

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 478

Webspace Surfing Patterns and Their Impact on Web Prefetching

Javed I. Khan and Qingping Tao
Media Communications and Networking Research Laboratory
Department of Computer Science, Kent State University, USA

javed|qtao@kent.edu

Abstract
The paper presents an interesting study that how the

user surfing behavior with respect to the organization of
a web space affects the performance of a prefetch
enabled proxy. We have conducted experiments based
on a novel hyperspace aware prefetch proxy and have
studied the prefetch performance on several dominant
hyperspace patterns including chain, tree, and complete
graph sub-structures. The study assesses the system’s
responsiveness as well as the background loads for
various user interaction duration, surfing and prefetch
sequences. The results show that awareness about the
web space and surfing sequence can greatly help in
improving prefetch performance. Schemes such as
these also conversely may enable professional content
developers to create prefetch friendly collection for
increased site responsiveness.
Keywords: Prefetch, User Interaction Behavior, Web
Surfing, Web Engineering

1. Introduction
Although the core network speed is doubled every 9-

12 months, the sluggishness of Web seems to be a
persistent problem. Seemingly, the growth in the last
mile speed is being continually outpaced by the growth
in the complexity of contents, which now often contain
communication and computing intensive multimedia
such as animation, audio, video, applets, and scripts, far
beyond simple embedded images in the plain HTML.
For last few years, researchers have begun to explore
prefetch as one of the potential accelerator. Previously
it has been found to be effective to hyper accelerate
hardware systems. However, its success in Web system
has been remained surprisingly illusive.
1.1 Related Works

In one of the pioneering studies, Kroeger et al.
[KrLM97] used traces of Web proxy activity to find out
that a combined caching and prefetching proxy could
reduce access latency as much as 60%. Palpanas and
Mendelzon [PaMe99] demonstrated that a k-order
Markov predictor scheme can reduce response time by

a factor of up to 2. Pitkow and Pirolli [PiPi99]
compared various methods to predict surfer's path from
log traces such as session time, frequency of clicks,
Levenshtein Distance analyses, etc. These studies
focused on the problem of link transition probability
estimation. Paths were ranked in order of the estimated
probabilities and once a path is selected the suggestions
are to prefetch the entire documents. Such prefetch has
been found to cause excessive wasted prefetch
adversely affecting the overall network bandwidth.

A number of research since then has suspected the
advantage of using indiscriminate frequency only
prefetch technique [KaPJ99, Khan99, Khan00, Davi01].
Cohen and Kaplan [CoKa00] suggested just doing pre-
staging- such as pre-establishing TCP connection to
avoid the waste. Kaashoek [KaPJ99] found that 0.5
objects are prefetched for each object explicitly fetched
by the user through tracing Web server. Among these
prefetched objects, only about 2% are actually used.
Khan [Khan99, Khan00] demonstrated that only
frequency ranked prefetching is non-optimum. Brian D.
Davison [Davi01] showed that the current support for
prefetching in HTTP/1.1 is rather insufficient. Existing
prefetching implementations can cause problems with
undesirable side effects and server abuse, and the
potential for these problems may thwart additional
prefetching development and deployment. Most of the
previously suggested prefetch techniques took a
statistical approach to the problem. Almost all of the
suggested schemes resorted to the access frequency as
the principle beacon to guide the prefetch activities,
though these varied in the method for its estimation
and/or prediction. It seems while the access frequency
remain as an important clue, but it may not be enough
to take prefetch technology to a point of maturity.
More innovations, particularly which can add new
intelligence in selecting the right prefetch link and
reducing waste in prefetch data are clearly required.
1.2 Other Approaches

Recently, several other techniques based on new
concepts have been proposed to remedy some of the
problems mentioned. For example, to reduce
unnecessary prefetch, in 2001, we [KhTa01a] suggested

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 479

using the concept of “partial prefetching”. Most Web
pages served by modern servers today are composite
and contain embedded entities such as banners, Java
applets, flash presentations, etc. with varying rendering
constraints. We [KhTa01b] demonstrated that the
composite multimedia pages with internal rendering
dependencies could be optimally divided into two parts,
the lead segments and the stream segments. During
operation only the lead segments are needed to be
prefetched. Rest can be streamed in background only
while the link is in use without any loss of
responsiveness. Results showed dramatic reduction of
wasted prefetch (by almost 80%), and additional
improvement in system responsiveness by about 3.6
times for heavily composite collections. Davison
[Davi02] examined textual similarity-based predictions,
which are made using the similarity of a model of the
user's interest to the text in and around the hypertext
anchors of recently requested Web pages.

In this paper, we present another interesting
approach that may accelerate the Web prefetch
substantially. This intelligence based prefetching
utilizes the knowledge about hyperspace organization.
A Web system is a conduit of communication between
the two principal parties – the content developer and the
content reader. It seems therefore almost natural that
the prefetch performance should be strongly dependent
on the behavior of these two principals. This means, on
one hand, the nature and organization of the content
and on the other hand, the reading and interaction style
of the reader should have an important impact on the
prefetch performance. Interestingly, no previous study
has focused on either of these. The intent of this paper
is to shed some lights in this interesting void. The paper
is an attempt to study how intelligence about the
content organization in a collection and reading modes
can improve the prefetch performance of a Web system.

There are two related questions that naturally arise
from the proposition. Is there any regular structure in
the organization of the web collection? Secondly, even
if there is one, is it possible to exploit such structural
information? In this paper, along with a performance
study, we will discuss both. Clearly, the open
implementation of any such scheme will be challenging
today as current standards have little or no support for
any such scheme. However, in this paper we focus on
the potential gain if such a scheme can be
facilitated.The paper is organized in the following way.
Section 2 first presents a discussion on the existence of
dominant regular structures and then focuses on the
modeling of the user access and interaction patterns.
Section 3 presents the architecture of a client side proxy
based on prefetch system that we have implemented for
this study. Finally, section 4 presents the performance

of prefetch evaluated in details and followed by the
analysis.

2. Web Surfing Patterns
2.1. Dominant Pattern Graph (DPG)

Today Web pages are becoming more and more
sophisticated. Web designers are eager to spend serious
efforts to develop aesthetically appealing pages and
intuitive and friendly web interfaces. However, today
there is very little handle available by which one can
improve or affect the performance (other than reducing
the graphics file sizes). In fact, the organization of Web
structure can have tremendous impact on prefetching
performance. It decides how prefetching can be
implemented and how much data have to be involved.

The modeling of content organization is not trivial.
Current Web contents come in various complex
organizations. Web sites generally contain document
collections. A collection can be viewed as well
connected group of web objects generally associated by
some abstract theme. An analysis of recent Web pages
seems to suggest that although there is no concrete
discipline, a few patterns do tend to emerge within
collections. Ideal regular patterns seldom appear in the
hyperlink graph representing the link structure of a
collection. However, in the generalized graph, a
significant sub-graph tends to conform to a regular
structure.

In our modeling process, we therefore defined a
concept called the Dominant Pattern Graph (DPG) of
a collection. If a hyperlink graph is pruned to its
principally used links this pruning tends to provide a
few regular graph patterns. We call it dominant pattern.
The principality of hyperlinks can be determined by
design or traced back by frequency sorting.

We easily found several major dominant patterns in
massive number of collections. Below are some
examples.

One common form is chain. For photo albums, slides
show, PDF documents, multi-page forms (however,
which are static), Web-based examinations & quiz
forms on each page, we typically click Next to move
on. The surfer seems to be moving though a form of
sequential chains. One of its features is that one Web
page only includes one principal hyperlink. Only one
Web document needs to be prefetched each time. These
Web pages have a chain structure. Another frequently
found dominant pattern we encountered is tree. Tree
structure emerges in the central organization of
complex portals. Also, it can be found in e-books,
catalogues, directories, Help and FAQ pages. Each
Web page includes its own hyperlinks to a set of child
pages. Meanwhile, it is either a direct or indirect child

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 480

page of the main page. A tree my have many brunches.
But an interface designer can often predictably guide
readers towards certain brunches than others by design,
and thus can reduce the branching factor of the
dominant tree.

Another common dominant pattern we found is the
complete sub-graph. A huge number of portal pages,
particularly with sidebar and menu based organizations,
show dominant patters in the form of a fully connected
sub graph. Most online pages, particularly for e-books
and online shops, with a common navigation side-bar or
top-bar tends fall into this category of organization.
Readers can easily move back and forth through any of
the Web pages within the collection, no matter what the
current page is. Each Web page is connected with each
other. We consider this type of organization as the
complete graph pattern.

In our study, we also found many other somewhat
complex but regular patterns. An interesting one is a
combination of complete graph sub-sections organized
as hierarchical tree. This type of Web page usually
relies on a frame set. This pattern appears with
hierarchical table of contents, and each subgroup’s
table of content appearing in all pages within the
subgroup. This organization is common in many large
and deep corporate portals designed to support multiple
user groups who access a site with widely different
perspectives. Therefore, we include a forth set called “a
tree with complete core graph” in our study.
2.2 User Surfing Behaviors

The modeling of user reading pattern is also
nontrivial. There are several complex factors. Different
reader has different text reading speed. It also depends
on the content type. Most Web pages found in state-of-
the-art sites today not only contain a simple parent
HTML file with few embedded images. Pages served
by modern servers today are complex and composite
and contains embedded entities such as banners, Java
applets, flash presentations, etc. with varying rendering
constraints, and bytes per second viewing time. They
generate variety of experiences beyond simple text
reading. Also, various readers may have different
psychological pattern guiding their browsing habit.
For example, in the case of reading an online e-book,
different readers view them in different surfing
sequence. After finishing reading the instruction for
chapter 1, some readers may continue reading section 1
of chapter 1, and other may skip to the instruction for
chapter 2. Different answers will certainly result in
different performance results for prefetching. The detail
modeling of the user behavior is quite complex.
However, the goal of this study was to capture the
essence. Therefore we limited the study on two core

parameters-- 1) relative interaction time; 2) surfing
sequence as elements of user interaction habit.

Interaction time is defined as the time a reader
spends on a certain page in the collection. It is the
viewing duration or the interaction time between the
events a user receives a requested page and sends out
the second request. For the purpose of analyzing the
prefetching performance, we call it interaction interval,
and normalized it with respect to the entropy of the
page in bytes/sec. This notion allows us to be more
general than reading time. The interaction time can be
the time spent in watching an animation, listening a
sound insert, or even filling up a form. Usually, the
more time readers spend on each Web page, the more
Web pages can be acquired by prefetching.

The surfing sequence is a path of web pages through
which the user surfs. Typically the possible range of
surfing sequences a surfer can follow is highly bounded
by the design of the collection. By design the designer
can further encourage surfer to follow certain sequences
over others. We investigated the performance for
selected major patterns of surfing paths based on the
graph type. The choices however, are related to the
original organization of the document. These will be
explained in the experiment section.

3. Recording Time for Implement Event
3.1 System Setup

For this experiment we developed an in-house
“organization aware” prefetch Proxy, and a Script
Browser. The proxy can be collocated with one surfing

client, or can be at slightly deeper egress point serving
multiple clients. In our set up, we used the later. For

Client Proxy Server

N1

N1

P1

N1

N12

P2
P3

N1

N11

T
i
m
e

P8

P7

P6
P5
P4 S2

S1

C4

C3

C2

C1

P9

P11

S7

S6
S5
S4
S3

N111

N11

N11

N11

N12

P12

P10

P13

C1, C3: The client sends a request
C2, C4: The client gets a response
P1, P10: The proxy receives a client’s request
P2, P11: The proxy parses the request message
P3: If requested file does not exit in cache,

send request to the server
P4, P8, P9: The proxy gets the server ‘s reply
P5, P12: The proxy sends the reply to the client

P6, P13: The proxy extracts the first hyperlink and
sends a request to the server

P7: The proxy extracts the second hyperlink and
sends a request to the server

S1, S3, S5, S7:
The server receives a proxy’s request

S2, S4, S6: The server sends a reply to the proxy

Parsing Time = P2 – P1 = P11 – P10
Cache Look up Time = P3 – P2 = P11 –P10
Response Time = P5 – P1 = P12 – P10
Extracting Time = P6 – P5 = P13 – P12
Interaction Interval = C3 – C2
Reading and fetching Time = S2 – S1

Fig. 1(a) Events Definitions and Time Distribution for
Fully Folded Prefetching (FFP)

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 481

performance analysis, in our system, we included the
detailed time tracing code inside this proxy as well as in
the Browser. We recorded time for all events happening
at the client and the proxy as per the following event
model.
3.2 Event Model & Logging

We used the following event model. Prefetch
improves the response time in two ways. Fig. 1(a)
shows the fully folded prefetching (FFP) and Fig. 1(b)
shows the case of partially folded prefetching (PFP).
We assume that a user wants to view Web page N1,
which contains two hyperlinks to Web page N11 and
N12. After finishing reading N1, it goes through N11,
which has a hyperlink to Web page N111. Cn
represents recording time on the client side, Pn
represents recording time on the proxy side, and Sn is
recording time on the server side.

After the proxy receives a request from the client (at
P1), it parses the request message for the first document
N1 (P2). The first request arrives with cold cache. It
checks the cache directory and finds that there is no
cached file for N1. So it establishes a connection to the
server (P3). After getting response back from the server
(P4), it sends N1 back to the client (P5). Meanwhile,
the proxy extracts two hyperlinks to document N11 and
N12 and prefetches them (P6 and P7) according to their
priorities.

The proxy receives the server’s replies (at P8 and
P9). At C2, the client gets N1 and begins interaction.

On the proxy side, we call the difference between value
of P5 and P10 as interaction interval. After the proxy
receives the second request from the client (P10), N11

is parsed (P11). In case of FFP (Fig. 1(a)) N11 is
already in proxy cache before the request for N11
arrives. By checking the cache directory, it realizes that
document N11 has already been prefetched (P11). N11
can be immediately returned to the client (P12). Then
the proxy continues to extract the hyperlink N111,
which is embedded in document N11, and prefetches it
from the server. In PFP (Fig. 1(b)), N11 is not yet in the
cache although request for it is already underway. Fig.
1(b) illustrates the case. When the prefetch mechanism
is turned off, then all documents are fetched using cold
cache method. This is similar to the case of getting N1.
We also allow passive caching to be disabled. When the
passive caching is turned off then a document is
removed from the proxy cache immediately after each
time it is served.
3.3 Pattern Language

We also developed a set of reference collections with
various organizations. This was performed by first
generating a set of node documents each with a
specified payload sizes. These were then linked in
various ways as per the desired test pattern types.

Each hyperlink that belonged to the dominant pattern
edge was given an additional attribute. It identified the
hyperlink within the dominant pattern graph. We
adopted a simple marking scheme as following.

For example, for Chain, we used hyperlink
attribute makers <PATTERN=CHAIN.PREVIOUS>
<PATTERN= CHAIN.NEXT> to identify the two
dominant links. For Tree, the children links were
marked with rank as <PATTERN=TREE.CHILD.n>.
For Complete Graph, we ranked them as
<PATTERN=FULL.SIBLING.n> to identify ordered
siblings. For Tree with Complete Core, we ranked them
as <PATTERN=TC.SIBLING.m>, and
<PATTERN=TC.CHILD.n>, for identifying links to
sibling and links to child sets respectively. We also
provisioned a attribute marker
<PATTERN=NOPREFETCH> to explicitly halt
prefetching. We then programmed the prefetch proxy to
follow various prefetch sequences based on the
dominant pattern markers found in the prefetched pages
and the surfing sequence selected by the experimenter.

4. Performance Results Analysis
We evaluated a large number of collections with
various organizations and various payloads. Even
within a dominant pattern graph class we tested
instances with large number of sizes. The stochastic
variation due to unpredictable network performance
was not the principal focus of this study. Therefore, we
avoided any mass averaging, rather we present the
performance based on specific pattern cases. To explain

Client Proxy Server

N1

N1

P1

N1

N12

P2
P3

N1

N11

T
i
m
e

P8
P7

P6
P5
P4 S2

S1

C4

C3
C2

C1

P10

P12

P9

S7
S6

S5
S4

S3

N111

N11
N11

N11

N12

P13

P11

C1, C3: The client sends a request
C2, C4: The client gets a response
P1, P8: The proxy receives a client’s request
P2, P9: The proxy parses the request message
P3: If requested file does not exit in cache,

send request to the server
P4, P10, P13: The proxy gets the server ‘s reply
P5, P11: The proxy sends the reply to the client
P6, P12: The proxy extracts the first hyperlink and

sends a request to the server
P7: The proxy extracts the second hyperlink and

sends a request to the server
S1, S3, S5, S7: The server receives a proxy’s request
S2, S4, S6: The server sends a reply to the proxy

Parsing Time = P2 – P1 = P9 – P8
Cache Look up Time = P3 – P2 = P10 –P9
Response Time = P5 – P1 = P11 – P8
Extracting Time = P6 – P5 = P12 – P11
Interaction Interval = C3 – C2
Reading and fetching Time = S2 – S1

Fig. 1(b) Events Definitions and Time Distribution for Partially
Folded Prefetching

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 482

the patters for each class we included a sample
sequence table.

The ultimate objective of any prefetch system is to
reduce the user waiting time and increase systems
responsiveness. The main cost factor of any prefetch
system is the amounts of data are fetched which are
never used. Therefore, we present the impact on the
two performance measures: 1) response time; 2) the
amount of data transfer.

The performance for response time is evaluated by
the responsiveness. We define lag-time as the time the
users have to wait after clicking a hyperlink. (Ci-Ci-1),
where i is even. Relative responsiveness is the ratio of
cumulative lag time experienced with active
prefetching to that without any prefetching. (Ci-Ci-1),
where i is odd is the interaction time.

We also measured the fetched data volume in both
the cases plotted the ratio. For each experiment, we
separately recorded response time based on the
different interaction interval. We chose 5 seconds, 10
seconds, 15 seconds, 20 seconds, and 25 seconds as
five different groups of interaction interval.
4.1 Surfing a Tree

For tree experiment we generated collections with
various heights and breadths. For example, in Fig. 2(a),
13 nodes are organized into a tree with three levels.
Each of N0, N1, N2, N3, contains three hyperlinks. We
used two prefetching sequences 1) Left First and 2)
Right First. The actual node sequences are shown in
table 1.

To test various surfing behavior, we let the surfer use
three different surfing sequences: 1) Depth First, 2)
Breadth Firs t, and 3) Random Connected Walk.

N0

N1 N2

N22N11

N3

N31N23N13N12 N21 N32 N33

N1
N2

N3

N4

N7

N8

N9

N10

N5

N1
N2

N3

N4

N7

N8

N9

N10

N6
N5

(a)

(b)

Fig. 2 Tree and Fully connected Graph

Except for the Random Connected Walk, the both depth
first and breadth first ordered the nodes left to right. We
repeated the experiment only for canonical cases,
avoiding symmetrical cases. The sample node
sequences for various runs for the sample graph are
shown in table 2.

 Prefetching Sequence
Node

 Left First Right First
N0 N1,N2,N3 N3,N2,N1

N1 N11,N12,N13 N13,N12,N11

N2 N21,N22,N23 N23,N22,N21

N3 N31,N32,N33 N33,N32,N31

Table 1 Lists of Prefetching Sequences in a Tree.

1). Response Time Analysis:
The performance for response time in a tree with

Left First and Right First as prefetching sequence are
shown in Fig. 3 and Fig. 4 respectively. We observed
that the improvement in responsiveness is the best
when Web documents are read in Depth First manner
compared to Breadth First or Random. In Fig. 3, when
prefetching sequence is Left First, The responsiveness

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 2

with Random and Breadth First is up to 2.4 and 3.7

0.00

0.20

0.40

0.60

0.80

5 10 15 20 25

Interaction Interval

R
es

po
ns

iv
en

es
s Depth

First
Breadth
First
Random

times less than that with Depth First respectively. In
Fig. 4, when prefetching sequence is Right First, the
responsiveness with Random and Breadth First is up to
0.6 and 0.7 times less than that with Depth First
respectively.

Surfing sequence

 Depth First Breadth First Random

N0, N1, N11, N12,

N13, N2, N21,

N22, N23, N3,

N31, N32, N33

N0, N1, N2, N3,

N11, N12, N13,

N21, N22, N23,

N31, N32, N33

N0, N1, N2, N3,

N11, N12, N13,

N21, N22, N23,

N31, N32, N33

Table 2 Lists of Surfing sequences in a Tree forth

We also observed that no matter what the

prefetching sequence is, with growing interaction
interval, the value of relative responsiveness decreases
gradually. The reason is the more interaction interval
there is, the more prefetching is occurs. So the more
improvements of performance are acquired.

0

0.2

0.4

0.6

0.8

5 10 15 20 25

Interaction Interval

R
es

po
ns

iv
en

es
s Depth

First
Breadth
First
Random

2). Data Volume Analysis:
The performance for data volume in a tree is shown

in Fig. 6. Data volume is not affected by prefetching

sequence and surfing sequence. Interaction interval
does not affect its performance for data volume. The
total amount of transferring data is the same as without
prefetching. Data volume is 13 units.
4.2 Suring a Complete Graph

Fig. 2(b) shows a sample test hyper Complete graph.
Each node contains 9 hyperlinks. They are a complete
graph. We consider only one case of clockwise prefetch
sequence (anticlockwise prefetch creates symmetrical
cases). This is shown in Table 3. With respect to it, we
consider three different types of surfing sequences.
These are 1) Clockwise (CW), 2) Counter Clockwise
(CCW), and 3) Random Walk (RW). These walks for the
sample graphs are shown in Table 4.

1). Response Time Analysis:
The performance for response time in a complete

graph is shown in Fig. 5. As expected, no matter how
many nodes they have, the prefetching performance in
clock matched reading direction is always better than
that in counter clock matched case.

The prefetching performance in random reading
direction is in between clockwise and in counter
clockwise directions. The responsiveness with Random
and Counter Clockwise is up to 5.3 and 10.3 times less
than that with CW respectively. With growing number
of nodes, the impact of prefetching performance
increases. With growing interaction interval, the system

 Prefetching Sequence

Node Clockwise

N1 N2,N3,N4,N5,N6,N7,N8,N9,N10

N2 N3,N4,N5,N6,N7,N8,N9,N10,N1

N3 N4,N5,N6,N7,N8,N9,N10,N1,N2

N4 N5,N6,N7,N8,N9,N10,N1,N2,N3

N5 N6,N7,N8,N9,N10,N1,N2,N3,N4

N6 N7,N8,N9,N10,N1,N2,N3,N4,N5

N7 N8,N9,N10,N1,N2,N3,N4,N5,N6

N8 N9,N10,N1,N2,N3,N4,N5,N6,N7

N9 N10,N1,N2,N3,N4,N5,N6,N7,N8

N10 N1,N2,N3,N4,N5,N6,N7,N8,N9

 Table 3 Lists of Prefetching Sequences in a Complete Graph

 Surfing sequence

Fig. 3 Performance for Response Time in Tree with Left First

Fig. 4 Performance for Response Time in Tree with Right First

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 3

Clockwise Counter
Clockwise Random Walk

N1,N2,N3,N4,

N5N6,N7,N8,

N9,N10

N1,N10,N9,N8,

N7,N6,N5,N4,

N3,N2

N1,N6,N3,N5,

N9,N7,N2,N8,

N4,N10

Table 4 Lists of Surfing sequences in a Graph

0
0.2
0.4
0.6
0.8

1

3 5 10 15 20 25

Interaction Interval

R
es

po
ns

iv
en

es
s

CW(10)

CCW(10)

Random(10)6

Error!

 responsiveness increases in a gradual fashion.

2). Data Volume Analysis:
The performance for data volume in complete graph

is shown in Fig. 6. Different surfing sequences result in
different performance of data volume. The amount of
data in clockwise reading direction is always less than
that in counter clockwise. Basically data volume for
any reading order always increases gradually when
interaction interval increases gradually. All of them
produce a lot of extra amount of data compared to
amount of transferred data without prefetching. The
more nodes we move through, the more extra amount
of data is produced.

0
10
20
30
40
50

1 2 3 4 5 6

Interaction Interval

D
at

a
vo

lu
m

e
(u

ni
t)

CW(10)
CCW(10)
Random(10)
Tree

5. Conclusions and Future Works
First generation of prefetch techniques depend

primarily on “frequency” of access analysis. In this

paper, we have presented an interesting study, which
suggests that smarter prefetching techniques can be
developed if the structure of webspace and user reading
behavior can also be brought into consideration. This
observation is promising yet it is in its very early stage.
The result show how dramatically the performance can
vary based on organizations and reading pattern. A
whole new class of organization aware intelligent web
techniques can be potentially developed based of match
mismatch of the two.

We observed the existence of dominant pattern
graphs in the webspace particularly in large collections.
The paper presents experiments on two types of
abstract yet commonly occurring dominant patterns in
hyperspace including tree and complete graph. Analysis
suggests that, compared to a random prefetch system,
the response time of a matched system (where the
prefetch sequenced is matched with respect to the
document organization) can be 1.6 times faster. Also,
in the worst case, a completely mismatched system’s
response time can be about 1.7 - 11.3 times larger and
result in 1.4 times more unnecessary data than a
matched system.
5.1 Author Driven Organization

Now clearly the question is if such a scheme
realizable? User interest is probably their. With the
maturity of Web content design industry, now much
interest exists in the design of aesthetically as well as
fast accessible Web pages. Indeed, we suspect the
interest is probably much ahead than what current
technology supports.

The main technological hindrance is that current
HTTP or HTML has no mechanism, which designers
can use to author a prefetch friendly collection.
Currently there is no standard technique to express a
hyperspace pattern. However, the simple hyperlink
attribute markers we have used for the sake of this
experiment suggest that a marking language can easily
be developed to provision content driven pattern
specification. Any trivial extension of it, along with an
“organization aware” browser or proxy that can support
some prefetch sequencing policy, can significantly
accelerate Web surfing at ease in a prefetch-friendly
collection.
5.2 Authoring Tools

Indeed, authoring tools can also be enhanced that
will encourage content developer to mark at least one or
two dominant hyperlink(s) among the links s/he
embeds. The effort should not be more than adding
alternate text for embedded images. Quite often, the
link importance is already known by the content author.
Content author generally follows a premeditated theme
based mental organization to hyperlink the collection.
Also, the marking can be automatically generated by

Fig. 5 Performance for Response Time in Complete Graph

 Fig. 6 Performance for Data Volume in Complete Graph

Published in the Proceedings of the
IEEE 2003 International Conference on Cyberworlds, CYBERWORLDS2003,
Singapore, December 2003, pp478-485

 4

many converters (such as PowerPoint® to HTML
Converter).
5.3 Finding Patterns in Legacy HTML

Interestingly, dominant organization of a collection
can often be reverse engineered at post production stage
(such as by log or frequency analysis). A pre-existing
collection can be potentially made prefetch friendly
with some simple automated document analysis in
many special cases. For example, it is relatively easy to
identify chains. A dominant chain can be discovered by
simple modification of several currently available
server tools and HTML chekers. Prefetch chain always
increases surfing responsiveness and it does not fetch
any extra load. Also, the documents involved in a
dominant pattern tend to be co-located in a single

server. For example, a complete graph cluster is
generally placed in single directory.
5.4 Other Issues

An interesting advance problem will be to extract
pattern information when the hyperspace spans multiple
servers and multiple collections. Perhaps an HTTP
extension can used to see if the dominant pattern can be
found. We suspect reading time will show high
correlation with media type and content. Additional
study can be performed to determine the extents.

Any prefetch is expected to react with the underlying
passive caching sub-system. As a future work, one can
study the impact of proxy cache size, media component
classification, and discarding policies.

The technique suggested here can be combined with
other techniques currently known. An approach based
on intelligent analysis of surfer’s bookmarks, history of
recently visited pages, and nearby webspace structure,
combined with data reduction techniques such as one
based on partial prefetch can potentially yield a
powerful prefetch system with dramatically accelerated
surfing performance.

6. References
[CoKa00] E. Cohen and H. Kaplan. Prefetching the

Means for Document Transfer: A New Approach for
Reducing Web Latency. Proc. of the IEEE INFOCOM
2000, March 2000.

[Davi01] Brian D. Davison. Assertion: Prefetching
With GET Is Not Good. Proc. Of the 6th Int. Workshop
on Web Caching and Content Distribution, June 20-22,
2001. [http://www.usenix.org/ events/ usits99].

[Davi02] Brian D. Davison, Predicting Web Actions
from HTML Content, In Proceedings of the The
Thirteenth ACM Conference on Hypertext and
Hypermedia (HT'02), College Park, MD, June 11-15,
2002, pages 159-168.

[FMFM99] R. Fielding, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, and T. Berners-Lee Hypertesxt
Transfer Protocal-HTTP/1.1. Tech. Rep. RFC 2616
(June), IETF. 1999. [http://www.ietf.org/rfc/rfc2616.txt]

[KaPJ99] M. Frans Kaashoek, Tom Pinckney, and
Joshua A. Tauber, Dynamic Documents: Extensibility
and Adaptability in the WWW, http://www.
pdos.lcs.mit.edu/papers/www94.html.

[Khan99] Javed I. Khan, Ordering Prefetch in Trees,
Sequences and Graphs, Technical Report 1999-12-03,
Kent State University, [available at URL
http://medianet.kent.edu/technicalreports.html, also
mirrored at http://bristi.facnet.mcs.kent.edu/~javed/
medianet.

[Khan00] Javed I. Khan, Active Streaming in
Transport Delay Minimization, Workshop on Scalable
Web Services, Toronto, pp95-102, August 2000.

[KhT01a] Javed I. Khan, Qingping Tao, Partial
Prefetch for Faster Surfing in Composite Hypermedia,
the 3rd USENIX Symposium on Internet Technologies
USITS’01, San Francisco, pp13-24, March 2001.

[KhT01b] Javed I. Khan, Qingping Tao, Prefetch
scheduling for composite hypermedia, Proceedings of
IEEE International Conference on Communications
(ICC2001), Finland, pp 768-773, June 2001.

[KrLM97] T. Kroeger, D. D. E. Long & J. Mogul,
Exploring the Bounds of Web Latency Reduction from
Caching and Prefetching, Proc. of USENIX
Symposium on Internet Technology and Systems,
Monterey, December 1997, pp-319-328.

[PaMe99] T. Palpanas and A. Mendelzon, Web
Prefetching Using Partial Match Prediction, WWW
Caching Workshop, San Diego, CA, March 1999.

[PiPi99] P. Pirolli and J. E. Pitkow, Distributions of
surfers' paths through the World Wide Web: Empirical
characterizations, Jounral of World Wide Web, v.1-2,
pp29-45, 1999

