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Abstract— The widespread recognition of the smart 

contracts has established their importance in the landscape of 

next generation blockchain technology. However, writing a 

correct smart contract is notoriously difficult. Moreover, once a 

state-changing transaction is confirmed by the network, the 

result is immutable. For this reason, it is crucial to perform a 

thorough testing of a smart contract application before its 

deployment. This paper’s focus is on the test coverage criteria 

for smart contracts, which are objective rules that measure test 

quality. We analyze the unique characteristics of the Ethereum 

smart contract program model as compared to the conventional 

program model. To capture essential control flow behaviors of 

smart contracts, we propose the notions of whole transaction 

basis path set and bounded transaction interaction. The former is 

a limited set of linearly independent inter-procedural paths 

from which the potentially infinite paths of Ethereum 

transactions can be constructed by linear combination, while the 

latter is the permutations of transactions within a certain bound. 

Based on these two notions, we define a family of path-based test 

coverage criteria. Algorithms are given to the generation of 

coverage requirements. A case study is conducted to compare 

the effectiveness of the proposed test coverage criteria with 

random testing and statement coverage testing. 

Keywords— blockchain, smart contract, testing, test coverage 

criteria 

I. INTRODUCTION 

Blockchains as one form of distributed ledger technology 

have gained considerable interest and adoption since Bitcoin 

was introduced [1]. Participants in a blockchain system run a 

consensus protocol to maintain and secure a shared ledger of 

data (the blockchain). Blockchains were initially introduced 

for peer-to-peer payments [1], but more recently, it has been 

extended to allow programmable transactions in the form of 

smart contracts [2], [3]. Smart contracts are programs that can 

be collectively executed by a network of mutually distrusting 

nodes, who implement a consensus protocol (such as proof-

of-work [1] or proof-of-stake [5]) that digitally enforce 

agreements among nodes: neither the nodes nor the creator of 

the smart contract can feasibly modify its code or subvert its 

execution. Ever since being proposed and implemented by 

blockchain systems such as Ethereum [3] and EOS [6], smart 

contracts have been applied across a range of industries, 

including finance, insurance, identity management, and 

supply chain management. In our paper, we will assume 

Ethereum as the smart contract platform. 

Because smart contracts are entrusted by the users to 

handle and transfer assets of considerable value, they are 

subject to intensive hacking activities. Such hacking is more 

dangerous than that on a conventional network system, 

because once deployed on the blockchain, the contract 

becomes immutable, essentially creating a high-risk, high-

stake paradigm: the deployed code is nearly impossible to 

patch, and contracts collectively control billions of USD worth 

of digital assets. For example, there have been a plenty of 

well-documented attacks on the Ethereum smart contracts [7]: 

The reentrancy attack managed to steal  tokens valued $60M 

from a contract and ultimately led to the hard-fork that created 

Ethereum Classic (ETC) [8]. The Second Parity Multisig 

Wallet hack exploits well-written library code to run it in non-

intended context [9]. About $300M-worth cryptocurrency was 

frozen and (probably) lost forever. In April 2018, BecToken 

was attacked due to integer overflow on multiplication, 

causing an extremely large amount of tokens transferred to 

malicious accounts and the token price dropped to nearly zero 

[10]. The severe consequence of these attacks highlights the 

importance of verification before smart contracts deployment. 

In the literature, a number of approaches and tools have 

been proposed to verify smart contracts [11]–[16]. Most of 

them focus on detecting vulnerabilities, which are known 

code patterns that have been reported previously. Examples 

include re-entrancy, unchecked send, arithmetic overflow, and 

dangerous delegatecall [7]. Although vulnerability detection 

tools have been shown to be effective at detecting known 

dangerous code patterns, they are far from enough to verify 

the correctness of smart contracts. This is because not all smart 

contract defects involve known code patterns. Some, instead, 

are specific to the application logic of the particular contract 

under concern. These defects are referred to as logic error in 

§   Correspondence author. 

* This work was supported by  Science and Technology Planning Project of 

Guangdong Province, grant Nos. 2016B030305006，2017KZ010101，  

2017B030308009，and 2018A070717021. 

 



 

 

the empirical investigation by Kalra and colleagues [14]. For 

example, consider the real world example illustrated in Figure 

1. By mistake, the smart contract programmers put “return 

false;” at line 6 instead of line 9 after the loop. Logic errors 

of this kind cannot be detected by existing vulnerability 

detection tools, because no consistent code patterns can be 

summarized from them. Another reason why existing 

vulnerability detection tools might be insufficient is that there 

can be still plenty of unknown vulnerabilities that do not 

match any patterns reported by practitioners and researchers.  

For the above reasons, we believe that beside vulnerability 

detection, testing is still indispensable to guarantee the 

correctness of smart contracts. Note that the need of more 

research on systematic smart contract testing has already been 

advocated by several position papers [17], [18]. However, to 

the best of our knowledge, this direction has been largely 

overlooked in the research community. By contrast, the 

importance of testing is well recognized by smart contract 

developers. For instance, as one of the most widely used 

testing tools, Truffle suite [19] allows developers to encode 

test inputs and assertions into test scripts using JavaScript 

language. These test scripts are then executed on a blockchain 

simulation environment (Ganache). Such test frameworks, 

however, cannot guide the testing process in the sense that 

they do not tell the developers what kind of test scripts they 

should write, and whether existing test cases are sufficient. To 

address this issue, test coverage criteria [20] for smart 

contracts need to be defined. 

Test coverage criteria [21]–[23] are sets of rules that help 

determine whether a test suite has adequately tested a program. 

Many test coverage criteria have been proposed and 

empirically compared for conventional programs, including 

control-flow coverage criteria, such as branch-coverage [24], 

and data-flow coverage criteria, such as all-def-use-pairs [25]. 

Smart contracts, however, have several unique characteristics 

that can make existing test coverage criteria inappropriate. 

Firstly, the execution of smart contracts are organized around 

units know as transactions. The interaction between 

transactions across multiple contracts are crucial in the effects 

on the contract state. Therefore, test coverage criteria shall be 

designed according to the categorization of such interactions 

in practice, which is a factor not considered in conventional 

test coverage criteria. Secondly, within each transaction, the 

control flow can be transferred in an unexpected way. The best 

example is the famous DAO attack [8], which is caused by the 

unexpected reentrancy of the contract function. Conventional 

test coverage criteria are insufficient to address whole 

transaction control flow, because most of them are intra-

procedural.  While a few works do propose inter-procedural 

coverage criteria (e.g. [26], [27]), they only focus on the 

interfaces between functions.  

The above characteristics suggest the need to develop test 

coverage criteria based on how the execution of individual 

smart contract transaction traverses across contracts, and how 

transactions interact with each other in a sequence. The key 

challenge, however, is that both aspects involve potentially 

infinite number of coverage requirements. The number of 

possible execution paths of a transaction can be infinite when 

the contract code contains loops, and transactions sequence 

can also be extended infinitely. Therefore, directly defining 

test coverage criteria on them will make coverage testing of 

smart contracts intractable. 

In order to address this challenge, we propose the notion 

of whole transaction basis path set, which is a limited set of 

linearly independent inter-procedural paths from which all 

possible execution paths of transactions can be constructed by 

linear combination. The main novelty of this notion is that it 

extends the conventional definition of basis path by McCabe 

[28], which is for intra-procedural testing, to the inter-

procedural case. Besides, we also propose the notion of 

bounded transaction interactions, which are all possible 

permutations of transactions within a certain bound, linked by 

input/output. Based on these two notions, we define a family 

of path-based test coverage criteria for smart contract. 

Algorithms are given to the generation of whole transaction 

basis paths. A case study illustrates the effectiveness of the 

test coverage criteria using real world smart contracts with 

seeded logic defects. 

This paper makes the following main contributions: 

1) The proposal of practical path-based test coverage 
criteria for systematic testing of smart-contracts. 

2) The algorithms that address the enumeration of 
coverage requirements.  

3) Case study on a real world smart contract application 
to investigate the effectiveness of the proposed test 
coverage criteria. 

The rest of this paper is organized as follows. Section II 

introduces the structure of smart contracts and define concepts. 

Section III define test coverage criteria based on these 

concepts. Section IV presents algorithms. Section V reports 

our case study result. Section VI discuss related work. Finally, 

Section VII concludes. 

II. STRUCTURE AND DEFINITIONS FOR SMART CONTRACT 

In this section, we first briefly present the program model 

of smart contract application on Ethereum. We then introduce 

the notions of whole transaction basis path set and bounded 

transaction interaction. A whole transaction basis path 

captures the control flow behavior inside one single 

transaction, while bounded transaction interactions captures 

the interaction between transactions.  

 

1: function checkNoExists(uint id) returns(bool){ 

2:    for (uint i = 0; i < numbers.length; i++){ 

3:        if (numbers[i] == id) { 

4:            return true; 

5:        } else{ // Shall put outside the loop 

6:            return false;  

7:        } 

8:    } 

9: } 

Figure 1: A logic error in the smart contract reported at [14]. 



 

 

A. Ethereum Smart Contract Program Model 

Figure 2 shows an overview of the model. At the minimal, 

a smart contract application on Ethereum is composed of one 

or more contracts deployed on the blockchain, and one or 

more external accounts that are owned by the users and hold 

Ethers as the cryptocurrency. The application relies on clients 

that synchronize with the network to obtain the latest 

blockchain contents and nodes that run the consensus protocol 

to pack transactions into the blockchain.  

Contracts are mostly developed in Solidity [32], which is 

a JavaScript-like, but typed, programming language. At the 

source level, contracts written in Solidity appear similar to 

classes in object-oriented languages. Figure 3 (a) give an 

example. Contracts can contain declarations of state variables, 

definitions of functions, modifiers, constructors, structure, and 

etc. Functions support encapsulation (visibility attributes) and 

can be statically overloaded. Contracts support interface and 

multi-inheritance in the C3 linearization style [15]. To enable 

deployment on the Ethereum platform, the contract functions 

are compiled into the Ethereum virtual machine (EVM) 

bytecode and a piece of code called function selector is added, 

which serves as an entry point into the contract code. 

Whenever a function is called, the contract code starts 

executing at the function selector. The selector decodes the 

message and jumps into an appropriate contract function. 

Ethereum smart contracts support the custom handling of 

messages that do not specify a concrete function to call 

through the fallback function. 

After compilation, there are two ways to deploy (also 

referred to as create) a contract onto the Ethereum network. 

The first way is by a client sending a contract creation 

transaction with the deployment instruction, bytecode, and 

paying the creation fee in ether. The transaction is signed by 

the private key of an external account owned by the user, 

broadcasted to the network, and packed into a block. The 

contract instance is deployed as the result. The second way is 

by another contract executing a special EVM instruction 

CREATE (keyword new in Solidity). In both ways, the 

constructor will be executed to initialize the created contract. 

After deployment, contracts can be invoked with its 

external/public functions in three different ways. The first way 

is by the client sending a message call transaction, which 

makes a message call that contains target function selector and 

parameter data. Similar to the contract creation transaction, 

the message call transaction must be signed, broadcasted, and 

packed to take effect. It is a write-operation that will possibly 

affect other accounts, update the contract state and 

consequently, the state of the blockchain, and cost Ether. The 

second way is by another contract directly making a message 

call to invoke the function. This action is always transitively 

triggered by a message call transaction. In fact, every message 

call transaction consists of a top-level message call which in 

turn can create further message calls. Finally, the third way to 

interact with contract is by the client locally calling view/pure 

functions, which never modify the contract state. This kind of 

calls do not broadcast or publish anything on the blockchain. 

It is a read-only operation and will not cost any Ether. 

One important thing is that the message call transaction is 

always asynchronous, that is, after the client sends it to a node, 

the node is not obligated to execute it immediately. When the 

transaction does get executed, the result will consist of the 

outcome (success or revert) and execution logs. The client 

monitors the latest blocks to retrieve this result.  

From the perspective of testing, the core model of a smart 

contract program can be formalized as follows:  

A contract application dapp is a tuple <A, C>, where A is 

a set of external accounts and C is a set of contract. At the 

interface level, each contract c  C can be denoted as a 5-tuple 

< FP, FV, fc, fd, e>, where FP is a set of public/external state-

changing functions, which can be called by external accounts 

a  A; FV is a set of public/external pure/view functions, which 

can be directly called on c without any external account; fc is 

the constructor function of c; fd is the fallback function of c; 

and e is the ether value held in c. A function f is defined as a 

3-tuple <m,  (a0, a1. . . , aN), (r0, r1. . . , rM)>, where m is the 

function name, ai is the i-th parameter, and ri is the i-th return 

result. Each parameter or return result can be of primitive type, 

structured type, function type, or a special type called 

address, which can represent any external account or 

contract.  

For a dapp = <A, C>, a transaction T is defined as a 8-tuple 

<a, c, f, e, o, I, R, L>, where a  A and c  C. Let c=< FP, FV, 

fc, fd, E>, either f = fc, f = fd, or f  FP. If f = fc, the transaction 

T is a contract creation transaction, otherwise T is a message 

call transaction. Symbol e is the Ether value sent by the client 

with the transaction, which is used to pay for the execution fee 

or send to c; o is the execution outcome (success/fail); I = (a0, 

a1. . . , aN) represents values of f’s N parameters ; R = (r0, r1. . . , 

rM) represents values of f’s M return results; and L is a set of 

string recorded during the execution as logs.  
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Figure 2: Smart contract program model 



 

 

B. Whole Transaction Basis Path Set 

Based on the program model, the execution behavior of a 

smart contract application is determined by a sequence of 

transactions. Transactions may be represented by combining 

the control flow graphs (CFGs) of all functions that might 

possibly be executed in the transactions. We call such 

combined graph a transaction control flow graph (TCFG). An 

example is shown in Figure 3 (b). For each function f, the 

control flow graph for f has a unique entry vertex Entryf, and 

a unique exit vertex Exitf. If the function is a public/external 

function, then its entry vertex is also marked as a transaction 

entry vertex. The other vertices present statements and 

predicates in the usual way, except that each function call is 

represented by two vertices, a call-site vertex and a return-site 

vertex. In addition to the ordinary intra-procedural edges that 

connect the vertices, TCFG also contains a call-edge and a 

return-edge, which connect the call-site/return-site vertices of 

the caller function with the entry/exit node of the callee 

function, respectively. 

The part of TCFG introduced above is similar to the system 

control flow graph or supergraph [32] used in many works on 

inter-procedural program analysis problems. However, there 

are two important smart contract features that are not yet used 

in the previous example, and therefore demand additional 

constructs to handle. The example shown in Figure 4 shows 

these two features. This example is adapted from the real 

world contract attacked in the famous DAO incidence [8]. 

Feature 1: Exception-handling. EVM supports exceptions 

that can revert state for error handling. The function revert 

is used for flagging an error and reverting the current call. In 

the scenario that the exception occur in a callee function, it 

would be re-thrown in the caller function automatically, 

except when the callee function is called by low-level APIs 

such as send, delegatecall, call, and callcode. 

contract FishToken{ 

     

... 

  address public currentShark;     

  mapping(address => uint256) public balances; 

  address[] public participants; 

... 

 

function determineNewShark() internal { 

1:     address shark = participants[0]; 

2:     for (uint i=1;  

3:          i < participants.length;  

4:          i++) { 

5:        if (balances[shark]<balances[participants[i]]){ 

6:            shark = participants[i]; 

7:        } 

8:     } 

9:     if(currentShark != shark) { 

10:        currentShark = shark; 

11:     } 

}  

    

function addToParticipants(address addr) internal ...{ 

12:    if(participants[addr]!=null) { 

13:       return false; 

14:    } 

15:    participants.push(addr); 

    } 

 

function transfer(address to, uint256 value) ... { 

       .... 

16:    addToParticipants(to); 

17:    balances[msg.sender] -=value; 

18:    balances[to] += value; 

19:    determineNewShark(); 

    } 

 

function issueTokens(address be, uint256 amount)... { 

        ....         

20:     addToParticipants(be); 

21:     balances[beneficiary] += amount; 

22:     determineNewShark();         

} 

 

} 

transfer
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19call
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Exiti
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(b) Transaction control flow graph of Pool-Shark 

Whole transaction basis path set for transfer: 

(t-16call-(a-12-15-)a-16ret-17-18-19call-(d-1-2-3-9-)d-19ret-)t 

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-9-)d-19ret-)t 

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-5-4-3-9-)d-19ret-)t 

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-5-6-4-3-9-)d-19ret-)t 

(t-16call-(a-12-13-)a-16ret-17-18-19call-(d-1-2-3-5-6-4-3-9-10-)d-19ret-)t 

| E | =  35         | V | = 32     Cyclomatic Number  = 35-32+2 = 5 

Whole transaction basis path set for  determineNewShark: 

(t-20call-(a-12-15-)a-20ret-21-22call-(d-1-2-3-9-)d-22ret-)t 

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-9-)d-22ret-)t 

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-5-4-3-9-)d-22ret-)t 

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-5-6-4-3-9-)d-22ret-)t 

(t-20call-(a-12-13-)a-20ret-21-22call-(d-1-2-3-5-6-4-3-9-10-)d-22ret-)t 

*We use ‘(‘ to denote entry node and ‘)’ to denote exit node. 

(a) code excerpt (c) whole transaction basis paths for the two transactions 
 

Figure 3: Illustrating example – Pool-Shark (hosted at [31]) 



 

 

These low-level APIs will return false instead when an 

exception occurs. 

In order to handle EVM exception semantics, we add a 

revert node Revertf for each function f that might revert itself 

or transitively call any function that might revert. For 

statements that might potentially revert (such as the require 

statement), we add a branching node to represent revert 

condition checking, and connect the revert branch to the revert 

node with a revert edge.  In addition, we add a cascading-

revert edge to connect the revert node in the callee function to 

that in the caller function. 

Feature 2: Call to unknown external function. With the 

built-in type address, smart contract can call the function 

of arbitrary external contracts. For example, at line 3 in  Figure 

4, msg.sender refers to the address of the caller, which can 

be any contract or account in the Ethereum. By invoking the 

low-level API call, the fallback function of msg.sender 

is called. As the implementation of this fallback function will 

not be known during testing, we have to assume every 

possibility, including calling back into itself, other functions 

of the same contract, or those of yet another external contact. 

This features open up a lot of unexpected control flow paths 

that we need to incorporate into TCFG and test thoroughly.  

In order to address this feature, we create a virtual sub-

flowgraph to represent what might possibly happen in the 

unknown external function, which is illustrated at the top-right 

corner of the TCFG in Figure 4. Essentially, this subgraph 

contains a loop of calls into any public/external functions of 

the contract. As the called functions might revert, the subgraph 

also adds a revert node to support cascading revert. 

 To summarize, the definition of TCFG is as follows: 

Definition 1: A transaction control flow graph (TCFG) 

for a smart contract c is a graph <V, E> where V is the set of 

vertices and E is the set of edges. Vertices in V are divided into 

subsets: Ventry, Vexit, Vexpr, Vpred, Vrevert represent entry, exit, 

expression, predicate, and revert nodes; Vcall, Vret represents 

call node and return node at the callsite; Vt-entry  Ventry 

represents transaction entry node. Edges in E are divided into 

subsets Eflow, Ecall, Eret, Erevert, Ecascading-revert. Eflow are intra-

procedural edges between nodes in V, and Ecall  Vcall  Ventry, 

Eret  Vexit  Vret, Erevert  Vexpr  Vrevert, Ecascading-revert  Vrevert 

 Vrevert.              

Definition 2: A node sequence p = (n1, n2, …, nk) is a 

whole transaction path (WTP) in a TCFG <V, E> if p satisfies 

the following requirement: (1) n1Vt-entry and nk  Vexit  Vrevert; 

(2) (ni, ni+1)  E; (3) Let f1, f2, …fw be the set of all functions 

in the contract and let p be a subsequence of p where all nodes 

in p are removed except for those in Ventry, Vexit, and Vrevert,  then 

p must match the following context free grammar: 

S ::= Entryf1  S Exitf1  |  Entryf1  S Revertf1  

…… 

S ::= Entryfw  S Exitfw  |  Entryfw  S Revertfw   

S ::= S S | ε        

The contract in Figure 3 and Figure 4 can both generate 

infinite numbers of WTPs. For the example in Figure 3, this is 

because of the loop at line 2-8. For that in Figure 4, this is due 

to the reentrancy at line 3 can recycle infinitely through the 

unknown external function. Therefore, directly defining 

coverage criteria for smart contracts with WTP could make 

testing intractable. To address this issue, we provide a solution 

inspired by the widely used and studied method of basis path 

testing proposed by Thomas McCabe [28].  

The idea of basis path testing is to consider the (usually 

infinite) set of paths in CFG as a vector space. The basis of a 

vector space contains a limited set of vectors that are linearly 

independent of one another, and have a spanning property: 

everything within the vector space can be expressed in terms 

of the elements within the basis. McCabe argued that by 

rigorously testing the path in the (always limited) basis set, 

most of the defects can be exposed, therefore there is no need 

to test every path in the  (potentially infinite)  whole set.  

Formally, for a control flow graph G with k edges e1, e2, …, 

ek, a path p is represented as a vector x1, x2, …, xk, where xi 

is the number of time edge ei occurs in p. A path set P is 

function depositFunds() public payable { 

1:   balances[msg.sender] += msg.value; 

} 

function withdrawFunds (uint256 withdraw) public { 

2:   _withdrawFunds(withdraw); 

} 

function _withdrawFunds (uint256 withdraw) internal { 

3:   bool result=msg.sender.call.value(withdraw)()); 

4:   require(result); 

5:   balances[msg.sender] -= withdraw; 

6:   lastWithdrawTime[msg.sender] = now; 

} 

3call
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Whole transaction basis path set for withdrawFunds: 

(w-2call-(i-3call-(ext-b-)ext-3ret-4-5-6-)i-2ret-)w 

(w-2call-(i-3call-(ext-b-)ext-3ret-4-Reverti-Revertw 

(w-2call-(i-3call-(ext-b-dcall-(d-1-)d-dret-b-)ext-3ret-4-5-6-)i-2ret-)w 

(w-2call-(i-3call-(ext-b-wcall-(w-2call-(i-3call-(ext-b-)ext-3ret-4-5-6-)i-2ret-)w-wret-

b-)ext-3ret-4-5-6-)i-2ret-)w 

(w-2call-(i-3call-(ext-b-wcall-(w-2call-(i-3call-(ext-b-)ext-3ret-4- Reverti-Revertw- 

Revertext- Reverti- Revertw 

Cyclomatic Number  =  28 - 25 + 2 = 5 

 

Figure 4: A smart contract with unknown external 
function call and exception-handling 



 

 

linearly independent if none of the path in P is represented by 

a vector that can be expressed as a linear combination of 

vectors of other paths. A linearly independent path set P is 

called the basis path set of G if every path in G can be 

expressed as a linear combination of paths in P. 

Previously, the basis path set is only defined intra-

procedurally on CFG. We now extend it to TCFG. 

Definition 3: Given a TCFG and a transaction entry node 

n, a path set P is called the whole transaction basis path set 

of n, or WTPBS(n) for short, if: 1) every path in P is a WTP 

that starts from n; 2) P is linearly independent; and 3) every 

WTP that starts from n can be expressed as a linear 

combination of paths in P.                                                     

Note that the set of paths that satisfies this requirement 

might not be unique. In this case, we can designate any of such 

sets as the whole transaction basis path set of n. 

C. Bounded Transaction Interaction 

The above definitions only involve the paths inside 

individual transactions. We now introduce the definition on 

inter-transaction control flow.  

Definition 4: Given a dapp <A, C> and upper bound k, a 

sequence q = (a1, c1, f1, o1), (a2, c2, f2, o2), …., (ak, ck, fk, ok) 
is called a k-bounded transaction interaction if: for every (ai, 

ci, fi, oi) there exists some values of e, I, R, L that makes < ai, 

ci, fi, e, oi, I, R, L> be a feasible transaction of dapp.         

III. COVERAGE CRITERIA 

Based on the above definitions, we are ready to define the 

coverage criteria for smart contract testing. Firstly we shall 

define the basic coverage requirement: 

Definition 5: Given a dapp and upper bound k, a k-

bounded transaction coverage requirement is defined as a 

tuple (q, w), where q = (a1, c1, f1, o1), …., (ak, ck, fk, ok)is a k-

bounded transaction interaction, and w is a set of paths p1,…, 

pk such that for i=1, 2, … k, pi  WTPBS(Entryfi
) and ends 

with Exitfi
 if ok is success, or Revertfi

 if ok is revert.                     

A test case of a smart contract application dapp  <A, C> is 

defined as a tuple (, ), where  maps each external account 

a in A to its balance in Ethers and  is an input sequence (a1, 

c1, f1, e1, I1), …, (an, cn, fn, en, In). Each item (ai, ci, fi, ei, Ii) 

defines the input for a transaction: ai is the external account, ci 

is the contract, fi is the external/public function, ei is Ethers 

sent with the transaction, and Ii is the message call data. All of 

them can be either constant or calculated from transaction 

outputs, logs, view/public function call return values from 

previous transactions execution results.  A test case is valid if 

the input sequence can be executed on Ethereum from a state 

where none of the contract in C have been deployed (that is, a 

clear state).   

Intuitively, given a dapp <A, C>, we said that a test case s 

covers a k-bounded transaction coverage requirement r= (q, 

w)  if we execute s on a clear state, and the Ethereum 

blockchain generates a sequence of transactions T1, T2, … Tn 
from which we can find a substring Ti, Ti+1, … Ti+k-1 that 

matches the transactions and basis paths specified in r. A 

coverage requirement is feasible if there exists at least one test 

case that can cover it. 

Definition 6: Given a dapp and upper bound k, a set of 

smart contract test cases S achieves k-bounded transaction 

coverage criteria if for every feasible k-bounded transaction 

coverage requirement r, there exists at least one test case s in 

S such that s covers r. 

With the different values of k, we can obtain a family of 

coverage criteria with increasing numbers of coverage 

requirements, and therefore require increasing numbers of test 

cases to satisfy. When the value of k reduced to 1, it becomes 

essentially whole transaction basis path coverage without 

considering the interaction between transactions. 

IV. ALGORITHMS 

Testing a smart contract application with k-bounded 

transaction coverage criteria essentially involve four steps: 1) 

enumerate all coverage requirements; 2) generate at least one 

test case to cover each feasible coverage requirement r; 3) 

implement a test oracle to check test outcome correctness; 4) 

run every test case to find potential failure. In this section we 

introduce the algorithms for step 1, while the algorithms on 

test data generation and test oracle are put in future work. 

Algorithm 1 shows how to generate whole transaction 

basis path set. The idea is to start with a baseline WTP, then 

vary exactly one decision outcome to generate each successive 

WTP until the size of the path set reach Cyclomatic 

Complexity number. The proof on the correctness can be 

Input: a TCFG <V, E>, a transaction entry node n in Vt-entry 

Output: WTPBS(n) 

1:  Find p as the WTP that starts with n with the least predicate nodes  

2:  P  = {p}   

3:  V = {v  V | v is reachable from n}, E={(v1,v2)  E | v1, v2V} 

4:  while | P | < | E |  | V | + 2  //Cyclomatic Complexity number 

5:        Let p = (n1, n2, …, nk), find the smallest i such that (ni, ni+1) 

6:        has not occurred in any path in P.  

7:        Find another WTP p with the prefix (n1, …, ni, w), w  ni+1 

8:        if no such p is found, then break 

9:        P = P  {p},  p = p  
10: return P  

Algorithm 1: Whole transaction basis path set generation 
 

Input: a dapp <A, C> and the bound k 

Output: all k-bounded transaction coverage requirements 

1:   R  =    

2:   U = the set of all valid 4-tuples (a, c, f, o) where a  A, c  C,  

3:          f  public/external functions of c, o  {success, revert}      

4:   Q = all length-k permutations on U 

5:   while |Q|  0 

6:       pick a permuntation q and remove it from Q 

7:       for each (ai, ci, fi, oi) in q, pick a path pi from WTPBS(Entryfi) 

8:       pi must end with Exitfi if oi is success, or Revertfi if oi is revert 

9:       enumerate all such p1, p2, …, pk, add it into R. 

10: return R 

Algorithm 2: k-bounded transaction coverage  
requirement generation 



 

 

derived from the proof in [28]. We omit it due to a lack of 

space. 

Algorithm 2 shows how to generate all k-bounded 

transaction coverage requirements. Essentially, the algorithm 

is to enumerate all possible length-k permutation of 

transactions, and the enumerate all possible paths for each 

transaction from WTPBS(n) we derive from Algorithm 1. 

V. CASE STUDY 

We perform a case study on a real world smart contract 

application Pool-Shark hosted at [31]. The whole application 

consists of 12 contracts with 19 functions in total, among 

which 9 are public/external functions that can be a transaction 

entry. We choose Pool-Shark because its scale and complexity 

is representative of common applications hosted on Ethereum 

[33], [34]. To facilitate the repeat of our case study, we publish 

all the faulty versions and test cases at [35]. 

In the case study, we are mainly interested in two research 

questions: 

Q1: Are the k-bounded transaction coverage criteria more 

effective than conventional code coverage criteria, in the sense 

that test suites satisfying the former can detect more bugs than 

those satisfying the latter? 

Q2: Are the k-bounded transaction coverage criteria more 

efficient than random testing as a baseline, in the sense that a 

test suite satisfying our coverage criteria can detect more bugs 

than a test suite of the same size, but generated randomly? 

In order to address these two questions, we used the 

sufficient mutation operators [36] (such as operator-

replacement, variable-replacement, and statement-omission) 

to seed 22 mutation faults into the source code of Pool-Shark, 

producing 22 faulty versions with one fault in each version. 

As the test requirements quickly explode with an increasing 

bound k, we set the value of k as 2. 

As mentioned in Section IV, the whole testing process 

consist of four steps. In step 1, we apply the algorithms 

defined in Section IV to enumerate all the coverage 

requirements. With the value of k as 2, Pool-Shark generates 

729 coverage requirements in total. In step 2, we first use 

symbolic execution to solve the path constraints for each 

coverage requirement. The objective is to derive the contract 

state that can trigger a transaction sequence that cover the 

requirement. Next, we manually construct a transaction 

sequence that can get to this state. By combining the two 

sequences we get a complete test case. In step 3, we record the 

transaction execution outcome, event logs, and the return 

values of all pure/view functions of the correct version as test 

oracle. In step 4, the Truffle framework [37] is used to execute 

the test script. This process is repeated for statement coverage 

testing. The only difference is in step 2, where the coverage 

requirement is changed to every executable statement in Pool-

Shark. 

With the above process, we generate 81 test cases for k-

bounded transaction coverage criteria and 9 test cases for 

statement coverage criteria. Note that the number of test cases 

are significantly less than the number coverage requirements. 

It is due to the fact that one test case can cover multiple 

coverage requirements. Moreover, not all of the coverage 

requirements are feasible. To compare with random testing, 

we also construct a random test suite by randomly generating 

a transaction sequence with random message call data.  

The comparison result is shown in Table 1. It can be 

observed that the k-bounded transaction coverage testing is 

significantly more effective than statement coverage testing, 

as it detects nearly 55% more faults. In fact, all but two of the 

faults are detected by our testing technique. After manual 

examination, we find out that these two faults are indeed 

equivalent mutants and therefore, there is no test case that can 

detect them. At the same time, the k-bounded transaction 

coverage testing is more efficient than random testing: with 

the same number of test cases, it detects 18.2% more faults.  

This suggests our proposed criteria can be of practical value 

to smart contract developers. 

VI. RELATED WORK 

Existing vulnerability detection approaches can be 

classified according to their underlying techniques. Some of 

them rely on static program analysis. For example, systems 

including Oyente [38], Maian [11], Teether [12], Gasper [13] 

and the work by Grossman et al. [39] use symbolic execution 

to explore whether there exists paths that can trigger any 

known vulnerability, while ContractFuzzer [40] uses random 

fuzzing to find vulnerability instead. Other works rely on 

formal verification tools. For example, Zeus [14] uses abstract 

interpretation and constrained horn clauses, Vandal [41] uses 

Datalog theorem prover, and Grishchenko et al. [42] use F* 

theorem prover. Our work is complementary to these works. 

There is a plenty of work in the literature on testing 

coverage criteria [43]. Those that are widely referred to 

include the control flow coverage criteria [21], dataflow 

coverage criteria [22], logic coverage criteria [44], interface 

coverage criteria [24], and mutation score [36]. Our proposed 

k-bounded transaction coverage criteria share some of the 

ideas in the basis path coverage and interface coverage criteria. 

The merit of our work is that we extend these ideas to address 

the unique characteristics of the smart contract program model. 

VII. CONCLUSION 

The importance of smart contract testing has been 

recognized, but there is a lack of research on how to 

systematically test smart contract application. In this paper, 

we analyze the unique characteristics of Ethereum smart 

contract model and propose the notions of whole transaction 

basis path set and bounded transaction interactions. Based on 

these two notions, we define k-bounded transaction coverage 

criteria for smart contract testing. We conduct an experiment 

Table 1: case study result 

Testing method 

#. of logic 

faults 

detected 

%. Of 

detected 

faults 

k-bounded transaction coverage 20 90.9% 

Statement coverage 8 36.3% 

Random 16 72.7% 



 

 

to study its effectiveness. The initial results show that testing 

based on k-bounded transaction coverage criteria can be more 

effective than the conventional testing methods such as 

statement coverage testing and random testing. In future work, 

we will address the test generation problem that has not been 

covered in this paper. 
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