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Abstract—Along with the rapid growth of the wind energy
sector, reducing the wind energy costs caused by unplanned
downtimes and maintenances has aroused great concern of
researchers. Condition monitoring system (CMS) is widely used
for detecting anomalies of wind power plants (WPPs) so as
to reduce the downtimes and optimize the maintenance plan.
However, current solutions to condition monitoring of WPPs
focus mostly on detecting a particular anomaly on a single
component or a subsystem. Optimizing the maintenance plan
of whole wind power plant requires a solution to system level
condition monitoring of WPPs.

This paper gives a procedure for system level condition
monitoring of WPPs using data driven method, that provides
an overall picture of the system statuses. Firstly, cluster analysis
is utilized to automatically learn the normal behavior model
of WPPs from the observations. Two clustering algorithms are
explored to choose a suitable one for modeling the WPPs. The
presented anomaly detection algorithm uses the learned model
as reference to detect the system anomalies. The effectiveness of
this approach is evaluated with real world data.

I. INTRODUCTION

According to a wind market statistic by the GWEC (Global
Wind Energy Council) [1], the global wind power capacity
grew continuously for the last 17 years. In 2014, the global
wind industry had a 44% rise of annual installations and
the worldwide total installed capacity accumulated to 369553
megawatt at the end of 2014, 31% of which is installed in
China. In Europe, renewable energy from WPPs covers up
to 11% of the energy demand [2]. Wind power has become
the fastest growing renewable energy source. To enhance its
competence against the other energy sources, it is desired to
reduce the cost of generating wind power.

WPPs are the most expensive equipment in the wind power
industry. Even the inspection and maintenance of WPPs are
very costly. Such costs for 750kW turbines might come to
about 25%-30% of the wind power generating costs [3].
Furthermore, the availability to generate power is also reduced
due to the downtime during the maintenance of WPPs. In
a case study, Nilsson [4] denotes an unscheduled downtime
with 1000 e per man-hour, with costs of up to 300000 e for
replacements.

Fig. 1. status description in relation with WPPs components [5]

To avoid these unscheduled downtimes and minimize the
inspection and maintenance costs, CMS is widely utilized for
continuous monitoring the statuses of critical components in
WPPs (Fig. 1). The core task of a CMS is anomaly detection.
By means of CMS, the anomalies in WPPs can be detected
early and the maintenance can be thus planed more efficiently
[4]. Fausto et al. [6] reviewed the classic techniques and
methods used for condition monitoring of WPPs, such as
vibration analysis, oil analysis, signal processing methods;
Through continuous monitoring of WPPs, a huge amount
of data are collected which represents the statuses of WPPs
against the time and can be analyzed using artificial intelligent
(AI) algorithms to detect the system anomalies. A survey of
AI based methods for condition monitoring of WPPs, such
as Support Vector Machines (SVM), k-nearest neighbor (k-
NN), are presented in [7]. Because of the complexity of
WPPs, the analysis of the relationships between the anomalies
and the observed data in system level is extremely difficult
[8]. Either the classic methods in [6] or the AI methods in
[7] just focus on detecting a particular anomaly on a single
component or a subsystem (component level) in WPPs and
rely on specific type of sensor data. The CMSs based on such
methods have very limited impact on the efficient planning of



WPPs maintenance due to the lack of an overall picture of the
whole system.

Therefore, system-level anomaly detection in WPPs is
highly desired. For this purpose, the following challenges are
tracked in this work:

• How can the status of WPPs be modeled in system level?
• How can a new status be detected as a system anomaly

without assumptions on available types of sensors?
To address these challenges, a data driven approach for

system level condition monitoring of WPPs is presented in
this paper. Using cluster analysis, the system normal behaviors
can be learned automatically from system observations without
understanding of the complex relations between anomalies and
data. This learned model shows the conditions of the whole
WPPs. Additionally, this approach does not depend on any
particular structure of WPPs. Thus, it is universally applicable
for condition monitoring of WPPs. Cluster analysis do not
heavily rely on a-priori knowledge about the system to be
modeled. Hence, the influence of the harsh environment can
also be modeled through analysis of the environment data in
relation with the WPPs data. This learned model can be used
as reference model for further anomaly detection task.

The paper is organized as follows. First, the state of the art
for data driven condition monitoring of WPPs is resumed in
Section II; Then, the proposed solution addressing the fore-
mentioned challenges is presented in Section III. Furthermore,
experimental results for the proposed approach using real
world data are detailed in Section IV. Finally, a conclusion
of this paper can be found in Section V.

II. RELATED WORK

According to the solution idea of this work, the studies
on condition monitoring of WPPs using cluster analysis are
investigated. Two well-known clustering algorithms, DBSCAN
and spectral clustering, are utilized to handle the complex
correlations in the WPPs data.

As stated in [9], the models used for anomaly detection
of complex systems should be learned automatically and data
driven approaches to learning such models should be moved
into the research focus. A wide range of data-driven algorithms
that deal with modeling the system behavior for anomaly
detection and diagnosis are available in the literature. Dai
and Gao [10] have reviewed various data-driven algorithms
in perspective of fault detection and diagnosis.

As one of the classic density based clustering method,
DBSCAN shows its advantages over the statistical method
on anomaly detection in temperature data [11]. DBSCAN
is resistant to noise and can recognize patterns of arbitrary
shapes. Thang and Kim developed a new way to use DBSCAN
with different parameters for different clusters in the field
anomaly detection of network traffic [12].

Compared to the traditional approaches to clustering (e.g.
k-means, single linkage), spectral clustering is very simple to
implement and can be solved efficiently by standard linear

algebra methods [13]. Piero and Enrico proposed a spectral
clustering based method for fault diagnosis where fuzzy logic
is used to measure the similarity and the fuzzy C-Means
is used for clustering the data [14]. Siddharth et al. [15]
presented an application of spectral clustering in network
intrusion detection.

Due to the high complexity of WPPs and its harsh working
environment, the modeling of WPPs on system level is very
challenging. Most data-driven solutions to WPPs condition
monitoring concentrate on the errors of one particular compo-
nent (in component level) [16]. These methods are designed
to detect specific faults (e.g. fault in gearbox, generator).

The application of such methods is available in different
studies. In [17], a shock pulse method is adapted for bearing
monitoring. A multi-agent system is developed in [18] for
condition monitoring of the wind turbine gearbox and oil tem-
perature. In [19], the ultrasonic and radiographic techniques
are used for non-destructive testing of the WPPs blades. Using
these methods can prevent the WPPs breakdowns caused by
the particular faults. For enhancing the availability and the
reliability of the whole WPPs, a method for monitoring the
WPPs on system-level is required.

In this work, DBSCAN and spectral clustering are used
for condition monitoring of WPPs. This approach is aimed
to model WPPs on system-level in order to perform automatic
anomaly detection. To the best of our knowledge, no appli-
cation of either DBSCAN or spectral clustering in condition
monitoring of WPPs exists.

III. SOLUTION

Since it is unrealistic to get a large number of fault cases
with corresponding annotation in WPPs, the main idea of
the presented solution is to automatically learn a model of
normal system behaviors from the observations using cluster
analysis. Clustering is primarily an unsupervised machine
learning method. In our case, clustering is performed on
the system normal behavior data. Thus, it is used in semi-
supervised manner.

At first, the observed data set of the system normal be-
haviors is preprocessed using Principal Component Analysis
(PCA) [20]. After that, clustering algorithms are applied on
these preprocessed data set to generate a model in system
level. In the final step, the learned system model is used for
automatic anomaly detection.

A. Step 1: Data Preprocessing

WPPs include many components and sensors. Therefore, the
observed data of WPPs are high-dimensional. The analysis of
these high-dimensional data sets is time consuming. Besides,
DBSCAN is not suitable to cluster high dimensional data
because density is more difficult to define in high dimensional
space. Therefore, a method to reduce dimensionality should
be applied to the data before cluster analysis. To enhance the
performance of the analysis, PCA is utilized to reduce the



dimensionality. PCA is based on the assumption, that most
information about the data to be analyzed is located in a linear
lower dimensional subspace of the original data. Therefore,
PCA can reduce the dimensionality of data with limited losses
of information.

B. Step 2: Clustering based modeling

The goal of cluster analysis is to partition data points into
different groups. Similarity of points is defined by a minimal
intra-cluster distance, whereas different clusters aim for a
maximum inter-cluster distance. Thus, cluster analysis can
be utilized to find the pattern of a system direct using the
multi-dimensional data without explicit descriptions about the
system features. Thus, it can be performed on unlabeled data
set for modeling complex systems with seasonal components,
e.g. WPPs.

In the presented solution, a system model for anomaly
detection should characterize the normal system behaviors and
can be used to identify unusual behaviors. For most complex
systems, the normal behaviors might consist of multiple modes
that depend on different factors, e.g. work environments, oper-
ations of the systems. When the cluster analysis is performed
on a data set representing the normal behaviors of a system,
multiple clusters can be recognized. Each cluster represents
a particular status of the system. Then such multiple clusters
can be used as the normal behavior model of a system for
anomaly detection.

Fig. 2. Core, border and noise point in DBSCAN [21]

In DBSCAN, the density for a particular point is defined as
the number of neighbor points within a specified radius of that
point [22]. Two user-defined parameters are required: Eps -
the radius; MinPts - the minimal number of neighbors in the
Eps. DBSCAN uses such center-based density to classify the
data points as (see Figure 2):

• core point: number of neighbors in Eps ≥ MinPts;

• border point: it is not a core point, but is the neighbor
of minimal one core point;

• noise point: neither a core nor a border point.
Two core points that are within Eps of each other are
defined as density-reachable core points. DBSCAN partitions
the data into clusters by iteratively labeling the data points and
collecting density-reachable core points into the same cluster.
As result, DBSCAN delivers several clusters in which noise
points are also collected in one cluster.

The idea of spectral clustering is to represent the data in
form of a similarity graph G(V,E) where each vertex vi ∈ V
presents a data point in the dataset (see Figure 3). Each edge
eij ∈ E between two vertices vi and vj carries a non-negative
weight wij (similarity between the two points). According
to wij , the connectedness between two vertices in G(V,E)
can be defined. Then, the clustering problem can be handled
as graph partition [23] using spectral graph theory [24]. G
is divided into smaller components, such that the vertices
within the small components have high connection and there
are few connections between the small components. These
small components correspond to the clusters in the results of
spectral clustering and can be used as normal behavior model
for anomaly detection.

Compared to the traditional approaches to clustering (e.g.
k-means, DBSCAN), spectral clustering use the connectivity
in similarity graph instead of geometrical proximity in the
original data space to partition data points. Therefore, it does
not make strong assumptions on the statistics of data set.
Although the data points are not geometrically separated with
each other very well, spectral clustering can still deliver better
results. Moreover, it can be solved efficiently by standard
linear algebra methods [13]. Another advantage of spectral
clustering is the ability to handle the high dimensional data
using spectral analysis [25].

Fig. 3. Similarity graph construction [26]

C. Step 3: Anomaly Detection

Within the presented solution, anomaly detection is based
on the assumption denoted by Chandola et al. [27]:

”normal data instances lie close to their closest cluster
centroid, while anomalies are far away from their closest
cluster centroid.”

Accordingly, a metric is needed to calculate the deviation
of an actual observation from the learned model. Different
distance metrics, such as Euclidean distance [28], Mahalanobis



distance [29] or Manhattan distance [30], are available. Ma-
halanobis distance is selected here for the calculation of de-
viation. Compare with Euclidean distance which assumes that
all the features of the data are isotropic, Mahalanobis distance
takes the correlations between features into consideration by
using covariance matrix and mean of data set. Thus, it is a very
useful approach to distance measurement of multi-dimensional
data when attributes are correlated with each other.

DBSCAN generated clusters provide a discrimination of
core and border data points. Only core points are used to
measure the distance between an observation and the core
points. Spectral clustering computes clusters in a dimension-
ally reduced space but gives no further information about core
or border points. Measuring the distance between such clusters
is achieved with the cluster centers in the presented solution.

Fig. 4. Characteristics of Gaussian distribution in comparison to Marr
Wavelet (dashed). Spots are marked where the Marr Wavelet reach zero

Algorithm 1 Anomaly Detection
1: Input: Centers . centers of the clusters
2: Input: O . input observation
3: Output: Boolean . anomaly or not

4: procedure ANOMALY DETECTION(Centers, O)
5: OPCA = mapToPCASpace(O)
6: ψ = max{marr(distance(OPCA, Centers))}

7: if ( ψ < 0 ) then
8: anomaly: TRUE
9: else

10: anomaly: FALSE
11: end if
12: return ( anomaly )
13: end procedure

Absolute distance measuring is missing a threshold to
decide whether an observation is an anomaly or not. Even
though utilizing a Gaussian density function to provide an

indicator for classification, a threshold is still needed. In this
project, a Marr wavelet function is used to decide whether
a new observation is close enough from the clusters or not.
Instead of a Gaussian distribution, the characteristic form of a
Marr wavelet [31] allows a classification where the threshold
can be set to zero, see Figure 4.

The distance measuring used in this work is computed as
follows.

Let Xcluster = [x1, · · · , xl] be the center (a vector with l
dimensions) of a cluster and Onew = [o1, · · · , ol] a new obser-
vation with same dimension as Xcluster. Then the distribution
function to measure if a new observation is part of the cluster
or not is formed as:

ψ(Xcluster, Onew) =
2√

3σπ
1
4

· (1− k2

σ2
) · exp (− k2

2σ2
)

Where k is the Mahalanobis distance between the new obser-
vation and the center of a cluster, which is defined as:

k =
√
(Onew − µ)TS−1(Onew − µ)

µ is the mean of Xcluster and S is the covariance matrix of
Xcluster.

Algorithm 1 illustrates the presented anomaly detection
approach. At first, a new observation (O) is mapped to the
same space as the learned model using the transformation
matrix from the PCA (see III-A). Then the mapped observation
(OPCA) is compared with the centers of the clusters. The value
of ψ is used as indicator for anomaly detection. In case that

ψ < 0,

it is an anomaly. Otherwise, it is a normal status.

IV. RESULTS

The data used in the evaluation is collected over a duration
of 4 years from 11 real WPPs in Germany with 10 minutes
resolution. The dataset consists of 12 variables which describe
the work environment (e.g. wind speed, air temperature) and
the status of WPPs (e.g. power capacity, rotation speed of
generator, voltage of the transformer).

Fig. 5. Results of DBSCAN plotted in the space of raw data



TABLE I
EVALUATION RESULTS OF WIND POWER STATION DATA.

True Pos. True Neg. False Pos. False Neg. Bal. Acc. F1-Measure

DBSCAN 1812 6827 186 2719 68.66% 55.50

Spectral Clustering 3832 6328 685 699 87.40% 84.71

Fig. 6. Results of spectral clustering plotted in the space of raw data

For evaluation, a training data set of 232749 observations
of normal behaviors was used to build the normal behavior
model of WPPs. The evaluation data set of 11544 observations
contains 4531 reported failures and 7013 observations of
normal behaviors.

Before clustering, the training data and the evaluation data
were projected into a new data space with 6 dimensions
using PCA. Then, DBSCAN and spectral clustering were
performed on the preprocessed data set separately. 5 clusters
were generated by DBSCAN (see Figure 5), while 7 clusters
were generated by spectral clustering (Figure 6).

After clustering, the stated method of anomaly detection
was evaluated with the evaluation data set. Table I shows
the confusion matrix [21] as a result of the evaluation. Here,
true negative denotes a correct prediction of normal state and
true positive means a correct classification of a failure. F1-
Measure accesses the accuracy of classification accounting
both precision and recall [32], which concentrates on one
class (usually positive) and gives a comprehensive view of
the performance on classification of this class. In our case, F1-
Measure is appropriate for analyzing the system’s performance
in anomaly detection.

DBSCAN still has trouble with high-dimensional data, even
though the PCA has been already performed to reduce the data
dimensionality. As shown in Figure 5, DBSCAN has generated
2 large clusters. The cluster in red color has concave boundary.
Using the core points of this cluster to detect the anomaly leads
to a very high rate of false negative.

On the contrary, spectral clustering can handle high-
dimensional data, although the attributes of the data have

Fig. 7. Results of spectral clustering plotted in the space of eigenvectors

complex correlations with each other. The data are clustered
in the eigenvector space of the laplacian matrix that represents
the connectivity in similarity graph (Figure 7) [13]. The data
set with concave boundary has been divided into 6 smaller
clusters. The accuracy of spectral clustering based anomaly
detection is much better than the DBSCAN based method.
On the whole, spectral clustering outperforms DBSCAN by
modeling of the WPPs. Therefore, spectral clustering is chosen
to generate the normal behavior model of WPPs in our
solution.

V. CONCLUSION

In this work, a data driven approach for system-level
condition monitoring of WPPs was presented. Two clustering
algorithms, DBSCAN and spectral clustering, are explored for
system level modeling the normal behaviors of WPPs. An
anomaly detection method is developed and evaluated with real
WPPs data, which use Mahalanobis distance and Marr wavelet
as metric of the similarities between the new observations and
the learned normal behavior model. No specific type of sensor
data is given in this method. Therefore, this method can be
utilized for any type of WPPs. Spectral clustering has shown
its advantage over DBSCAN on modeling the WPPs. The
anomaly detection based on the model learned with spectral
clustering reaches a F1-Measure of 84.71% and a ballanced
accuracy of 87.40%.

The clustering based anomaly detection can operate au-



tomatically and is easy to be adapted to different complex
systems. But the accuracy of anomaly detection using cluster
center is highly dependent on the used clustering algorithm.
Spectral clustering is appropriate for modeling WPPs.

In the future work, the learned model will be trained and
evaluated using data from more WPPs with different working
environment to improve the performance of the presented
method. Beyond the task of anomaly detection, diagnosis of
the root cause of an anomaly is also a sensible functionality
of a CM system. The presented solution will be extended
by a root cause analysis. Such an extension can support
maintenance personal to trace the detected anomaly.
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