

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Basis Path Coverage Criteria for Smart Contract

Application Testing

Xinming Wang

School of Computer Science

South China Normal University

Guangzhou, China

wangxinming@m.scnu.edu.cn

Ruihua Nie

School of Computer Science

South China Normal University

Guangzhou, China

nrh@scnu.edu.cn

 Zhijian Xie

School of Computer Science

South China Normal University

Guangzhou, China

xiezhijian@m.scnu.edu.cn

 Jiahao He

School of Computer Science

South China Normal University

Guangzhou, China

hejiahao@m.scnu.edu.cn

 Gansen Zhao§

School of Computer Science

South China Normal University

Guangzhou, China

gzhao@m.scnu.edu.cn

Abstract— The widespread recognition of the smart

contracts has established their importance in the landscape of

next generation blockchain technology. However, writing a

correct smart contract is notoriously difficult. Moreover, once a

state-changing transaction is confirmed by the network, the

result is immutable. For this reason, it is crucial to perform a

thorough testing of a smart contract application before its

deployment. This paper’s focus is on the test coverage criteria

for smart contracts, which are objective rules that measure test

quality. We analyze the unique characteristics of the Ethereum

smart contract program model as compared to the conventional

program model. To capture essential control flow behaviors of

smart contracts, we propose the notions of whole transaction

basis path set and bounded transaction interaction. The former is

a limited set of linearly independent inter-procedural paths

from which the potentially infinite paths of Ethereum

transactions can be constructed by linear combination, while the

latter is the permutations of transactions within a certain bound.

Based on these two notions, we define a family of path-based test

coverage criteria. Algorithms are given to the generation of

coverage requirements. A case study is conducted to compare

the effectiveness of the proposed test coverage criteria with

random testing and statement coverage testing.

Keywords— blockchain, smart contract, testing, test coverage

criteria

I. INTRODUCTION

Blockchains as one form of distributed ledger technology

have gained considerable interest and adoption since Bitcoin

was introduced [1]. Participants in a blockchain system run a

consensus protocol to maintain and secure a shared ledger of

data (the blockchain). Blockchains were initially introduced

for peer-to-peer payments [1], but more recently, it has been

extended to allow programmable transactions in the form of

smart contracts [2], [3]. Smart contracts are programs that can

be collectively executed by a network of mutually distrusting

nodes, who implement a consensus protocol (such as proof-

of-work [1] or proof-of-stake [5]) that digitally enforce

agreements among nodes: neither the nodes nor the creator of

the smart contract can feasibly modify its code or subvert its

execution. Ever since being proposed and implemented by

blockchain systems such as Ethereum [3] and EOS [6], smart

contracts have been applied across a range of industries,

including finance, insurance, identity management, and

supply chain management. In our paper, we will assume

Ethereum as the smart contract platform.

Because smart contracts are entrusted by the users to

handle and transfer assets of considerable value, they are

subject to intensive hacking activities. Such hacking is more

dangerous than that on a conventional network system,

because once deployed on the blockchain, the contract

becomes immutable, essentially creating a high-risk, high-

stake paradigm: the deployed code is nearly impossible to

patch, and contracts collectively control billions of USD worth

of digital assets. For example, there have been a plenty of

well-documented attacks on the Ethereum smart contracts [7]:

The reentrancy attack managed to steal tokens valued $60M

from a contract and ultimately led to the hard-fork that created

Ethereum Classic (ETC) [8]. The Second Parity Multisig

Wallet hack exploits well-written library code to run it in non-

intended context [9]. About $300M-worth cryptocurrency was

frozen and (probably) lost forever. In April 2018, BecToken

was attacked due to integer overflow on multiplication,

causing an extremely large amount of tokens transferred to

malicious accounts and the token price dropped to nearly zero

[10]. The severe consequence of these attacks highlights the

importance of verification before smart contracts deployment.

In the literature, a number of approaches and tools have

been proposed to verify smart contracts [11]–[16]. Most of

them focus on detecting vulnerabilities, which are known

code patterns that have been reported previously. Examples

include re-entrancy, unchecked send, arithmetic overflow, and

dangerous delegatecall [7]. Although vulnerability detection

tools have been shown to be effective at detecting known

dangerous code patterns, they are far from enough to verify

the correctness of smart contracts. This is because not all smart

contract defects involve known code patterns. Some, instead,

are specific to the application logic of the particular contract

under concern. These defects are referred to as logic error in

§ Correspondence author.

* This work was supported by Science and Technology Planning Project of

Guangdong Province, grant Nos. 2016B030305006，2017KZ010101，

2017B030308009，and 2018A070717021.

the empirical investigation by Kalra and colleagues [14]. For

example, consider the real world example illustrated in Figure

1. By mistake, the smart contract programmers put “return

false;” at line 6 instead of line 9 after the loop. Logic errors

of this kind cannot be detected by existing vulnerability

detection tools, because no consistent code patterns can be

summarized from them. Another reason why existing

vulnerability detection tools might be insufficient is that there

can be still plenty of unknown vulnerabilities that do not

match any patterns reported by practitioners and researchers.

For the above reasons, we believe that beside vulnerability

detection, testing is still indispensable to guarantee the

correctness of smart contracts. Note that the need of more

research on systematic smart contract testing has already been

advocated by several position papers [17], [18]. However, to

the best of our knowledge, this direction has been largely

overlooked in the research community. By contrast, the

importance of testing is well recognized by smart contract

developers. For instance, as one of the most widely used

testing tools, Truffle suite [19] allows developers to encode

test inputs and assertions into test scripts using JavaScript

language. These test scripts are then executed on a blockchain

simulation environment (Ganache). Such test frameworks,

however, cannot guide the testing process in the sense that

they do not tell the developers what kind of test scripts they

should write, and whether existing test cases are sufficient. To

address this issue, test coverage criteria [20] for smart

contracts need to be defined.

Test coverage criteria [21]–[23] are sets of rules that help

determine whether a test suite has adequately tested a program.

Many test coverage criteria have been proposed and

empirically compared for conventional programs, including

control-flow coverage criteria, such as branch-coverage [24],

and data-flow coverage criteria, such as all-def-use-pairs [25].

Smart contracts, however, have several unique characteristics

that can make existing test coverage criteria inappropriate.

Firstly, the execution of smart contracts are organized around

units know as transactions. The interaction between

transactions across multiple contracts are crucial in the effects

on the contract state. Therefore, test coverage criteria shall be

designed according to the categorization of such interactions

in practice, which is a factor not considered in conventional

test coverage criteria. Secondly, within each transaction, the

control flow can be transferred in an unexpected way. The best

example is the famous DAO attack [8], which is caused by the

unexpected reentrancy of the contract function. Conventional

test coverage criteria are insufficient to address whole

transaction control flow, because most of them are intra-

procedural. While a few works do propose inter-procedural

coverage criteria (e.g. [26], [27]), they only focus on the

interfaces between functions.

The above characteristics suggest the need to develop test

coverage criteria based on how the execution of individual

smart contract transaction traverses across contracts, and how

transactions interact with each other in a sequence. The key

challenge, however, is that both aspects involve potentially

infinite number of coverage requirements. The number of

possible execution paths of a transaction can be infinite when

the contract code contains loops, and transactions sequence

can also be extended infinitely. Therefore, directly defining

test coverage criteria on them will make coverage testing of

smart contracts intractable.

In order to address this challenge, we propose the notion

of whole transaction basis path set, which is a limited set of

linearly independent inter-procedural paths from which all

possible execution paths of transactions can be constructed by

linear combination. The main novelty of this notion is that it

extends the conventional definition of basis path by McCabe

[28], which is for intra-procedural testing, to the inter-

procedural case. Besides, we also propose the notion of

bounded transaction interactions, which are all possible

permutations of transactions within a certain bound, linked by

input/output. Based on these two notions, we define a family

of path-based test coverage criteria for smart contract.

Algorithms are given to the generation of whole transaction

basis paths. A case study illustrates the effectiveness of the

test coverage criteria using real world smart contracts with

seeded logic defects.

This paper makes the following main contributions:

1) The proposal of practical path-based test coverage
criteria for systematic testing of smart-contracts.

2) The algorithms that address the enumeration of
coverage requirements.

3) Case study on a real world smart contract application
to investigate the effectiveness of the proposed test
coverage criteria.

The rest of this paper is organized as follows. Section II

introduces the structure of smart contracts and define concepts.

Section III define test coverage criteria based on these

concepts. Section IV presents algorithms. Section V reports

our case study result. Section VI discuss related work. Finally,

Section VII concludes.

II. STRUCTURE AND DEFINITIONS FOR SMART CONTRACT

In this section, we first briefly present the program model

of smart contract application on Ethereum. We then introduce

the notions of whole transaction basis path set and bounded

transaction interaction. A whole transaction basis path

captures the control flow behavior inside one single

transaction, while bounded transaction interactions captures

the interaction between transactions.

1: function checkNoExists(uint id) returns(bool){

2: for (uint i = 0; i < numbers.length; i++){

3: if (numbers[i] == id) {

4: return true;

5: } else{ // Shall put outside the loop

6: return false;

7: }

8: }

9: }

Figure 1: A logic error in the smart contract reported at [14].

A. Ethereum Smart Contract Program Model

Figure 2 shows an overview of the model. At the minimal,

a smart contract application on Ethereum is composed of one

or more contracts deployed on the blockchain, and one or

more external accounts that are owned by the users and hold

Ethers as the cryptocurrency. The application relies on clients

that synchronize with the network to obtain the latest

blockchain contents and nodes that run the consensus protocol

to pack transactions into the blockchain.

Contracts are mostly developed in Solidity [32], which is

a JavaScript-like, but typed, programming language. At the

source level, contracts written in Solidity appear similar to

classes in object-oriented languages. Figure 3 (a) give an

example. Contracts can contain declarations of state variables,

definitions of functions, modifiers, constructors, structure, and

etc. Functions support encapsulation (visibility attributes) and

can be statically overloaded. Contracts support interface and

multi-inheritance in the C3 linearization style [15]. To enable

deployment on the Ethereum platform, the contract functions

are compiled into the Ethereum virtual machine (EVM)

bytecode and a piece of code called function selector is added,

which serves as an entry point into the contract code.

Whenever a function is called, the contract code starts

executing at the function selector. The selector decodes the

message and jumps into an appropriate contract function.

Ethereum smart contracts support the custom handling of

messages that do not specify a concrete function to call

through the fallback function.

After compilation, there are two ways to deploy (also

referred to as create) a contract onto the Ethereum network.

The first way is by a client sending a contract creation

transaction with the deployment instruction, bytecode, and

paying the creation fee in ether. The transaction is signed by

the private key of an external account owned by the user,

broadcasted to the network, and packed into a block. The

contract instance is deployed as the result. The second way is

by another contract executing a special EVM instruction

CREATE (keyword new in Solidity). In both ways, the

constructor will be executed to initialize the created contract.

After deployment, contracts can be invoked with its

external/public functions in three different ways. The first way

is by the client sending a message call transaction, which

makes a message call that contains target function selector and

parameter data. Similar to the contract creation transaction,

the message call transaction must be signed, broadcasted, and

packed to take effect. It is a write-operation that will possibly

affect other accounts, update the contract state and

consequently, the state of the blockchain, and cost Ether. The

second way is by another contract directly making a message

call to invoke the function. This action is always transitively

triggered by a message call transaction. In fact, every message

call transaction consists of a top-level message call which in

turn can create further message calls. Finally, the third way to

interact with contract is by the client locally calling view/pure

functions, which never modify the contract state. This kind of

calls do not broadcast or publish anything on the blockchain.

It is a read-only operation and will not cost any Ether.

One important thing is that the message call transaction is

always asynchronous, that is, after the client sends it to a node,

the node is not obligated to execute it immediately. When the

transaction does get executed, the result will consist of the

outcome (success or revert) and execution logs. The client

monitors the latest blocks to retrieve this result.

From the perspective of testing, the core model of a smart

contract program can be formalized as follows:

A contract application dapp is a tuple <A, C>, where A is

a set of external accounts and C is a set of contract. At the

interface level, each contract c  C can be denoted as a 5-tuple

< FP, FV, fc, fd, e>, where FP is a set of public/external state-

changing functions, which can be called by external accounts

a  A; FV is a set of public/external pure/view functions, which

can be directly called on c without any external account; fc is

the constructor function of c; fd is the fallback function of c;

and e is the ether value held in c. A function f is defined as a

3-tuple <m, (a0, a1. . . , aN), (r0, r1. . . , rM)>, where m is the

function name, ai is the i-th parameter, and ri is the i-th return

result. Each parameter or return result can be of primitive type,

structured type, function type, or a special type called

address, which can represent any external account or

contract.

For a dapp = <A, C>, a transaction T is defined as a 8-tuple

<a, c, f, e, o, I, R, L>, where a  A and c  C. Let c=< FP, FV,

fc, fd, E>, either f = fc, f = fd, or f  FP. If f = fc, the transaction

T is a contract creation transaction, otherwise T is a message

call transaction. Symbol e is the Ether value sent by the client

with the transaction, which is used to pay for the execution fee

or send to c; o is the execution outcome (success/fail); I = (a0,

a1. . . , aN) represents values of f’s N parameters ; R = (r0, r1. . . ,

rM) represents values of f’s M return results; and L is a set of

string recorded during the execution as logs.

Client

Contract A

Contract B

Contract C

Transaction

Signed

by an

external

account

external/public

function

Block
Packed intoEthereum

blockchain

Linked into

constructor

view/pure

function

CREATE opcode

Message call

Message call

Local call

(executed on

local chain copy)

Update local copy

of the chain

Invoke

manually or

with scripts

Users that own

external accounts

Transaction

constructor
external/

public

function

external/

public

function

Network nodes

Broadcasted to

Message call

Figure 2: Smart contract program model

B. Whole Transaction Basis Path Set

Based on the program model, the execution behavior of a

smart contract application is determined by a sequence of

transactions. Transactions may be represented by combining

the control flow graphs (CFGs) of all functions that might

possibly be executed in the transactions. We call such

combined graph a transaction control flow graph (TCFG). An

example is shown in Figure 3 (b). For each function f, the

control flow graph for f has a unique entry vertex Entryf, and

a unique exit vertex Exitf. If the function is a public/external

function, then its entry vertex is also marked as a transaction

entry vertex. The other vertices present statements and

predicates in the usual way, except that each function call is

represented by two vertices, a call-site vertex and a return-site

vertex. In addition to the ordinary intra-procedural edges that

connect the vertices, TCFG also contains a call-edge and a

return-edge, which connect the call-site/return-site vertices of

the caller function with the entry/exit node of the callee

function, respectively.

The part of TCFG introduced above is similar to the system

control flow graph or supergraph [32] used in many works on

inter-procedural program analysis problems. However, there

are two important smart contract features that are not yet used

in the previous example, and therefore demand additional

constructs to handle. The example shown in Figure 4 shows

these two features. This example is adapted from the real

world contract attacked in the famous DAO incidence [8].

Feature 1: Exception-handling. EVM supports exceptions

that can revert state for error handling. The function revert

is used for flagging an error and reverting the current call. In

the scenario that the exception occur in a callee function, it

would be re-thrown in the caller function automatically,

except when the callee function is called by low-level APIs

such as send, delegatecall, call, and callcode.

contract FishToken{

...

 address public currentShark;

 mapping(address => uint256) public balances;

 address[] public participants;

...

function determineNewShark() internal {

1: address shark = participants[0];

2: for (uint i=1;

3: i < participants.length;

4: i++) {

5: if (balances[shark]<balances[participants[i]]){

6: shark = participants[i];

7: }

8: }

9: if(currentShark != shark) {

10: currentShark = shark;

11: }

}

function addToParticipants(address addr) internal ...{

12: if(participants[addr]!=null) {

13: return false;

14: }

15: participants.push(addr);

 }

function transfer(address to, uint256 value) ... {

16: addToParticipants(to);

17: balances[msg.sender] -=value;

18: balances[to] += value;

19: determineNewShark();

 }

function issueTokens(address be, uint256 amount)... {

20: addToParticipants(be);

21: balances[beneficiary] += amount;

22: determineNewShark();

}

}

transfer

determine

NewShark

issueTokensEntryt

16call

17-18

19call

ExitT

addToParticipants

Entrya

13

12

15

Entryi

20call

21

22ret

Exiti

Entryd

1

2

6

3

5

Exita

4

9

10

Exitd

16ret

19ret

20ret

22call

T F

T

F

T

F

T

F

(b) Transaction control flow graph of Pool-Shark

Whole transaction basis path set for transfer:

(t-16call-(a-12-15-)a-16ret-17-18-19call-(d-1-2-3-9-)d-19ret-)t

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-9-)d-19ret-)t

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-5-4-3-9-)d-19ret-)t

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-5-6-4-3-9-)d-19ret-)t

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-5-6-4-3-9-10-)d-19ret-)t

| E | = 35 | V | = 32 Cyclomatic Number = 35-32+2 = 5

Whole transaction basis path set for determineNewShark:

(t-20call-(a-12-15-)a-20ret-21-22call-(d-1-2-3-9-)d-22ret-)t

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-9-)d-22ret-)t

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-5-4-3-9-)d-22ret-)t

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-5-6-4-3-9-)d-22ret-)t

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-5-6-4-3-9-10-)d-22ret-)t

*We use ‘(‘ to denote entry node and ‘)’ to denote exit node.

(a) code excerpt (c) whole transaction basis paths for the two transactions

Figure 3: Illustrating example – Pool-Shark (hosted at [31])

These low-level APIs will return false instead when an

exception occurs.

In order to handle EVM exception semantics, we add a

revert node Revertf for each function f that might revert itself

or transitively call any function that might revert. For

statements that might potentially revert (such as the require

statement), we add a branching node to represent revert

condition checking, and connect the revert branch to the revert

node with a revert edge. In addition, we add a cascading-

revert edge to connect the revert node in the callee function to

that in the caller function.

Feature 2: Call to unknown external function. With the

built-in type address, smart contract can call the function

of arbitrary external contracts. For example, at line 3 in Figure

4, msg.sender refers to the address of the caller, which can

be any contract or account in the Ethereum. By invoking the

low-level API call, the fallback function of msg.sender

is called. As the implementation of this fallback function will

not be known during testing, we have to assume every

possibility, including calling back into itself, other functions

of the same contract, or those of yet another external contact.

This features open up a lot of unexpected control flow paths

that we need to incorporate into TCFG and test thoroughly.

In order to address this feature, we create a virtual sub-

flowgraph to represent what might possibly happen in the

unknown external function, which is illustrated at the top-right

corner of the TCFG in Figure 4. Essentially, this subgraph

contains a loop of calls into any public/external functions of

the contract. As the called functions might revert, the subgraph

also adds a revert node to support cascading revert.

 To summarize, the definition of TCFG is as follows:

Definition 1: A transaction control flow graph (TCFG)

for a smart contract c is a graph <V, E> where V is the set of

vertices and E is the set of edges. Vertices in V are divided into

subsets: Ventry, Vexit, Vexpr, Vpred, Vrevert represent entry, exit,

expression, predicate, and revert nodes; Vcall, Vret represents

call node and return node at the callsite; Vt-entry  Ventry

represents transaction entry node. Edges in E are divided into

subsets Eflow, Ecall, Eret, Erevert, Ecascading-revert. Eflow are intra-

procedural edges between nodes in V, and Ecall  Vcall  Ventry,

Eret  Vexit  Vret, Erevert  Vexpr  Vrevert, Ecascading-revert  Vrevert

 Vrevert. 

Definition 2: A node sequence p = (n1, n2, …, nk) is a

whole transaction path (WTP) in a TCFG <V, E> if p satisfies

the following requirement: (1) n1Vt-entry and nk  Vexit  Vrevert;

(2) (ni, ni+1)  E; (3) Let f1, f2, …fw be the set of all functions

in the contract and let p be a subsequence of p where all nodes

in p are removed except for those in Ventry, Vexit, and Vrevert, then

p must match the following context free grammar:

S ::= Entryf1 S Exitf1 | Entryf1 S Revertf1

……

S ::= Entryfw S Exitfw | Entryfw S Revertfw

S ::= S S | ε 

The contract in Figure 3 and Figure 4 can both generate

infinite numbers of WTPs. For the example in Figure 3, this is

because of the loop at line 2-8. For that in Figure 4, this is due

to the reentrancy at line 3 can recycle infinitely through the

unknown external function. Therefore, directly defining

coverage criteria for smart contracts with WTP could make

testing intractable. To address this issue, we provide a solution

inspired by the widely used and studied method of basis path

testing proposed by Thomas McCabe [28].

The idea of basis path testing is to consider the (usually

infinite) set of paths in CFG as a vector space. The basis of a

vector space contains a limited set of vectors that are linearly

independent of one another, and have a spanning property:

everything within the vector space can be expressed in terms

of the elements within the basis. McCabe argued that by

rigorously testing the path in the (always limited) basis set,

most of the defects can be exposed, therefore there is no need

to test every path in the (potentially infinite) whole set.

Formally, for a control flow graph G with k edges e1, e2, …,

ek, a path p is represented as a vector x1, x2, …, xk, where xi

is the number of time edge ei occurs in p. A path set P is

function depositFunds() public payable {

1: balances[msg.sender] += msg.value;

}

function withdrawFunds (uint256 withdraw) public {

2: _withdrawFunds(withdraw);

}

function _withdrawFunds (uint256 withdraw) internal {

3: bool result=msg.sender.call.value(withdraw)());

4: require(result);

5: balances[msg.sender] -= withdraw;

6: lastWithdrawTime[msg.sender] = now;

}

3call

4

3ret

Entryi

5

6

Exiti

2ret

2call

Entryw

Exitw

Revertw

1

Entryd

Exitd

wcall

dret

Reverti

Revertext

Entryext

Exitext

depositFunds

withdrawFunds

_withdrawFunds

Unknown code from an external account

T

F

b

wret

dcall

Whole transaction basis path set for withdrawFunds:

(w-2call-(i-3call-(ext-b-)ext-3ret-4-5-6-)i-2ret-)w

(w-2call-(i-3call-(ext-b-)ext-3ret-4-Reverti-Revertw

(w-2call-(i-3call-(ext-b-dcall-(d-1-)d-dret-b-)ext-3ret-4-5-6-)i-2ret-)w

(w-2call-(i-3call-(ext-b-wcall-(w-2call-(i-3call-(ext-b-)ext-3ret-4-5-6-)i-2ret-)w-wret-

b-)ext-3ret-4-5-6-)i-2ret-)w

(w-2call-(i-3call-(ext-b-wcall-(w-2call-(i-3call-(ext-b-)ext-3ret-4- Reverti-Revertw-

Revertext- Reverti- Revertw

Cyclomatic Number = 28 - 25 + 2 = 5

Figure 4: A smart contract with unknown external
function call and exception-handling

linearly independent if none of the path in P is represented by

a vector that can be expressed as a linear combination of

vectors of other paths. A linearly independent path set P is

called the basis path set of G if every path in G can be

expressed as a linear combination of paths in P.

Previously, the basis path set is only defined intra-

procedurally on CFG. We now extend it to TCFG.

Definition 3: Given a TCFG and a transaction entry node

n, a path set P is called the whole transaction basis path set

of n, or WTPBS(n) for short, if: 1) every path in P is a WTP

that starts from n; 2) P is linearly independent; and 3) every

WTP that starts from n can be expressed as a linear

combination of paths in P. 

Note that the set of paths that satisfies this requirement

might not be unique. In this case, we can designate any of such

sets as the whole transaction basis path set of n.

C. Bounded Transaction Interaction

The above definitions only involve the paths inside

individual transactions. We now introduce the definition on

inter-transaction control flow.

Definition 4: Given a dapp <A, C> and upper bound k, a

sequence q = (a1, c1, f1, o1), (a2, c2, f2, o2), …., (ak, ck, fk, ok)
is called a k-bounded transaction interaction if: for every (ai,

ci, fi, oi) there exists some values of e, I, R, L that makes < ai,

ci, fi, e, oi, I, R, L> be a feasible transaction of dapp. 

III. COVERAGE CRITERIA

Based on the above definitions, we are ready to define the

coverage criteria for smart contract testing. Firstly we shall

define the basic coverage requirement:

Definition 5: Given a dapp and upper bound k, a k-

bounded transaction coverage requirement is defined as a

tuple (q, w), where q = (a1, c1, f1, o1), …., (ak, ck, fk, ok)is a k-

bounded transaction interaction, and w is a set of paths p1,…,

pk such that for i=1, 2, … k, pi  WTPBS(Entryfi
) and ends

with Exitfi
 if ok is success, or Revertfi

 if ok is revert. 

A test case of a smart contract application dapp <A, C> is

defined as a tuple (, ), where  maps each external account

a in A to its balance in Ethers and  is an input sequence (a1,

c1, f1, e1, I1), …, (an, cn, fn, en, In). Each item (ai, ci, fi, ei, Ii)

defines the input for a transaction: ai is the external account, ci

is the contract, fi is the external/public function, ei is Ethers

sent with the transaction, and Ii is the message call data. All of

them can be either constant or calculated from transaction

outputs, logs, view/public function call return values from

previous transactions execution results. A test case is valid if

the input sequence can be executed on Ethereum from a state

where none of the contract in C have been deployed (that is, a

clear state).

Intuitively, given a dapp <A, C>, we said that a test case s

covers a k-bounded transaction coverage requirement r= (q,

w) if we execute s on a clear state, and the Ethereum

blockchain generates a sequence of transactions T1, T2, … Tn
from which we can find a substring Ti, Ti+1, … Ti+k-1 that

matches the transactions and basis paths specified in r. A

coverage requirement is feasible if there exists at least one test

case that can cover it.

Definition 6: Given a dapp and upper bound k, a set of

smart contract test cases S achieves k-bounded transaction

coverage criteria if for every feasible k-bounded transaction

coverage requirement r, there exists at least one test case s in

S such that s covers r.

With the different values of k, we can obtain a family of

coverage criteria with increasing numbers of coverage

requirements, and therefore require increasing numbers of test

cases to satisfy. When the value of k reduced to 1, it becomes

essentially whole transaction basis path coverage without

considering the interaction between transactions.

IV. ALGORITHMS

Testing a smart contract application with k-bounded

transaction coverage criteria essentially involve four steps: 1)

enumerate all coverage requirements; 2) generate at least one

test case to cover each feasible coverage requirement r; 3)

implement a test oracle to check test outcome correctness; 4)

run every test case to find potential failure. In this section we

introduce the algorithms for step 1, while the algorithms on

test data generation and test oracle are put in future work.

Algorithm 1 shows how to generate whole transaction

basis path set. The idea is to start with a baseline WTP, then

vary exactly one decision outcome to generate each successive

WTP until the size of the path set reach Cyclomatic

Complexity number. The proof on the correctness can be

Input: a TCFG <V, E>, a transaction entry node n in Vt-entry

Output: WTPBS(n)

1: Find p as the WTP that starts with n with the least predicate nodes

2: P = {p}

3: V = {v  V | v is reachable from n}, E={(v1,v2)  E | v1, v2V}

4: while | P | < | E |  | V | + 2 //Cyclomatic Complexity number

5: Let p = (n1, n2, …, nk), find the smallest i such that (ni, ni+1)

6: has not occurred in any path in P.

7: Find another WTP p with the prefix (n1, …, ni, w), w  ni+1

8: if no such p is found, then break

9: P = P  {p}, p = p
10: return P

Algorithm 1: Whole transaction basis path set generation

Input: a dapp <A, C> and the bound k

Output: all k-bounded transaction coverage requirements

1: R = 

2: U = the set of all valid 4-tuples (a, c, f, o) where a  A, c  C,

3: f  public/external functions of c, o  {success, revert}

4: Q = all length-k permutations on U

5: while |Q|  0

6: pick a permuntation q and remove it from Q

7: for each (ai, ci, fi, oi) in q, pick a path pi from WTPBS(Entryfi)

8: pi must end with Exitfi if oi is success, or Revertfi if oi is revert

9: enumerate all such p1, p2, …, pk, add it into R.

10: return R

Algorithm 2: k-bounded transaction coverage
requirement generation

derived from the proof in [28]. We omit it due to a lack of

space.

Algorithm 2 shows how to generate all k-bounded

transaction coverage requirements. Essentially, the algorithm

is to enumerate all possible length-k permutation of

transactions, and the enumerate all possible paths for each

transaction from WTPBS(n) we derive from Algorithm 1.

V. CASE STUDY

We perform a case study on a real world smart contract

application Pool-Shark hosted at [31]. The whole application

consists of 12 contracts with 19 functions in total, among

which 9 are public/external functions that can be a transaction

entry. We choose Pool-Shark because its scale and complexity

is representative of common applications hosted on Ethereum

[33], [34]. To facilitate the repeat of our case study, we publish

all the faulty versions and test cases at [35].

In the case study, we are mainly interested in two research

questions:

Q1: Are the k-bounded transaction coverage criteria more

effective than conventional code coverage criteria, in the sense

that test suites satisfying the former can detect more bugs than

those satisfying the latter?

Q2: Are the k-bounded transaction coverage criteria more

efficient than random testing as a baseline, in the sense that a

test suite satisfying our coverage criteria can detect more bugs

than a test suite of the same size, but generated randomly?

In order to address these two questions, we used the

sufficient mutation operators [36] (such as operator-

replacement, variable-replacement, and statement-omission)

to seed 22 mutation faults into the source code of Pool-Shark,

producing 22 faulty versions with one fault in each version.

As the test requirements quickly explode with an increasing

bound k, we set the value of k as 2.

As mentioned in Section IV, the whole testing process

consist of four steps. In step 1, we apply the algorithms

defined in Section IV to enumerate all the coverage

requirements. With the value of k as 2, Pool-Shark generates

729 coverage requirements in total. In step 2, we first use

symbolic execution to solve the path constraints for each

coverage requirement. The objective is to derive the contract

state that can trigger a transaction sequence that cover the

requirement. Next, we manually construct a transaction

sequence that can get to this state. By combining the two

sequences we get a complete test case. In step 3, we record the

transaction execution outcome, event logs, and the return

values of all pure/view functions of the correct version as test

oracle. In step 4, the Truffle framework [37] is used to execute

the test script. This process is repeated for statement coverage

testing. The only difference is in step 2, where the coverage

requirement is changed to every executable statement in Pool-

Shark.

With the above process, we generate 81 test cases for k-

bounded transaction coverage criteria and 9 test cases for

statement coverage criteria. Note that the number of test cases

are significantly less than the number coverage requirements.

It is due to the fact that one test case can cover multiple

coverage requirements. Moreover, not all of the coverage

requirements are feasible. To compare with random testing,

we also construct a random test suite by randomly generating

a transaction sequence with random message call data.

The comparison result is shown in Table 1. It can be

observed that the k-bounded transaction coverage testing is

significantly more effective than statement coverage testing,

as it detects nearly 55% more faults. In fact, all but two of the

faults are detected by our testing technique. After manual

examination, we find out that these two faults are indeed

equivalent mutants and therefore, there is no test case that can

detect them. At the same time, the k-bounded transaction

coverage testing is more efficient than random testing: with

the same number of test cases, it detects 18.2% more faults.

This suggests our proposed criteria can be of practical value

to smart contract developers.

VI. RELATED WORK

Existing vulnerability detection approaches can be

classified according to their underlying techniques. Some of

them rely on static program analysis. For example, systems

including Oyente [38], Maian [11], Teether [12], Gasper [13]

and the work by Grossman et al. [39] use symbolic execution

to explore whether there exists paths that can trigger any

known vulnerability, while ContractFuzzer [40] uses random

fuzzing to find vulnerability instead. Other works rely on

formal verification tools. For example, Zeus [14] uses abstract

interpretation and constrained horn clauses, Vandal [41] uses

Datalog theorem prover, and Grishchenko et al. [42] use F*

theorem prover. Our work is complementary to these works.

There is a plenty of work in the literature on testing

coverage criteria [43]. Those that are widely referred to

include the control flow coverage criteria [21], dataflow

coverage criteria [22], logic coverage criteria [44], interface

coverage criteria [24], and mutation score [36]. Our proposed

k-bounded transaction coverage criteria share some of the

ideas in the basis path coverage and interface coverage criteria.

The merit of our work is that we extend these ideas to address

the unique characteristics of the smart contract program model.

VII. CONCLUSION

The importance of smart contract testing has been

recognized, but there is a lack of research on how to

systematically test smart contract application. In this paper,

we analyze the unique characteristics of Ethereum smart

contract model and propose the notions of whole transaction

basis path set and bounded transaction interactions. Based on

these two notions, we define k-bounded transaction coverage

criteria for smart contract testing. We conduct an experiment

Table 1: case study result

Testing method

#. of logic

faults

detected

%. Of

detected

faults

k-bounded transaction coverage 20 90.9%

Statement coverage 8 36.3%

Random 16 72.7%

to study its effectiveness. The initial results show that testing

based on k-bounded transaction coverage criteria can be more

effective than the conventional testing methods such as

statement coverage testing and random testing. In future work,

we will address the test generation problem that has not been

covered in this paper.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”

bitcoin.org, 2008.

[2] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates:
foundations, design landscape and research directions,” arXiv

preprint arXiv:1608.00771, 2016.

[3] V. Buterin, “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[4] G. Wood, Ethereum yellow paper. website, 2014.

[5] C. Cachin and M. Vukolić, “Blockchains consensus protocols in the

wild,” arXiv preprint arXiv:1707.01873, 2017.

[6] EOSIO, “EOS.IO Technical White Paper,”

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhi
tePaper.md.

[7] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on

ethereum smart contracts (sok),” in Principles of Security and Trust,
Springer, 2017, pp. 164–186.

[8] “Understanding the DAO attack.”

http://www.coindesk.com/understanding-dao- hack-journalists/.
[9] “Parity Multisig Hacked. Again.” https://medium.com/chain-cloud-

company-blog/parity-multisig-hack-again-b46771eaa838.

[10] “BEC Spiked 4000% On First Trading Day, Another Pump-and-
Dump Scheme? | NEWS.8BTC.COM.” .

[11] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding

the greedy, prodigal, and suicidal contracts at scale,” arXiv preprint
arXiv:1802.06038, 2018.

[12] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to

automatically exploit smart contracts,” in 27th
${$USENIX$}$ Security Symposium (${$USENIX$}$ Security 18),

2018, pp. 1317–1333.

[13] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart
contracts devour your money,” in Software Analysis, Evolution and

Reengineering (SANER), 2017 IEEE 24th International Conference

on, 2017, pp. 442–446.
[14] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing

Safety of Smart Contracts,” in 25th Annual Network and Distributed

System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 2018.

[15] “Towards Verification of Ethereum Smart Contracts: A

Formalization of Core of Solidity | SpringerLink.” [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-030-

03592-1_13. [Accessed: 16-Feb-2019].

[16] L. Brent et al., “Vandal: A scalable security analysis framework for
smart contracts,” arXiv preprint arXiv:1809.03981, 2018.

[17] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain

challenges and opportunities: A survey,” International Journal of
Web and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[18] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-

oriented software engineering: challenges and new directions,” in
Proceedings of the 39th International Conference on Software

Engineering Companion, 2017, pp. 169–171.
[19] “Truffle Suite | Sweet Tools for Smart Contracts,” Truffle Suite.

[Online]. Available: https://trufflesuite.com. [Accessed: 15-Feb-

2019].
[20] L. Westfall, The certified software quality engineer handbook. ASQ

Quality Press, 2008.

[21] E. J. Weyuker, “The evaluation of program-based software test data
adequacy criteria,” Communications of the ACM, vol. 31, no. 6, pp.

668–675, 1988.

[22] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of
the effectiveness of dataflow-and controlflow-based test adequacy

criteria,” in Proceedings of the 16th international conference on
Software engineering, 1994, pp. 191–200.

[23] E. J. Weyuker, “Axiomatizing software test data adequacy,” IEEE

transactions on software engineering, no. 12, pp. 1128–1138, 1986.
[24] J. C. Huang, “An approach to program testing,” ACM Computing

Surveys (CSUR), vol. 7, no. 3, pp. 113–128, 1975.

[25] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Transactions on Software Engineering, vol.

14, no. 10, pp. 1483–1498, 1988.

[26] M. Delamaro and J. C. Maldonado, “Interface mutation: Assessing
testing quality at interprocedural level,” in Computer Science Society,

1999. Proceedings. SCCC’99. XIX International Conference of the

Chilean, 1999, pp. 78–86.
[27] A. Rountev, S. Kagan, and J. Sawin, “Coverage criteria for testing of

object interactions in sequence diagrams,” in International

Conference on Fundamental Approaches to Software Engineering,
2005, pp. 289–304.

[28] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured testing:

A testing methodology using the cyclomatic complexity metric, vol.
500. US Department of Commerce, Technology Administration,

National Institute of …, 1996.

[29] C. Dannen, Introducing Ethereum and Solidity. Springer, 2017.
[30] R. Modi, Solidity Programming Essentials: A beginner’s guide to

build smart contracts for Ethereum and blockchain. Packt Publishing

Ltd, 2018.
[31] J. Kosmerl, “Pool-shark dapp.” https://github.com/joze144/pool-

shark.
[32] D. Melski and T. Reps, “Interprocedural path profiling,” in

International Conference on Compiler Construction, 1999, pp. 47–

62.
[33] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain

systems: a large-scale empirical study,” in 2017 IEEE/ACM 14th

International Conference on Mining Software Repositories (MSR),
2017, pp. 413–424.

[34] M. Bartoletti and L. Pompianu, “An empirical analysis of smart

contracts: platforms, applications, and design patterns,” in
International Conference on Financial Cryptography and Data

Security, 2017, pp. 494–509.

[35] “Case study materials.”
https://github.com/CloudDataLab/DappRepository.

[36] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient

mutation operators for measuring test effectiveness,” in Proceedings
of the 30th international conference on Software engineering, 2008,

pp. 351–360.

[37] “Truffle Suite | Sweet Tools for Smart Contracts.” [Online].
Available: https://truffleframework.com/. [Accessed: 15-Feb-2019].

[38] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making

smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.

254–269.

[39] S. Grossman et al., “Online detection of effectively callback free
objects with applications to smart contracts,” Proceedings of the

ACM on Programming Languages, vol. 2, no. POPL, p. 48, 2017.

[40] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing Smart
Contracts for Vulnerability Detection,” in Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software

Engineering, New York, NY, USA, 2018, pp. 259–269.
[41] L. Brent et al., “Vandal: A scalable security analysis framework for

smart contracts,” arXiv preprint arXiv:1809.03981, 2018.

[42] I. Grishchenko, M. Maffei, and C. Schneidewind, “A Semantic
Framework for the Security Analysis of Ethereum smart contracts,”

in International Conference on Principles of Security and Trust,

2018, pp. 243–269.
[43] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based

testing tools,” The Computer Journal, vol. 52, no. 5, pp. 589–597,

2009.
[44] R. Gao, L. Hu, W. E. Wong, H.-L. Lu, and S.-K. Huang, “Effective

test generation for combinatorial decision coverage,” in 2016 IEEE

International Conference on Software Quality, Reliability and
Security Companion (QRS-C), 2016, pp. 47–54.

