and ε = 10−10. For
each value of t, the residual norm decreases to ε after around 5 to 10 steps.
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Figure 6.6: The rates versus Newton step for the example in (6.26). The rate
converges to 1.609 after around 10 steps.

6.3 Monte-Carlo Algorithm

In this section, we develop the Monte-Carlo algorithm to obtain the optimal sig-

naling under the joint total and per antenna power constraints (TPC+PAC) for

arbitrary channel H, which is not necessarily an orthogonal channel. In the fol-

lowing, we briefly review the Monte-Carlo algorithm (see [72], [73] for more details

regarding the concept of the Monte-Carlo method).

In this algorithm, the feasible Tx covariance R is randomly and independently

generated many times N , i.e., R1,R2,R3, ...,RN . At first, we compute C(W,R1)

and compare it with C(W,R∗0), where R∗0 is an initial feasible Tx covariance.

If C(W,R1) > C(W,R∗0), then R∗1 = R1, otherwise R∗1 = R∗0. Likewise, in

each step, we determine R∗i by comparing C(W,Ri) with C(W,R∗i−1). Hence,{
C(W,R∗i )

}
is an increasing sequence:

C(W,R∗0) ≤ C(W,R∗1) ≤ ... ≤ C(W,R∗N) (6.27)
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Also, C(W,R∗N) is always upper-bounded by the capacity of W, i.e., C(W,R∗N) ≤

C(W). Hence, this is an increasing sequence which is upper-bounded, and there-

fore it converges.

To generate a random matrix Sm×m, we use the randn generator in MATLAB2.

By taking into account that S+S is a positive semi-definite matrix, we determine

random Tx covariance R ≥ 0 as follows:

R = aS+S (6.28)

where a > 0 should be selected such that trR ≤ PT and (R)ii ≤ P1i for any i. So,

a(trS+S) ≤ PT (6.29)

a(S+S)ii ≤ P1i, i = 1, ...,m (6.30)

Hence, a is restricted by m+ 1 inequalities, which are expressed as follows:

a <
PT

trS+S
(6.31)

a <
P1i

(S+S)ii
, i = 1, ...,m (6.32)

Since a > 0, we obtain:

0 < a ≤ min

{
PT

trS+S
,

P11

(S+S)11
, ...,

P1m

(S+S)mm

}
= a∗ (6.33)

We set a = a∗, since in this case increasing the power (i.e., increasing the value

of a) implies higher rate3. Here, we use an initial feasible Tx covariance R∗0 =

diag
{

min{PT/m, P1i}
}

, where independent signaling (diagonal Tx covariance) is

used and all power constraints are satisfied. Also, each antenna transmits. The

whole algorithm is summarized below.

2This returns a matrix whose entries are generated with a normal distribution.
3In other words, C(W,R) = ln |I + WR| is increasing in R. Hence, R = a∗S+S is selected.
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Algorithm 4 Monte-Carlo algorithm

Require: Wm×m, PT , P1i, N

1. Set R∗0 = diag
{

min{PT/m, P1i}
}

for i := 1 to N do

2. S =randn(m)

3. Set Ri = a∗S+S

4. If C(W,Ri) > C(W,R∗i−1), then R∗i = Ri. Otherwise, R∗i = R∗i−1.

5. Determine C(W,R∗i )

end for

A lot of simulations were run to see the performance of the algorithm, and here we

show a representative case in Fig. 6.7. This figure illustrates the performance of

the Monte-Carlo algorithm for the example in (6.26), in which
{
C(W,R∗i )

}
is an

increasing sequence. The Monte-Carlo algorithm reaches the rate 1.6 [nat/s/Hz]

after around 100 steps, which is equal to the rate achieved by the Newton-barrier

algorithm.
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Figure 6.7: Performance of the Monte-Carlo algorithm for the example in
(6.26)
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Figure 6.8: Monte-Carlo algorithm

6.4 CVX

CVX is an optimization tool that is widely used to compute the optimal value of

a convex problem [74], [75]. Here, we show that CVX can give incorrect results

for the channel capacity under the joint TPC and PAC constraints. To do so, let
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us consider the following example:

W =

 10 a

a 2

 , PT = 1, {P1i} = {0.3, 1} (6.34)

Fig. 6.9 shows the capacity of the channel W in (6.34) under the joint power

constraints. For 1.5 ≤ a ≤ 4.4, it is seen that the capacity obtained with CVX are

less than those obtained with the Newton-barrier and Monte-Carlo algorithms.

Note that the Monte-Carlo and Newton-barrier algorithms give the feasible Tx

covariance. Also, although CVX was used with different solvers and different

levels of accuracy, we observed that CVX can give incorrect results for the channel

capacity in several examples4.

0 1 2 3 4
0

0.5

1

1.5

2

C
a

p
a

c
it
y
 [

n
a

t/
s
/H

z
]

Newton-barrier

Monte-Carlo

CVX

Figure 6.9: The channel capacity for the example in (6.34) obtained from the
CVX tool as well as the Monte-Carlo and Newton-barrier algorithms.

4Under the joint constraints and for several examples, 360 types of CVX script were used,
and none of them could give correct results for the capacity.
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6.5 Summary

We develop some algorithms to find the optimal signaling. First, we develop the

bisection algorithm which can obtain the optimal dual variable responsible for the

TPC. This algorithm works with a monotonic function and the purpose is to find

its root. In each step of this algorithm, the upper or lower bound of the root is

redefined, and then the width of the uncertainty interval around the root is divided

by two. Hence, an estimate of the root gets closer to its actual value as more steps

are completed.

Second, the Newton-barrier method is developed, which is a powerful tool for

solving convex optimization problems (such as the problem of finding optimal

signaling under the TPC+PAC constraints). In this method, inequality constraints

are added to an objective function by using the logarithmic barrier function.

Third, we develop the Monte-Carlo algorithm, which is a simple method for finding

the channel capacity. The algorithm iteratively samples a large number of Tx

covariances at random, and produces an increasing sequence of rates that get

close to the capacity.

Both the Newton-barrier and Monte-Carlo algorithms compute the channel ca-

pacity under the joint TPC+PAC constraints for an arbitrary channel, which is

not necessarily orthogonal. We compare the results of the Newton-barrier and

Monte-Carlo algorithms, and a good agreement is found. Under the joint total

and per-antenna power constraints, CVX cannot give correct results for the chan-

nel capacity.



Chapter 7

A Study of Favorable Propagation

We consider orthogonal and non-orthogonal channels with identical diagonal en-

tries in their Gram matrices. An orthogonal channel (favorable propagation) is

the best channel when the Tx covariance is diagonal (e.g., when different anten-

nas’ terminals are orthogonal to each other) [9]. Is this still the case when the

Tx covariance is not diagonal? In this chapter, we wish to answer this question.

In addition, we provide some corrections to the main theorems in [1] regarding

favorable propagation conditions.

7.1 Capacity of Orthogonal and Non-Orthogonal

Channels

In this section, we aim to answer the following question: is an orthogonal channel is

the best among all channels with the same diagonal entries of their channel Gram

matrices? To do so, we compare the capacity of channel W with that of orthogonal

channel DW
1 (favorable propagation) under the total power constraint. Corollary

6 gives an answer to this question when the beamforming (rank-1 transmission) is

optimal in both channels.

1The Gram matrix associated with an orthogonal channel is diagonal.

95
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Corollary 6. Let di(W) and λi(W) be the i-th diagonal entry and i-th eigenvalue

of W respectively, and we assume that they are in decreasing order. Let the beam-

forming (rank-1 transmission) be optimal in both W and DW under the TPC,

i.e.,

PT ≤ min
{(
d−12 (W)− d−11 (W)

)
,
(
λ−12 (W)− λ−11 (W)

)}
(7.1)

which shows the low-SNR regime. Then:

C(W) = ln
(

1 + λ1(W)PT

)
(7.2)

C(DW) = ln
(

1 + d1(W)PT

)
(7.3)

and C(DW ) ≤ C(W), and the inequality is strict if d1(W) < λ1(W).

Proof. The beamforming is optimal in W under TPC if PT ≤ λ−12 (W)−λ−11 (W).

As well, this is the case in DW , if PT ≤ d−12 (W)− d−11 (W). These conditions can

be shown by the water-filling procedure (see Chapter 3). Hence, (7.1) follows. The

proofs of (7.2) and (7.3) also follow from the water-filling procedure. Additionally,

the maximum diagonal entry is less than or equal to the maximum eigenvalue for

any positive semi-definite matrices [39]. Hence, C(DW ) ≤ C(W) follows from

d1(W) ≤ λ1(W).

This corollary shows that the orthogonal channel DW does not necessarily provide

more capacity compared to the non-orthogonal channel W. Hence, an orthogonal

channel (i.e., favorable propagation) is not necessarily the best channel among all

channels with the same diagonal entries of W. However, if the Tx covariance is

caused to be diagonal, an orthogonal channel is the best [9].

Here, we present an example to show that an orthogonal channel can have lower
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capacity compared to a non-orthogonal channel. We consider the following chan-

nel:

W =

 1 2

2 4

 , PT ≤ 0.75 (7.4)

In this example, λ1(W) = 5, λ2(W) = 0 and d1(W) = 4, d2(W) = 1. For both W

and DW under the TPC, the beamforming (rank-1 transmission) is optimal, since

PT ≤ 0.75 satisfies the condition in (7.1). We observe:

C(DW ) = ln(1 + 4PT ) (7.5)

C(W) = ln(1 + 5PT ) (7.6)

which together imply C(DW ) < C(W).

The next proposition gives a sufficient and necessary condition when d1(W) =

λ1(W). In this case, if the beamforming is optimal under the TPC in both DW

and W, then C(W) = C(DW ).

Proposition 13. Let e1, e2, ..., em be the standard basis vectors for Rm. There

exists at least one i which d1(W) = (W)ii. Then, d1(W) = λ1(W) if and only if:

ei ∈ {x : Wx = λ1(W)x} (7.7)

where {x : Wx = λ1(W)x} is an eigenspace associated with λ1(W)2. When there

are multiple maximum diagonal entries, then d1(W) = λ1(W) if and only if (7.7)

holds for at least one solution of i = arg max
j

(W)jj.

Proof. See Appendix.

2The dimension of this eigenspace is equal to the number of repeated maximum eigenvalues
[68].
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7.2 On Favorable Propagation Conditions

Here, some corrections are provided for the theorems in [1]. This paper studies

favorable propagation in massive MIMO channels. We show that Theorems 1 and

2 in [1] are not true under the stated conditions, and provide some modifications

for the conditions to make their conclusions valid.

In this section, we use the same notations as in [1]. Also, we assume that all

exception terms are bounded.

Paper [1] obtains the exception of the inner product of channel vectors as follows:

1

M
E{gHi gk} =

L∑
r=1

L∑
s=1

(
1

M

M∑
m=1

E{w∗mrwmsα∗riαsk}
)

(7.8)

where this is normalized by M , which is the number of BS antennas; gHi represents

the Hermitian transpose of gi; K is the number of single-antenna users; L is the

number of paths from all users to the BS; gi is the i-th channel vector; wmr is the

mr-th entry of a steering matrix; and αsk shows the signal change for the k-th

user over the s-th path.

Theorem 1 in [1] is as follows:

E
{

1

M
gHi gk

}
→ 0, if

1

M

M∑
m=1

E{w∗mrwms} → 0 (7.9)

when α∗riαsk and w∗mrwms are uncorrelated.

To see the gap in Theorem 1 in [1], we observe that:

||wr||2 =
M∑
m=1

|wmr|2 = M (7.10)
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where wr = [w1r, ..., wMr]
T , || · || denotes the Euclidean norm and the last equality

follows from the fact the wmr = ejθ (e.g., (23), (28) in [1]). Hence:

1

M

M∑
m=1

E{|wmr|2} = 1 (7.11)

So, the condition in (7.9) does not hold, since

1

M

M∑
m=1

E{w∗mrwmr} =
1

M

M∑
m=1

E{||wr||2} = 1 (7.12)

for arbitrary M , whether it is large or not. Note that the terms for r = s exist in

(7.9) (e.g., (12) and (13) in [1]).

To fix the gap in (7.9) (Theorem 1 in [1]), we need a modification and an extra

assumption, which are given in the next proposition.

Proposition 14. Let us assume that the propagation channels vectors correspond-

ing to different users are orthogonal to each other, i.e.:

E
{
vHi vk

}
=
∑
r

E{α∗riαrk} = 0, i 6= k (7.13)

where vk = [α1k...αLk]
T . Then, the following condition:

1

M

M∑
m=1

E{w∗mrwms} → 0, r 6= s (7.14)

implies that the asymptotic favorable propagation exists ”on average”, i.e.:

E
{

1

M
gHi gk

}
→ 0, i 6= k (7.15)

when α∗riαsk and w∗mrwms are uncorrelated.
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Proof. We observe that:

E
{

1

M
gHi gk

}
(a)
=

1

M

L∑
r=1

L∑
s=1

E{α∗riαsk}
M∑
m=1

E{w∗mrwms}

(b)
=

1

M

∑
r 6=s

E{α∗riαsk}
M∑
m=1

E{w∗mrwms}+
∑
r

E{α∗riαrk}

(c)
=

1

M

∑
r 6=s

E{α∗riαsk}
M∑
m=1

E{w∗mrwms}
(d)→ 0 (7.16)

where (a) follows from (7.8) when α∗riαsk and w∗mrwms are uncorrelated; (b) follows

from (7.11); and (c) and (d) follow from (7.13) and (7.14) respectively.

The differences between Proposition 14 and Theorem 1 in [1] are as follows. First,

the condition in (7.13) is added. Second, the orthogonality in (7.14) exists for

r 6= s only.

Theorem 2 in [1] shows that (7.9) holds if |αlk| is bounded for any l and k, i.e.,

|αlk| ≤ Cα (in this theorem, no assumption is considered regarding the correlation

between α∗riαsk and w∗mrwms). To show this, the following inequality is given in

[1]:

E
{

1

M
gHi gk

}
≤

L∑
r=1

L∑
s=1

C2
α

(
1

M

M∑
m=1

E{w∗mrwms}
)

(7.17)

Here, we show that Theorem 2 in [1] is not true in several different ways.

1. We observe that both sides of (7.17) are complex numbers in general, but

complex numbers cannot be compared in the same way as real numbers3. So, the

inequality in (7.17) is not correct in general.

2. Now, we show that even if both sides of (7.17) are real numbers (or their

difference is real), then (7.9) does not hold if αlk is bounded. To do so, note that

E
{

1
M

gHi gk

}
can be negative, e.g., E

{
1
M

gHi gk

}
= −1. This can happen even if

3If the difference between two complex numbers is a real number, then one can compare them.
However, this is not necessarily the case in (7.17).
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the upper bound is zero. In other words, to show E
{

1
M

gHi gk

}
→ 0, both its upper

and lower bounds should converge to zero, not just the upper bound.

3. Here, we show that if αlk is bounded, then the inequality in (7.17) is not true

even when all terms are real. To do so, we consider the following example for

arbitrary L, M :

w1r = w2r = ... = wMr = αri = αrk, r = 1, ..., L (7.18)

To simplify the notations, we define a new random variable qr where:

w1r = w2r = ... = wMr = αri = αrk = qr, r = 1, ..., L (7.19)

and we assume that the random variables qr and qk are independent of each other

for r 6= k. We also assume that qr = ±1 with equal probability, which shows that

αri are bounded and Cα = 1. Observe that:

E
{

1

M
gHi gk

}
=

1

M

L∑
r=1

L∑
s=1
s 6=r

M∑
m=1

E{wmrwmsαriαsk}+
1

M

L∑
r=1

M∑
m=1

E{w2
mrαriαrk}

=
1

M

L∑
r=1

L∑
s=1
s 6=r

M∑
m=1

E{q2rq2s}+
1

M

L∑
r=1

M∑
m=1

E{q4r}

(a)
= L(L− 1) + L = L2 (7.20)

where (a) follows from the fact that qr and qs are independent of each other and

q2r = q2s = q4r = 1. The right-hand side of (7.17) with Cα = 1 is as follows:

L∑
r=1

L∑
s=1

(
1

M

M∑
m=1

E{w∗mrwms}
)

=
L∑
r=1

L∑
s=1
s 6=r

(
1

M

M∑
m=1

E{qrqs}
)

+
L∑
r=1

(
1

M

M∑
m=1

E{q2r}
)

= 0 + L = L (7.21)

By comparing (7.20) with (7.21), we can see that the right-hand side of (7.17) is

less than the left-hand side for L ≥ 2. Hence, the inequality in (7.17) is not correct

in general even when all terms are real.
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Following the above discussion, the next proposition shows that favorable propa-

gation can occur when αri and wms are dependent on each other.

Proposition 15. Let us assume that αri = arbi for all r and i. Also, the mean

is zero for random variables bi, which are all independent of each other as well as

independent of ar and wmr for all r, i, and m. Then, favorable propagation exists

”on average”:

E
{

1

M
gHi gk

}
= 0, i 6= k (7.22)

Proof. Observe that:

E
{

1

M
gHi gk

}
=

L∑
r=1

L∑
s=1

(
1

M

M∑
m=1

E{w∗mrwmsα∗riαsk}
)

=
L∑
r=1

L∑
s=1

(
1

M

M∑
m=1

E{w∗mrwmsa∗ras}E{b∗i bk}
)

= 0 (7.23)

where the second equality follows from the fact that bi and bk are independent

from the rest of the variables. Also, bi and bk are independent of each other

and their mean values are zero. Hence, the last equality follows from E{b∗i bk} =

E{b∗i }E{bk} = 0.

The model in Proposition 15 is shown in Fig. 7.1, where bi and ar represent scat-

tering factors around the user and around the BS respectively. This factorization

of propagation coefficients is also confirmed experimentally for some environments

[76].
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Figure 7.1: Illustration of the channel model in Proposition 15 where αri =
arbi.

7.3 Summary

We consider orthogonal and non-orthogonal channels for which Gram matrices

have the same diagonal entries. We show that when the beamforming (rank-1

transmission) is optimal in both channels under the total power constraint, then

the capacity of the the non-orthogonal channel is greater than that of the receptive

orthogonal channel (i.e., favorable propagation). This shows that an orthogonal

channel is not necessarily the best among all channels with the same diagonal

entries in their Gram matrices.

We comment on [1] that its main theorems are not correct in general, and we

propose some modifications to make the conclusions valid. We consider the case

where the steering matrix and the orthogonal propagation channel matrix are

uncorrelated. In this case, if the normalized inner product of the different steering

vectors converges to zero, then favorable propagation exists.
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Conclusion

8.1 Thesis Summary

In this thesis, the capacity and optimal signaling for a massive MIMO channel are

studied. The optimal signaling under the total power constraint (TPC) is on the

channel eigenmodes, and the optimal power allocation (OPA) is obtained by the

water-filling (WF) procedure. This case is motivated by the limited power at the

transmitter power supply. In addition to the TPC, the per-antenna power con-

straints (PACs) are practically important, since there is a power constraint on each

per-antenna amplifier. The optimal signaling under the joint total and per-antenna

power constraints is not known in general, except in some special cases (e.g., MISO

channels, full-rank optimal transmit covariance). The considered problem involves

finding the optimal transmit covariance under the joint TPC+PAC constraints for

a favorable propagation (FP) channel. Under this propagation, different channel

vectors become orthogonal to each other, and the channel Gram matrix becomes

diagonal. Both measurement and theory-based results verify that FP (or more

precisely, nearly favorable propagation) is observed for many massive MIMO sce-

narios.

A closed-form solution for optimal signaling for an orthogonal channel under the

joint power constraints (TPC+PAC) is obtained. It is diagonal, which shows the

104
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optimality of the independent signaling, and the diagonal entries are the minimum

of two terms: one is the per-antenna power constraints, and the other represents

the WF procedure. However, under the joint power constraints (TPC+PAC), the

optimal dual variable responsible for the TPC is different from that in the WF

procedure (TPC only). Since the considered problem is convex and strong duality

holds, then the dual variable shows sensitivity with respect to constraint changes.

This reveals that the optimal signaling under the joint total and per-antenna power

constraints is less sensitive to the TPC variations than that in the WF procedure.

The numbers of active streams and active PACs are determined analytically in

closed forms, which shows that active streams are those that are stronger than

inactive ones. Optimality conditions of rank-1 transmission (i.e., beamforming)

and full-rank transmission under the joint power constraints (TPC+PAC) are

determined. These are somewhat similar (but not identical) to those in the WF

procedure (TPC alone), with a different SNR threshold.

We show that the OPA under the joint TPC+ PAC constraints can be interpreted

as pouring water into a container which has ceiling and floor profiles, i.e., as

”capped WF”. The floor profile is determined by the inverse of the channel gains,

and the ceiling profile is lifted from the floor by the receptive per-antenna power

constraints. To compute the OPA under the joint constraints, an iterative WF

algorithm is proposed. It is proven that the algorithm converges to the OPA after

a finite number of steps.

We also consider the case where each user has a different allocated bandwidth and

that the grade of service is not the same for all users. In this case and under the

TPC+PAC constraints, the OPA and the numbers of active streams and active

PACs are found in closed forms.

Next, we study the robustness of the optimal signaling under FP. To do so, we

consider nearly favorable propagation (NFP), in which the values of off-diagonal

entries in the channel Gram matrix are small but non-zero (nearly orthogonal

channel). It is observed that the optimal transmit covariance under FP is nearly

optimal under NFP. An upper bound of the sub-optimality gap (rate loss) is found,
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and we see that this upper bound becomes small under NFP. A new definition of

nearly (or ε)-favorable propagation is given, which quantifies how close the channel

is to favorable propagation.

Three algorithms are developed which compute optimal signaling under the joint

constraints (TPC+PAC). The first one is the bisection algorithm, which computes

the optimal dual variable responsible for the TPC. This algorithm works with

monotonic continuous functions, and in each step, the width of the uncertainty

interval around its root reduces by a factor of two. To do so, the upper or lower

bound of the root is updated in each step. Hence, as more iterations are completed,

this width becomes smaller, and the difference between an estimate of the root

and its actual value also becomes smaller. Second, we develop the Newton-barrier

method which uses logarithmic-barrier functions to handle inequality constraints

(i.e., TPC+PAC). The third one is a Monte-Carlo algorithm which randomly

samples a considerable number of feasible transmit covariances. At each step, the

best transmit covariance is selected among the existing ones. Then, an increasing

sequence of rates is obtained in order to achieve the channel capacity under the

joint power constraints (TPC+PAC).

In this thesis, favorable propagation (i.e., orthogonal channel) is studied in more

detail. We consider orthogonal and non-orthogonal channels under the TPC when

their Gram matrices have the same diagonal entries. In this case, if the beam-

forming (rank-1 transmission) is optimal in both cases, then the capacity of a

non-orthogonal channel is greater than that in an orthogonal channel. So, consid-

ering the fixed diagonal entries of the channel Gram matrix, an orthogonal channel

is not necessarily the best channel to deliver more capacity.

Finally, we show that the main theorems in [1] are not correct in general, and that

some modifications are needed to make their conclusion valid, which are given in

this thesis.
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8.2 Possible Future Research Topics

This study can be expanded in the future, as follows.

• In addition to the total and per-antenna power constraints, one can also

consider more constraints, i.e., (i) per-group antenna power constraints, (ii)

per-antenna power constraints at both transmitter and receiver antennas,

and (iii) an interference power constraint. So, optimal signaling under the

mentioned constraints for an orthogonal channel can be considered as a new

research topic.

• Optimal transmit covariance for an orthogonal wiretap channel under the

TPC is known; however, optimal signaling under the joint TPC and PAC is

still an open problem, and can thus be pursued.

• This study is motivated by some practical considerations such as the per-

antenna power constraint. However, there are more factors which can also

be considered. One of them is impairment at the transmitter and receiver

hardware. So, this element can be explored following the problem considered

in this thesis.
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Appendix

9.1 Proof of Theorem 1

First, we show that an optimal Tx covariance is diagonal under the joint power

constraints (TPC+PAC) for an orthogonal channel W = DW (favorable propa-

gation). This is obtained via an approach similar to that in [15] under the TPC

only. Here, we use Hadamard inequality [39], as follows:

ln |I + DWR| ≤
m∑
i=1

ln
(
1 + (DWR)ii

)
=

m∑
i=1

ln
(
1 + (DW )ii(R)ii

)
=

m∑
i=1

ln
(
1 + (DW )ii(DR)ii

)
= ln |I + DWDR| (9.1)

where DW and DR are diagonal matrices that have the same diagonal entries as

W and R, respectively. Here, we assume that DW > 0 (the full-rank matrix)1.

The inequality is strict when R 6= DR, and the upper bound is achieved when

1Note that (DW )ii = 0 corresponds to hi = 0, and those sub-channels do not affect to the
capacity. Hence, they can be removed from consideration. If these sub-channels are not removed
and DW is singular, then R∗(DW ) may not be unique and there may exist non-diagonal R∗(DW ),
while there always exists a diagonal optimal Tx covariance for a singular DW .
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R = DR [39]. Considering the feasible set SR in (4.2), R ∈ SR implies DR ∈ SR,

because tr(R) = tr(DR) and (R)ii = (DR)ii. The former shows that tr(DR) ≤ PT

and the latter shows that (DR)ii ≤ P1i, and hence DR is in the feasible set of Tx

covariance matrices. So, an optimal covariance matrix has to be diagonal, i.e.,

R∗ = DR∗ .

Therefore, the problem in (4.1) can be expressed as follows:

C = max
pi∈Sp

m∑
i=1

ln(1 + gipi) (9.2)

where

Sp =

{
{pi} : pi ≥ 0,

m∑
i=1

pi ≤ PT , pi ≤ P1i

}
(9.3)

The problem in (9.2) is (strictly) convex since this is a maximization of the

(strictly) concave function, and the inequality constraints are also convex func-

tions. Also, Slater’s condition holds (we assume that PT , P1i > 0). Hence, the

KKT (Karush-Kuhn-Tucker) conditions are both sufficient and necessary for op-

timality [66]. The optimal Tx covariance is unique, since the objective function is

strictly concave. The Lagrangian of the problem in (9.2) is as follows:

L = −
∑
i

ln(1 + gipi) + µ
(∑

i

pi − PT
)

+
∑
i

(
λi(pi − P1)− ηipi

)
(9.4)

where µ and λi are the Lagrange multipliers responsible for the TPC and PACs

respectively, and ηi is the Lagrange multiplier responsible for the non-negative

constraint pi ≥ 0. The KKT conditions are as follows:

∂L

∂pi
= − gi

1 + gipi
+ µ− ηi + λi = 0 (9.5)

µ
(∑

i

pi − PT
)

= 0, ηipi = 0, λi(pi − P1i) = 0 (9.6)

∑
i

pi ≤ PT , pi ≥ 0, pi ≤ P1i (9.7)

µ ≥ 0, ηi ≥ 0, λi ≥ 0 (9.8)
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where (9.5) and (9.6) are stationary and complementary slackness conditions re-

spectively, and (9.7) and (9.8) are primal and dual feasibility constraints respec-

tively. Using (9.5),

pi = (µ− ηi + λi)
−1 − g−1i (9.9)

An active stream pi > 0 implies ηi = 0, which follows from the complementary

slackness in (9.6). Hence, (9.9) simplifies to the following for active antennas:

0 < pi = (µ+ λi)
−1 − g−1i ≤ P1i (9.10)

where the inequality follows from the PAC. For active PACs, this becomes equality,

and pi = P1i. Hence, in this case:

λi =
(
P1i + g−1i

)−1 − µ ≥ 0 (9.11)

Therefore, pi = P1i if:

µ ≤
(
P1i + g−1i

)−1
(9.12)

An active stream with an inactive PAC implies λi = ηi = 0. So, for this case,

(9.10) implies:

0 < pi = µ−1 − g−1i < P1i (9.13)

Thus, pi = µ−1 − g−1i if:

(
P1i + g−1i

)−1
< µ < gi (9.14)

Finally, an inactive stream pi = 0 yields λi = 0 and hence by (9.9),

µ ≥ gi (9.15)
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Combining all these cases and after some manipulation, pi is obtained as follows:

pi =


0 µ−1 − g−1i ≤ 0

µ−1 − g−1i 0 < µ−1 − g−1i < P1i

P1i µ−1 − g−1i ≥ P1i

(9.16)

Simply put, we obtain:

pi =

(µ−1 − g−1i )+ µ−1 − g−1i < P1i

P1i µ−1 − g−1i ≥ P1i

(9.17)

So, the optimal power allocation can be expressed as p∗i = min
{
P1i, (µ

−1−g−1i )+
}

.

When the TPC is inactive, PT ≥
∑m

i=1 P1i and µ = 0. Hence, from (9.9), λi > 0

and therefore p∗i = P1i, i.e., each PAC is active. If PT <
∑m

i=1 P1i, the TPC

is active and there exists at least one inactive PAC. Therefore, λi = 0 for one

particular i, and (9.9) implies µ > 0. So, from the complementary slackness,

µ > 0 is obtained as a solution of
∑m

i=1 p
∗
i = PT .

The channel capacity in (4.6) is obtained with pi = p∗i in (9.2).

9.2 Proof of Proposition 1

Here, we consider the case that the TPC is active, and hence the total Tx power is

equal to PT . Then, in Remark 9.1, we will show that the Proposition 1 also holds

when the TPC is inactive.

Consider the OPA in (4.4): p∗i = min{P1i, (µ−1−g−1i )+}. This implies µ−1−g−1i >

0 for active streams and µ−1−g−1i ≤ 0 for inactive ones. Since gi are in decreasing

order,

µ−1 − g−11 ≥ µ−1 − g−12 ≥ ... ≥ µ−1 − g−1m (9.18)
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thus:

µ−1 − g−1m+
> 0, µ−1 − g−1m++1 ≤ 0 (9.19)

and hence:

g−1m+
< µ−1 ≤ g−1m++1 (9.20)

It follows from (9.20) that (see Remark 9.1):

m∑
i=1

min
{
P1i, (g

−1
m+
− g−1i )+

}
<

m∑
i=1

min
{
P1i, (µ

−1 − g−1i )+
}

= PT (9.21)

≤
m∑
i=1

min
{
P1i, (g

−1
m++1 − g−1i )+

}
(9.22)

Also, g−1i are in increasing order. Hence, (g−1j −g−1i )+ = (g−1j −g−1i ) for any i ≤ j,

and otherwise (g−1j − g−1i )+ = 0. So:

m∑
i=1

min
{
P1i, (g

−1
m+
− g−1i )+

}
=

m+∑
i=1

min
{
P1i, (g

−1
m+
− g−1i )

}
+

m∑
i=m++1

min
{
P1i, 0

}
=

m+∑
i=1

min
{
P1i, (g

−1
m+
− g−1i )

}
(9.23)

Following the same approach, we obtain:

m∑
i=1

min
{
P1i, (g

−1
m++1 − g−1i )+

}
=

m++1∑
i=1

min
{
P1i, (g

−1
m++1 − g−1i )

}
(9.24)

Applying (9.23) and (9.24) to (9.22):

m+∑
i=1

min
{
P1i, g

−1
m+
− g−1i

}
< PT ≤

m++1∑
i=1

min
{
P1i, g

−1
m++1 − g−1i

}
(9.25)
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Hence, um+ < PT ≤ um++1. Also, uj are in increasing order because of the

increasing order of g−1i . Hence:

u1 ≤ ... ≤ um+ < PT ≤ um++1 (9.26)

and (4.9) follows.

Remark 9.1. In the following, we demonstrate that the inequality in (9.21) is

always strict. Here, we consider three possible cases: (i) PT <
∑m

i=1 P1i and

m+ > mPAC ; (ii) PT <
∑m

i=1 P1i and m+ = mPAC ; and (iii) PT ≥
∑m

i=1 P1i.

(i) Consider PT <
∑m

i=1 P1i and m+ > mPAC . Then, for active streams, at least

one PAC is inactive, and let it be the t-th one. So:

min{P1t, (g
−1
m+
− g−1t )+} ≤ (g−1m+

− g−1t )+

< µ−1 − g−1t

= min{P1t, (µ
−1 − g−1t )+} (9.27)

where the strict inequality follows from (9.20), and (9.20) implies:

m∑
i=1,i 6=t

min
{
P1i, (g

−1
m+
− g−1i )+

}
≤

m∑
i=1,i 6=t

min
{
P1i, (µ

−1 − g−1i )+
}

(9.28)

Thus, using (9.27) and (9.28):

m∑
i=1

min
{
P1i, (g

−1
m+
− g−1i )+

}
<

m∑
i=1

min
{
P1i, (µ

−1 − g−1i )+
}

= PT (9.29)

which shows the strict inequality in (9.21).

(ii) Consider PT <
∑m

i=1 P1i and m+ = mPAC . Then, for active streams, all PACs
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are active. This implies PT =
∑m+

i=1 P1i. Then:

PT = P1m+ +

m+−1∑
i=1

P1i

≥ P1m+ +

m+−1∑
i=1

min{P1i, g
−1
m+
− g−1i }

= P1m+ +

m+∑
i=1

min{P1i, g
−1
m+
− g−1i }

>

m+∑
i=1

min{P1i, g
−1
m+
− g−1i }

=
m∑
i=1

min
{
P1i, (g

−1
m+
− g−1i )+

}
(9.30)

where the last equality follows from (9.23). Hence,
∑m

i=1 min
{
P1i, (g

−1
m+
−g−1i )+

}
<

PT , and the strict inequality in (9.21) follows.

(iii) Consider PT ≥
∑m

i=1 P1i. Here, m+ = m, and there is no upper bound for µ−1

in (9.20) because gm+1 does not exist. In this case, each PAC is active. Observe

that:

m∑
i=1

min
{
P1i, (g

−1
m − g−1i )+

}
=

m−1∑
i=1

min
{
P1i, (g

−1
m − g−1i )+

}
≤

m−1∑
i=1

P1i

< PT (9.31)

This implies um < PT , and the strict inequality in (9.21) follows.

9.3 Proof of Proposition 4

Here, we obtain a proof when the TPC is active. Then, in Remark 9.2, we will

show that Proposition 4 also holds when the TPC is inactive.
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To find the active PACs, we consider the streams with p∗i > 0 obtained from

Proposition 1. Then, (4.4) for the active streams becomes:

p∗i = min{0, µ−1 − (g−1i + P1i)}+ P1i (9.32)

This implies µ−1 − (g−1i + P1i) ≥ 0 for active PACs and µ−1 − (g−1i + P1i) < 0 for

inactive ones. Since g−1i + P1i is in increasing order:

µ−1 − (g−11 + P11) ≥ ... ≥ µ−1 − (g−1m+
+ P1m+) (9.33)

so that:

g−1mPAC
+ P1mPAC

≤ µ−1 < g−1mPAC+1 + P1mPAC+1 (9.34)

and hence:

m+∑
i=1

(
min

{
0, (g−1mPAC

+ P1mPAC
)− (g−1i − P1i)

}
+ P1i

)
≤

m+∑
i=1

min
{
P1i, (µ

−1 − g−1i )
}

= PT

<

m+∑
i=1

(
min

{
0, (g−1mPAC+1 + P1mPAC+1)− (g−1i − P1i)

}
+ P1i

)
(9.35)

Using the same approach as in Proposition 1, we obtain:

m+∑
i=1

P1i +

m+∑
i=mPAC

(
(g−1mPAC

+ P1mPAC
)− (g−1i − P1i)

)
≤ PT (9.36)

<

m+∑
i=1

P1i +

m+∑
i=mPAC+1

(
(g−1mPAC+1 + +P1mPAC+1)− (g−1i − P1i)

)
(9.37)

So:

m+∑
i=1

P1i − vmPAC
≤ PT <

m+∑
i=1

P1i − vmPAC+1 (9.38)
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Hence, vmPAC+1 <
∑m+

i=1 P1i − PT ≤ vmPAC
, and the lower bound holds if mPAC <

m+. As well, vj are in decreasing order because g−1i are in increasing order.

Therefore (4.15) follows.

Remark 9.2. Here, we show that the result for Proposition 4 holds for the special

case of mPAC = m+, whether the TPC is active or not.

If mPAC = m+, then there is no upper bound for µ−1 in (9.34). In this case, if

the TPC is active, then PT =
∑m+

i=1 P1i. If not, then all streams are active (i.e.,

m+ = m), and hence PT ≥
∑m+

i=1 P1i =
∑m

i=1 P1i. Hence, if mPAC = m+, then:

1. active TPC:

m+∑
i=1

P1i − PT = 0 (9.39)

2. inactive TPC:

m+∑
i=1

P1i − PT ≤ 0 (9.40)

and hence:

m+∑
i=1

P1i − PT ≤ 0 if mPAC = m+ (9.41)

Applying (9.41) to vm+ = 0, we obtain
∑m+

i=1 P1i − PT ≤ vm+ which shows that

(4.15) holds for m+ = mPAC .

9.4 Proof of Proposition 6

If PT ≥
∑m

i=1 P1i, the TPC is redundant under the joint power constraints, and

hence, µ = 0. Since µWF ≥ 0, then (4.28) follows.
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If PT <
∑m

i=1 P1i, the TPC is active under the joint power constraints. Also, it is

always active for the standard WF (TPC only). Hence:

m∑
i=1

(µ−1WF − g
−1
i )+ = PT

=
m∑
i=1

min
(
P1i, (µ

−1 − g−1i )+
)

≤
m∑
i=1

(µ−1 − g−1i )+ (9.42)

where the inequality follows from:

min
{
P1i, (µ

−1 − g−1i )+
}
≤ (µ−1 − g−1i )+ (9.43)

so that:

m∑
i=1

(µ−1WF − g
−1
i )+ ≤

m∑
i=1

(µ−1 − g−1i )+ (9.44)

Then, µ ≤ µWF follows, since the right-hand side is decreasing in µ. The inequality

in (9.42) is strict if at least one PAC is active (i.e., P1i < (µ−1− g−1i )+ for at least

one i ). Then, µ < µWF follows.

9.5 Proof of Lemma 4.1

Here, we show µ−11 ≤ µ−12 , and it can be extended to all µ−1i . The first and second

steps of the algorithm imply:

m∑
i=1

(µ−11 − g−1i )+ = PT (9.45)

m∑
i=1
i 6∈I1

(µ−12 − g−1i )+ = PT −
∑
i∈I1

P1i (9.46)
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using (9.45) and (9.46):

∑
i∈I1

P1i =
m∑
i=1

(µ−11 − g−1i )+ −
m∑
i=1
i 6∈I1

(µ−12 − g−1i )+ (9.47)

and since P1i < (µ−11 − g−1i )+ for i ∈ I1, one obtains:

∑
i∈I1

P1i <
∑
i∈I1

(µ−11 − g−1i )+ (9.48)

and applying this to (9.47):

m∑
i=1
i 6∈I1

(µ−11 − g−1i )+ <
m∑
i=1
i 6∈I1

(µ−12 − g−1i )+ (9.49)

and µ−11 ≤ µ−12 follows because the right-hand side is increasing in µ−12 .

9.6 Proof of Lemma 4.2

In the last step of the algorithm (i.e., the k-th step), we observe:

PT −∆k =
∑

δp∗i,k

=
∑

i∈
{
{1,...,m}−

⋃k−1
j=1 Ij

} p∗i,k (9.50)

Applying this to:

∆k =
∑

i∈
⋃k−1

j=1 Ij

P1i

=
∑

i∈
⋃k−1

j=1 Ij

p∗i,k (9.51)



Appendix 119

we observe:

PT −
∑

i∈
⋃k−1

j=1 Ij

p∗i,k =
∑

i∈
{
{1,...,m}−

⋃k−1
j=1 Ij

} p∗i,k (9.52)

Hence, (4.38) follows.

9.7 Proof of Proposition 8

Proposition 4.1 implies:

(µ−11 − g−1i )+ ≤ ... ≤ (µ−1k − g
−1
i )+ for i ∈ {1, 2, ...,m} (9.53)

So, for t ≤ k − 1:

i ∈ It ⇒ p∗i,k = p∗i,t = P1i

< δp∗i,t

= (µ−1t − g−1i )+

≤ (µ−1k − g
−1
i )+ (9.54)

where the first inequality follows from the definition of It in Stage 5 of the algo-

rithm. The second inequality follows directly from (9.53).

Hence, (9.54) implies the following for i ∈
⋃k−1
j=1 Ij:

p∗i,k = P1i

< (µ−1k − g
−1
i )+ (9.55)
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In the last step of the algorithm, the following holds for i ∈
{
{1, ..,m}−

⋃k−1
j=1 Ij

}
2

p∗i,k = δp∗i,k

= (µ−1k − g
−1
i )+

≤ P1i (9.56)

Using (9.55) and (9.56), p∗i,k is obtained for any i, as follows:

p∗i,k = min
{
P1i, (µ

−1
k − g

−1
i )+

}
(9.57)

Full power PT is used (see Lemma 4.2). Hence, (4.38) and (9.57) imply p∗i,k = p∗i .

This means that the algorithm finds the OPA under the joint power constraints

(TPC+PAC).

9.8 Proof of Proposition 11

To obtain a proof, we will need the following Lemma, which shows that C(W,R)

is uniformly continuous in W when R is bounded.

Lemma 9.3. If trR ≤ PT and σ1(∆W)PT < 1, then the following holds for any

Hermitian ∆W:

m ln
(
1− σ1(∆W)PT

)
≤ C(W + ∆W,R)− C(W,R) ≤ m ln

(
1 + σ1(∆W)PT

)
(9.58)

Proof. Let ∆C be as follows:

∆C = C(W + ∆W,R)− C(W,R) (9.59)

2Note that i ∈
{
{1, ..,m} −

⋃k−1
j=1 Ij

}
denotes the elements that belong to {1, ..,m} but not

to
⋃k−1

j=1 Ij .
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so that:

∆C = ln |I + (W + ∆W)R| − ln |I + WR|
(a)
= ln |I + R1/2(W + ∆W)R1/2| − ln |I + R1/2WR1/2|
(b)

≤ ln |I + R1/2WR1/2 + σ1(∆W)R| − ln |I + R1/2WR1/2|

= ln |I + σ1(∆W)(I + R1/2WR1/2)−1R|
(c)

≤ ln |I + σ1(∆W)R|
(d)

≤ ln |I + σ1(∆W)PT I|

= m ln
(
1 + σ1(∆W)PT

)
(9.60)

where (a) follows from |I + AB| = |I + BA|; (b) is obtained from the fact that

∆W ≤ σ1(∆W)I; (c) is due to I ≥ (I + R
1
2 WR

1
2 )−1; and (d) follows from

R ≤ σ1(R)I and σ1(R) ≤ PT .

To attain the lower bound, we use the same approach:

∆C
(e)

≥ ln |I + R1/2WR1/2 − σ1(∆W)R| − ln |I + R1/2WR1/2|

= ln |I− σ1(∆W)(I + R1/2WR1/2)−1R|

≥ ln |I− σ1(∆W)PT I|

= m ln
(
1− σ1(∆W)PT

)
(9.61)

where (e) follows from ∆W ≥ −σ1(∆W)I. Here, σ1(∆W)PT < 1 implies that all

determinant values are non-negative, and hence all values are real.

To prove (5.3), let ∆C1 and ∆C2 be as follows:

∆C1 = C
(
W,R∗(W)

)
− C

(
W0,R

∗(W)
)

(9.62)

∆C2 = C
(
W0,R

∗(W)
)
− C

(
W,R∗(W0)

)
(9.63)
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so that ∆C(W,W0) = ∆C1 + ∆C2. From Lemma 9.3, ∆C1 is upper bounded as

follows:

∆C1 = C
(
W0 + ∆W,R∗(W)

)
− C

(
W0,R

∗(W)
)

≤ m ln
(
1 + σ1(∆W)PT

)
(9.64)

where ∆W = W−W0. Likewise, ∆C2 is upper bounded as follows:

∆C2 = C
(
W0,R

∗(W)
)
− C

(
W,R∗(W0)

)
≤ C

(
W0,R

∗(W0)
)
− C

(
W,R∗(W0)

)
= −

(
C
(
W0 + ∆W,R∗(W0)

)
− C

(
W0,R

∗(W0)
))

≤ −m ln(1− σ1(∆W)PT ) (9.65)

where the first inequality follows from the fact that R∗(W0) is the optimal co-

variance under W0, and hence C
(
W0,R

∗(W0)
)
≥ C

(
W0,R

∗(W)
)
; the second

inequality follows from Lemma 9.3. Hence, the upper bound in (5.3) follows from

(9.64) and (9.65):

∆C(W,W0) ≤ m ln
(1 + σ1(∆W)PT

1− σ1(∆W)PT

)
(9.66)

and the lower bound in (5.3) follows from C
(
W
)
≥ C

(
W,R∗(W0)

)
.

9.9 Proof of Lemma 5.1

First, we establish the following property of C(W,R) (to our best knowledge, this

property has not been given in the literature).

Lemma 9.4. C(W,R) is a jointly uniformly-continuous function for any bounded

W and R:

σ1(R) ≤ PT <∞, σ1(W) ≤ A <∞ (9.67)
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Proof. First, we prove the uniform continuity of C(W,R) in W (under fixed R),

and then we extend it to both W and R.

The following shows the definition of uniform continuity of C(W,R) in W, i.e.,

for any ε > 0, there exists δ(ε) such that:

|∆CW | < ε if σ1(∆W) < δ(ε) (9.68)

where ∆CW = C(W + ∆W,R)− C(W,R). Note that δ(ε) is independent of W

and R. Now, using Lemma 9.3:

m ln
(
1− σ1(∆W)PT

)
≤ ∆CW ≤ m ln

(
1 + σ1(∆W)PT

)
(9.69)

where we assume σ1(∆W)PT < 1. This assumption can always be satisfied by

considering a small ∆W, in which σ1(∆W) < P−1T . Hence, |∆CW | is upper

bounded as follows:

|∆CW | ≤ mmax
{

ln
(
1 + σ1(∆W)PT

)
,
∣∣ ln (1− σ1(∆W)PT

)∣∣}
= m ln max

{
1 + σ1(∆W)PT ,

1

1− σ1(∆W)PT

}
(a)
= −m ln

(
1− σ1(∆W)PT

)
(9.70)

where (a) follows from the fact that 1 + x ≤ (1− x)−1 if 0 ≤ x ≤ 1. Also,

−m ln
(
1 − σ1(∆W)PT

)
is increasing in σ1(∆W). So, after some manipulation,

(9.70) implies that:

|∆CW | < ε if σ1(∆W) < δ(ε) =
1− e−ε/m

PT
(9.71)

Hence, C(W,R) is uniformly-continuous in W. Also, the bound for σ1(∆W) in

(9.71) is consistent with the assumption of σ1(∆W)PT < 1.
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To establish the joint uniform continuity, we show its definition, i.e., for any ε > 0,

there exists δ(ε) such that:

|∆CW,R| < ε if σ1(∆R), σ1(∆W) < δ(ε) (9.72)

where:

∆CW,R = C(W + ∆W,R + ∆R)− C(W,R) (9.73)

Note that δ(ε) and ε do not depend on W and R. Let:

∆CR = C(W + ∆W,R + ∆R)− C(W + ∆W,R) (9.74)

Then, we observe that:

|∆CW,R| = |∆CR + ∆CW |

≤ |∆CR|+ |∆CW |

≤ −m ln
(
1− σ1(∆R)A

)
−m ln

(
1− σ1(∆W)PT

)
(9.75)

where the first inequality is due to the triangle inequality. If σ1(∆W)PT < 1,

σ1(∆R)A < 1, σ1(R) ≤ PT < ∞, and σ1(W + ∆W) ≤ A < ∞, then |∆CW |

is upper bounded as in (9.70) and |∆CR| can be upper bounded with a similar

approach. Hence, the second inequality follows. So, we observe that if:

−m ln
(
1− σ1(∆R)A

)
< ε/2 (9.76)

−m ln
(
1− σ1(∆W)PT

)
< ε/2 (9.77)

then |∆CW,R| < ε, which shows that C(W,R) is jointly uniformly continuous:

|∆CW,R| < ε if σ1(∆R), σ1(∆W) < δ(ε) =
1− e−ε/2m

max(PT , A)
(9.78)

where (9.78) is consistent with the assumptions of σ1(∆W)PT < 1 and σ1(∆R)A <

1.
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Note that the first bound in (9.67) always holds because of the TPC, i.e., σ1(R) ≤

trR ≤ PT < ∞, and the second bound follows from the fact that the channel is

always bounded in practice. Now, to obtain a proof, we observe that:

lim
W→W0

C(W) = lim
W→W0

max
R

C(W,R)

= max
R

lim
W→W0

C(W,R)

= max
R

C(W0,R) = C(W0) (9.79)

where max and lim can be swapped because of the joint uniform continuity of

C(W,R). Note that lim max 6= max lim in general, and hence we need the joint

uniform continuity to show (5.5).

9.10 Proof of Corollary 5

The maximum singular value of any matrix A can be obtained from the following

optimization problem [39]:

σ1(A) = max
||x||=||y||=1

|x+Ay| (9.80)

where ||x|| is the Euclidean norm of x. Observe that:

σ1(W−DW ) = max
||x||=||y||=1

|x+(W−DW )y|

≥ |e+
i (W−DW )ej|

= |(W−DW )i,j|

= |h+
i hj|, for i 6= j (9.81)

where the first equality follows from (9.80) and ei represents the standard basis in

which all the components are zero except the i-th component, which is one. Hence,

σ1(W−DW ) < δε implies |h+
i hj| < δε. The converse is not true in general.
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9.11 Gradient and Hessian

Here, we use some techniques for matrix differential calculus [70], [77], [78]. Let

us consider the following function:

f(X) = ln
(
PT − trX

)
(9.82)

where Xm×m > 0. Observe that:

f(X + dX) = ln
(
PT − tr(X + dX)

)
= ln

(
(PT − trX)

(
1− tr(dX)

PT − trX

))

= f(X) + ln

(
1− tr(dX)

PT − trX

)
= f(X)− tr(dX)

PT − trX
− tr(dX)tr(dX)

2(PT − trX)2
+O

(
tr(dX)2

)
(9.83)

where the last equality is due to ln(1 − x) = −
∑∞

n=1(n
−1)xn. Here, we use

operator vec(X), which accumulates all entries of X into a single column vector

and duplication matrix D that is characterized by vec(X) = Dvech(X) [78]. We

observe that:

tr(dX) = tr(dXI)

(a)
= vec(dX)+vec(I)

= vech(dX)+D+vec(I)

(b)
= dx+D+vec(I) (9.84)

where (a) follows from the fact that dX is Hermitian and tr(AB) = vec(A+)+vec(B);

(b) is due to dx = vech(dX). Also, (9.84) implies:

tr(dX) = vec(I)+Ddx (9.85)
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applying (9.84) and (9.85) to (9.83), one obtains:

f(X + dX) = f(X)− dx+ D+vec(I)

PT − trX
− 1

2
dx+D+vec(I)vec(I)+D

(PT − trX)2
dx +O

(
tr(dX)2

)
(9.86)

Hence, the gradient and Hessian expressions are as follows:

∇xf = −D+vec(I)

PT − trX
(9.87)

∇xxf = −D+vec(I)vec(I)+D

(PT − trX)2
(9.88)

9.12 Proof of Proposition 13

Let u1 be the eigenvector corresponding to λ1, so λ1(W) = u+
1 Wu1. Also, there

exists at least one i which d1(W) = (W)ii, and this implies d1(W) = e+
i Wei. If

d1(W) = λ1(W), then:

e+
i Wei = u+

1 Wu1 (9.89)

e+
i Wei = max

||x||=1
x+Wx (9.90)

ei ∈ arg max
||x||=1

x+Wx (9.91)

ei ∈ {x : Wx = λ1(W)x} (9.92)

Here, {x : Wx = λ1(W)x} is a set of vectors which maximize the quadratic

expression x+Wx. These vectors belong to an eigenspace corresponding to λ1(W).

Also, it is easy to see that (9.92) implies (9.89), i.e., ei ∈ {x : Wx = λ1(W)x}

implies d1(W) = λ1(W).

There is no need for i to be unique in the above proof. Hence, when there are

repeated maximum diagonal entries, λ1(W) = d1(W) if and only if at least one

solution of i = arg max
j

(W)jj satisfies the condition in (9.92).
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9.13 MATLAB Code

9.13.1 Iterative Water-Filling Algorithm

1 % Iterative water -filling (TPC+PAC)

2 % capacity under the joint TPC+PAC constraints for a massive MIMO channel under

3 % favorable propagation

4 % inputs:

5 % W : channel gains

6 % PT : total transmit power constraint

7 % P1 : per -antenna power constraints

8

9

10 function iterative_water_filling(W,PT,P1)

11 if PT >= sum(P1)

12 final_power=P1;

13 else

14 ff=1;

15 ttt =2;

16 py=1;

17 while(ttt >1)

18 k=1;

19 m=length(W);

20 bisectionerror =1;

21 % To find mu, we can use an analytical solution or the bisection

algorithm.

22 % Here , the bisection algorithm is used.

23 xl=0;

24 xu=max(W);

25 f=0;

26 clear r

27 while(bisectionerror >1e-8)

28 midpoint =(1/2) *(xl+xu);

29 for k=1:m

30 a=max(0,( midpoint)^(-1) -(W(k)^(-1)));

31 r(k)=a;

32 end

33 f_value=sum(r)-PT;

34 if f_value <0

35 xu=midpoint;

36 elseif f_value >0

37 xl=midpoint;

38 end

39 bisectionerror=abs(f_value);

40 end

41

42 % set of streams that exceed the PACs
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43 b=0;

44 pac =0;

45 sdsd =1;

46 clear delete_W

47 for i=1:m

48 if r(i)>P1(i)

49 r(i)=P1(i);

50 pac =1+pac;

51 final_W(py)=W(i);

52 final_power(py)=r(i);

53 delete_W(sdsd)=i;

54 sdsd =1+ sdsd;

55 py=py+1;

56 end

57 end

58

59 if pac >0

60 pac_completed=sum(P1(delete_W));

61 W(delete_W)=[];

62 P1(delete_W)=[];

63 end

64

65 % pac is the number of elements in the set of streams that exceed the

PACs

66 if pac==0

67 ttt =0;

68 u_EWF=midpoint;

69 for i=1:m

70 final_W(py)=W(i);

71 final_power(py)=r(i);

72 py=py+1;

73 end

74 end

75

76 if (ff==1 && pac ==0)

77 ttt =0;

78 else

79 PT=PT-pac_completed;

80 end

81 ff=ff+1;

82 end

83 end

84 final_W;

85 final_power;

86 save(’PAC_TPC_EWF.mat’)

87 end
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9.13.2 Bisection Algorithm

1 % bisection algorithm

2 % capacity under the joint TPC+PAC constraints for a massive MIMO channel under

3 % favorable propagation

4 % inputs:

5 % W : channel gains

6 % alpha : coefficient for grade of service

7 % PT : total transmit power constraint

8 % P1 : per -antenna power constraints

9

10

11 function BA_TPC_PAC(W,alpha ,P1,PT)

12 m=length(W);

13 W_alpha=W.*alpha;

14

15 % desired uncertainty interval

16 bisectionerror =1;

17

18 % upper bound and lower bound for mu

19 xl=0;

20 xu=max(W_alpha);

21

22 while(bisectionerror >1e-8)

23

24 % midpoint

25 midpoint =(1/2) *(xl+xu);

26

27 % redefine upper bound or lower bound

28 for k=1:m

29 a=max(0,( midpoint)^(-1) -(W_alpha(k)^(-1)));

30 r(k)=alpha(k)*min(((P1(k))/(alpha(k))),a);

31 end

32

33 f_value=sum(r)-PT;

34 if f_value <0

35 xu=midpoint;

36 elseif f_value >0

37 xl=midpoint;

38 end

39

40 bisectionerror=abs(f_value);

41 %if f_value=0, then bisectionerror =0, hence bisectionerror >1e-8 is false.

42

43 end

44 save(’PAC_TPC_BA.mat’)

45 end
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9.13.3 Newton-Barrier Algorithm

1 % Newton_barrier algorithm

2 % capacity under the joint TPC+PAC constraints for a MIMO channel

3 % inputs:

4 % W : Channel Gram matrix

5 % PT : total transmit power constraint

6 % P1 : per -antenna power constraints

7

8

9 function Newton_barrier_TPC_PAC(W,PT ,P1)

10

11 % t00 : the initial value for t

12 t00 =100;

13 t=t00;

14 t_barrier (1)=t;

15

16 % the value of t increases by the factor u

17 u=5;

18

19 diag_P1=diag(P1);

20 [m,~]= size(W);

21

22 % initial Tx covariance matrix

23 for i=1:m

24 initial_entry_R(i)=(1/2)*min(P1(i),PT/m);

25 end

26 R_Newton {1}= diag(initial_entry_R);

27 x_Newton (:,1)=vech(R_Newton {1});

28

29 % the value of t_max

30 tmax=1e7;

31

32 zzz =1;

33 ii=1;

34

35 %the barrier method

36 while(t<tmax)

37

38 R_before_newton{ii}= R_Newton {1};

39

40 % gradient

41 Z{1}=((( eye(m,m)+W*R_Newton {1}))^(-1))*W;

42 diag_R {1}= diag(diag(R_Newton {1}));

43 barrier_P1 {1}=( diag_R {1}- diag_P1)^(-1);

44 gradient_R_Ft {1}=Z{1}+(1/t)*(( R_Newton {1}) ^(-1))+(1/t)*barrier_P1 {1};

45 gradient_x_Ft {1}=( dup_n(m)) ’*(veC(gradient_R_Ft {1}) +(1/t)*...

46 veC(eye(m,m))*(1/( trace(R_Newton {1})-PT)));
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47

48 x_Newton (:,1)=vech(R_Newton {1});

49 r_w {1}=( gradient_x_Ft {1}) ’;

50

51 k=1;

52 Norm_r_w_k =1;

53 zzz =5*zzz*u;

54

55 % Newton algorithm

56 condition_newton =1;

57

58 % accuracy of the Newton algorithm

59 epsilon =10^( -8);

60 while (condition_newton >epsilon)

61

62 R_Newton{k};

63 R_P1=R_Newton{k};

64

65 % Hessian

66 for i=1:m

67 err=zeros(m,m);

68 brr=zeros(m,m);

69 err(i,i)=1/(( R_P1(i,i)-P1(i))^2);

70 brr(i,i)=1;

71 er{i}=kron(brr ,err);

72 end

73 [mk ,nk]=size(er{i});

74 b_P1=zeros(mk,nk);

75 for i=1:m

76 b_P1= b_P1+er{i};

77 end

78 hessian_x_Ft{k}=-(dup_n(m)) ’*(kron(Z{k},Z{k})+(1/t)...

79 *kron(( R_Newton{k})^(-1) ,(R_Newton{k})^(-1))+(1/t)*b_P1 +...

80 +(1/t)*(1/((PT-trace(R_Newton{k}))^(2)))*veC(eye(m,m))...

81 *(veC(eye(m,m)))’)*(dup_n(m));

82

83 KKT_mat{k}= hessian_x_Ft{k};

84 delta_w{k}=((-r_w{k})/KKT_mat{k});

85 delta_x{k}=( delta_w{k}) ’;

86

87

88 % backtracking line search

89

90 % residual norm is decreased by (a)

91 a=0.3;

92

93 % reduction in s is controlled by (B)

94 B=0.5;
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95

96 s=1;

97 condition_backtrack =10;

98 Norm_r_new =100;

99 aqq =0;

100 while ((Norm_r_new >condition_backtrack)||(aqq >1))

101

102 x_Newton(:,k+1)=x_Newton(:,k)+s*delta_x{k};

103 R_Newton{k+1}= invvech(x_Newton(:,k+1),m);

104 R_Newton{k+1};

105 Z{k+1}=(( eye(m,m)+W*R_Newton{k+1}) ^(-1))*W;

106 diag_R{k+1}= diag(diag(R_Newton{k+1}));

107 barrier_P1{k+1}=( diag_R{k+1}- diag_P1)^(-1);

108 gradient_R_Ft{k+1}=Z{k+1}+(1/t)*(( R_Newton{k+1}) ^(-1))+...

109 (1/t)*( barrier_P1{k+1});

110 gradient_x_Ft{k+1}=( dup_n(m)) ’*(veC(gradient_R_Ft{k+1}) +...

111 (1/t)*veC(eye(m,m))*(1/( trace(R_Newton{k+1})-PT)));

112 r_w{k+1}=( gradient_x_Ft{k+1}) ’;

113 Norm_r_new=norm(r_w{k+1});

114 condition_backtrack =(1-a*s)*norm(r_w{k});

115 s=B*s;

116 yuyu=eig(R_Newton{k+1});

117 aqq =0;

118

119 % checking the feasibility of covariance matrix

120 if (( R_Newton{k+1}) ’)== R_Newton{k+1}

121 for jljl =1: length(yuyu)

122 if (yuyu(jljl))>0

123 aqq =0+aqq;

124 else

125 aqq =2+aqq;

126 end

127 end

128 else

129 aqq =2.5;

130 end

131

132 new_R=R_Newton{k+1};

133

134 for yryr =1:m

135 if new_R(yryr ,yryr) <=P1(yryr)

136 aqq =0+aqq;

137 else

138 aqq =2+aqq;

139 R_Newton{k+1};

140 end

141 end

142



Appendix 134

143 if trace(new_R)<=PT

144 aqq =0+aqq;

145 else

146 aqq =2+aqq;

147 R_Newton{k+1};

148 end

149

150

151 end

152

153 condition_newton=norm(r_w{k+1});

154 residual_norm(k+1)=norm(r_w{k+1});

155 norm(r_w{k+1});

156 tyty(k)=norm(r_w{k+1});

157 c_capacity(k)=log(det(eye(m,m)+W*R_Newton{k+1}));

158 log(det(eye(m,m)+W*R_Newton{k+1}));

159 k=k+1;

160 end

161

162 cc_capacity{ii}= c_capacity;

163 clear c_capacity

164 ttt{ii}=tyty;

165 clear tyty

166 R_Newton {1}= R_Newton{k};

167 x_Newton (:,1)=vech(R_Newton {1});

168 t=u*t;

169 C(ii)=log(det(eye(m,m)+W*R_Newton {1}));

170 t_barrier(ii+1)=t;

171 ii=ii+1;

172 end

173 save(’PAC_TPC_NB.mat’)

174 end

1 % duplication matrix

2 % This function is needed for the Newton_barrier algorithm.

3 % vec(A)=dup_n vech(A)

4 % input = n ( A is n*n)

5

6 function duplicationmatrix=dup_n(n)

7 duplicationmatrix=zeros(n*n,n*(n+1)/2);

8 for i=1:n

9 for j=1:n

10 if i>=j

11 a=zeros(n*n,1);

12 a((j-1)*n+i)=1;

13 a((i-1)*n+j)=1;

14 duplicationmatrix (:,((j-1)*(n-(j/2))+i))=a;

15 end
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16 end

17 end

18

19 end

1 % vec function

2 % This function is needed for the Newton_barrier algorithm.

3 % input: matrix A

4

5 function vec_output=veC(A)

6 [m,n]=size(A);

7 if m==n

8 for i=1:n

9 for j=1:m

10 vec_outputt(j+(i-1)*n)=A(j,i);

11 end

12 end

13 vec_output=conj(vec_outputt ’);

14

15 end

16 end

1 % vech function

2 % This function is needed for the Newton_barrier algorithm.

3 % input : hermitian matrix A

4

5 function vech_output=vech(A)

6 [mq ,nq]=size(A);

7 if mq==nq

8 vech_outputt =[];

9 for i=1:nq

10 clear a

11 for j=i:mq

12 a(j-i+1)=A(j,i);

13 end

14 vech_outputt =[ vech_outputt ,a];

15 end

16 vech_output=conj(vech_outputt ’);

17 else

18 error(’Input must be a square matrix.’)

19 end

20

21 end

1 % inverse of vech function

2 % This function is needed for the Newton_barrier algorithm.

3 % note : vech(A)=xq and A is m*m

4 % inputs : xq and m
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5

6 function invvech_output=invvech(xq ,m)

7 invvech_output=zeros(m,m);

8 for i=1:m

9 invvech_output ((i-1) +1:end ,i)=xq((i-1)*m-((i-2)*(i-1)/2) +1:i*m-((i-1)*i

/2));

10 end

11 for i=1:m

12 for j=1:m

13 if i<j

14 invvech_output(i,j)=conj(invvech_output(j,i));

15 end

16 end

17 end

18 end

9.13.4 Monte-Carlo Algorithm

1 % Monte -Carlo algorithm

2 % capacity under the joint TPC+PAC constraints for a MIMO channel

3 % inputs:

4 % W : Channel Gram matrix

5 % PT : total transmit power constraint

6 % P1 : per -antenna power constraints

7

8

9 function MC_TPC_PAC(W,PT,P1)

10

11 [Nt ,~]= size(W);

12

13 % initial Tx covariance matrix

14 for i=1:Nt

15 initial_entry_R(i)=min(P1(i),PT/Nt);

16 end

17 R{1}= diag(initial_entry_R);

18 R_star=R{1};

19 capacity (1)=log(det(eye(Nt,Nt)+W*R{1}));

20

21 % number of trials

22 number_of_trials =1e3;

23

24 for j=2: number_of_trials

25 clear H

26 var =1;

27



Appendix 137

28 % H is a random matrix

29 H=sqrt(var)*(randn(Nt,Nt));

30 bb=(H’*H);

31

32 % random feasible transmit covariance

33 for i=1:Nt

34 rii(i)=bb(i,i);

35 a(i)=(P1(i)/(rii(i)));

36 end

37 a=min(a);

38 aa=PT/trace(H’*H);

39 a=min(a,aa);

40 R{j}=a.*H’*H;

41

42 % The best transmit covariance

43 C(j)=log(det(eye(Nt,Nt)+W*R{j}));

44 if C(j)>capacity(j-1)

45 R_star=R{j};

46 end

47

48 capacity(j)=log(det(eye(Nt,Nt)+W*R_star));

49 end

50 save(’PAC_TPC_MC.mat’)

51 end

9.13.5 CVX

1 % CVX: 360 types of scripts

2 % capacity under the joint TPC+PAC constraints for a MIMO channel

3 % inputs:

4 % W : Channel Gram matrix

5 % PT : total transmit power constraint

6 % P1 : per -antenna power constraints

7

8

9 function CVX_TPC_PAC_all_types(W,PT,P1)

10 stepp =1;

11 for pre =1:5

12 for ttype =1:6

13 for begintype =1:2

14 for solverr =1:3

15 for mmax =1:2

16

17 %-------------------------------------------------

18 % CVX_precision
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19 if pre==1

20 cvx_precision(’best’)

21 end

22

23 if pre==2

24 cvx_precision(’default ’)

25 end

26

27 if pre==3

28 cvx_precision ([1e-7 1e-7 1e-5])

29 end

30

31 if pre==4

32 cvx_precision ([1e-4 1e-4 1e-3])

33 end

34

35 if pre==5

36 cvx_precision(’high’)

37 end

38

39 %-------------------------------------------------

40 % begin_type

41 if begintype ==1

42 cvx_begin sdp

43 end

44

45 if begintype ==2

46 cvx_begin

47 end

48

49 %-------------------------------------------------

50 % CVX_solver

51 if solverr ==1

52 cvx_solver SDPT3

53 end

54 if solverr ==2

55 cvx_solver SeDuMi

56 end

57 if solverr ==3

58 cvx_solver Mosek

59 end

60 cvx_quiet (true);

61

62 %-------------------------------------------------

63 % different types of variables

64 [m,n]=size(W);

65 if ttype ==1

66 variable R(m,n) symmetric
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67 R == semidefinite(m,n);

68

69 if mmax ==1

70 maximize log_det(eye(m,n)+W*R)

71 end

72 if mmax ==2

73 maximize det_rootn(eye(m,n)+W*R)

74 end

75

76 subject to

77 trace(R) <= PT ;

78 R(1,1) <= P1(1) ;

79 R(2,2) <= P1(2) ;

80 % R(i,i) <= P1(i) for any i=1:m

81 % Here , we consider m=2

82 cvx_end

83 end

84

85

86 if ttype ==2

87 variable R(m,n) semidefinite

88

89 if mmax ==1

90 maximize log_det(eye(m,n)+W*R)

91 end

92 if mmax ==2

93 maximize det_rootn(eye(m,n)+W*R)

94 end

95

96 subject to

97 trace(R) <= PT ;

98 R(1,1) <= P1(1) ;

99 R(2,2) <= P1(2) ;

100 cvx_end

101 end

102

103

104 if ttype ==3

105 variable R(m,n) complex semidefinite

106

107 if mmax ==1

108 maximize log_det(eye(m,n)+W*R)

109 end

110 if mmax ==2

111 maximize det_rootn(eye(m,n)+W*R)

112 end

113

114 subject to
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115 trace(R) <= PT ;

116 R(1,1) <= P1(1) ;

117 R(2,2) <= P1(2) ;

118 cvx_end

119 end

120

121

122 if ttype ==4

123 variable R(m,n) hermitian semidefinite

124

125 if mmax ==1

126 maximize log_det(eye(m,n)+W*R)

127 end

128 if mmax ==2

129 maximize det_rootn(eye(m,n)+W*R)

130 end

131

132 subject to

133 trace(R) <= PT ;

134 R(1,1) <= P1(1) ;

135 R(2,2) <= P1(2) ;

136 cvx_end

137 end

138

139

140 if ttype ==5

141 variable R(m,n) symmetric

142

143 if mmax ==1

144 maximize log_det(eye(m,n)+W*R)

145 end

146 if mmax ==2

147 maximize det_rootn(eye(m,n)+W*R)

148 end

149

150 subject to

151 R == semidefinite(m,n);

152 trace(R) <= PT ;

153 R(1,1) <= P1(1) ;

154 R(2,2) <= P1(2) ;

155 cvx_end

156 end

157

158

159 if ttype ==6

160 variable R(m,n) hermitian;

161

162 if mmax ==1
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163 maximize log_det(eye(m,n)+W*R)

164 end

165 if mmax ==2

166 maximize det_rootn(eye(m,n)+W*R)

167 end

168

169 subject to

170 R == semidefinite(m,n);

171 trace(R) <= PT ;

172 R(1,1) <= P1(1) ;

173 R(2,2) <= P1(2) ;

174 cvx_end

175 end

176

177

178 R_cvx=R;

179 C_cvx=log(det(eye(m,m)+W*R_cvx));

180 C_cvx_cvx(stepp)=C_cvx;

181 R_cvx_cvx{stepp}= R_cvx;

182 stepp=stepp +1;

183 %-------------------------------------------------

184 end

185 end

186 end

187 end

188 end

189 save(’PAC_TPC_CVX_360.mat’)

190 end
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