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Abstract—Bitcoin is the first secure decentralized electronic
currency system. However, it is known to be inefficient due
to its proof-of-work (PoW) consensus algorithm and has the
potential hazard of double spending. In this paper, we aim
to reduce the probability of double spending by decreasing
the probability of consecutive winning. We first formalize
a PoW-based decentralized secure network model in order
to present a quantitative analysis. Next, to resolve the risk
of double spending, we propose the personalized difficulty
adjustment (PDA) mechanism which modifies the difficulty of
each participant such that those who win more blocks in the
past few rounds have a smaller probability to win in the next
round. To analyze the performance of the PDA mechanism,
we observe that the system can be modeled by a high-order
Markov chain. Finally, we show that PDA effectively decreases
the probability of consecutive winning and results in a more
trustworthy PoW-based system.

Keywords-personalized difficulty adjustment, proof-of-work,
high-order Markov chain, state reduction

I. INTRODUCTION

In 2008, Satoshi Nakamoto [1] published a breakthrough
decentralized cryptosystem called Bitcoin, which ushered
in an era of fully distributed trust network. Ten years
have passed since its publication and Bitcoin is indeed
a successful electronic currency. Many papers have been
published for Bitcoin applications [2], however, very few
are ever materialized. We believe that there are two main
reasons for this phenomenon: the intrinsic overhead of the
Bitcoin construction and the security hazards [3] [4] such as
double spending.

The intrinsic overhead of Bitcoin lies in two parts of
the system: the information propagation and the proof-of-
work mechanism. The former is strongly related to the
synchronization and consensus issue. Karame et al. [3] [6]]
initiated the study of fast payment in order to accelerate the
transaction confirmation in Bitcoin and found out that the
double spending probability is non-negligible. Bamert et al.
[7] proposed securing fast payments, which improved the
previous studies. They showed that under their construction
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the double spending probability diminishes to less than
0.088%. Stathakopoulou et al. [8] introduced a faster Bitcoin
network based on the pipeline. They showed that increasing
the locality of connectivity among each node can accelerate
the information propagation. By implementing a Content
Distribution Network, they achieved 60.6% average speed
up. From these works, we see that resolving the intrinsic
overhead by accelerating the information propagation has
limited performance.

As a result, we tried to fix the intrinsic overhead of
Bitcoin network, or the PoW-based network, by proposing
a new difficulty adjustment mechanism. The main focus is
to strengthen the power of PoW so that it can guarantee
stronger security.

A. Proof-of-Work (PoW)

In a PoW system, every participant has the right to be the
verifier, but with a different probability. The probability to
be selected as a verifier depends on how much he or she has
devoted to the system. That is, the more one contributes to
the system, the higher probability he or she has to be selected
as a verifier. The mechanism to evaluate the amount of
devotion is the so-called proof-of-work. Practically speaking,
each participant keeps computing hash values of the header
of a block. And the first one who finds a small enough hash
value will be regarded as the verifier for the current block.

B. Double Spending

However, there is a potential hazard that the verifier is
an attacker. Attackers might modify the transaction record
and benefit themselves. In [[1]], Satoshi referred to this kind
of situation as double spending in which the verifier spends
the same money twice, which is definitely not allowed to
happen in a trusted system.

The original double spending scenario in [1] considers
the possibility that some attackers in Bitcoin system build
their own blockchain instead of mining on the main chain.
The attackers build a private blockchain that is longer than
the public chain. Thus, other participants in the system will
adopt the longer one, which in this case is the attackers’



private blockchain. The attackers produce some fake trans-
actions in its private blockchain, usually by removing the
records of their spendings so as to spend that money again
in the future. Once these fake transactions such as a double
spending one, merge into the main blockchain, the trust of
the system will break down.

C. High-order Markov Chain

Raftery [9] proposed the Mixture Transition Distribution
model (MTD) in 1985 which models the high-order Markov
chain with a lag coefficient. Later, Berchtold and Raftery
[1O] generalized the idea into multi-matrix MTD, infinite-
lag MTD, spatial MTD, etc., which can be used in various
applications. In 2005, Ching et.al. [L1] [12] relaxed the
constraints in MTD model and yielded a more general
results. Recently, Li and Ng [13|] used probability tensor
to model the high-order Markov chain, and found some
sufficient conditions for the existence and uniqueness of
stationary distribution.

However, these previous works are not quite the same as
what we focus here. They generalized the Markov property
into high-order Markov chain, which conditions on more
than one past states, and emphasized on the stationary
distribution or asymptotic behaviors of a single state. Here,
we not only utilize the high-order Markov property but also
obtain the stationary distribution or asymptotic behaviors of
a sequence of states. In other words, the event we care about
is a period of time or state, not a single snapshot.

In personalized difficulty adjustment PoW system, what
we concern is the double spending events in the scenario of
consecutive winning by the same party. This paper presents
the model to minimize the likelihood of spending the same
coin twice and its corresponding results in Geoin [14][15].

II. MODEL

We use a general stochastic process to model the PoW
system and construct the personalized difficulty adjustment
PoW system step by step. We start from the traditional PoW
system in Section then we introduce the concept of
personalized difficulty adjustment in Section [[I-B] and give
an example of difficulty function in Section

A. Traditional PoW system

First, note that the system is basically a discrete system.
Namely, the system is composed of a sequence of blocks,
and it’s sufficient for us to use the index of each box to
order the configurations in the system. In the following
construction, we use the small letter b to denote the order
index of the block we are at.

Next, there are n participants in the system competing for
solving hash values. Each of them intrinsically has his own
computing power, denoted as C;(b), where ¢ refers to the
index of the participant and b is the block index. Besides the

computing power, there is a time-varying parameter record-
ing the difficulty of the system. We denote the difficulty for
competing block b as D(b), with computing power {C;(b)}
and difficulty {D(b)}. It is sufficient to model the traditional
PoW system with a two-tuple stochastic process as follows.

Definition 1 (traditional PoW system).
A traditional PoW system is a 2-tuple

Biraa. = ({C;(b) :i =1,...,n; be N}, {D(b): b N}),

where C;(b) is the computing power of player i and D(b)
is the difficulty of the system at the b‘" block respectively.

At block b, participant ¢ has computing power C;(b) and
is assigned with difficulty D(b). Each of the participants
then keeps computing hash function until one of them finds
a valid hash value. The probability of participant ¢ to win at
block b is proportional to %(f)) ~ C;(b). This observation is
formally stated in Theorem [I] and is proved in Appendix [A]

B. Personalized Difficulty Adjustment (PDA) PoW System

To simplify the problem, we assume all the nodes in PoW
networks have the same computing power. A PDA PoW
system modifies the dynamic parameter of itself according
to the recent outcomes in the system. For example, in this
system [Figure [I]l, the difficulty index of each player will
be configured according to the past winners in recent blocks.
Suppose player A wins 4 blocks in the past 6 blocks, then
his difficulty will be higher than player B who only wins 1
block in that period. Intuitively, we can think of the scenario
as a dynamic stochastic process in which the transition
mechanism will depend on a period of past results.

To formalize a PDA PoW system, there are three ele-
ments we need to add into the system: the winning history,
the number of past blocks we concern, and the difficulty
function.

The winning history records who wins the block from the
beginning till current block b denoted as {W(b)}, where
W (b) denotes the winner at the bth block. Next, we denote
the number of past history as k. That is to say, if we are at
block b, then we are going to consider the winner at blocks
b—1,b—2,...,b—k. The difficulty function is specified by Uy
from the past winning history to a difficulty assignment for
every player. Thus, we define PDA PoW system as follows:

Definition 2 (personalized difficulty adjustment proof-of—
work system).

Winning History

a| o] af [2f o] 4l
e | A | o ¢
D D

Difficulty 16D

Figure 1: Example of personalized difficulty adjustment.



A PDA PoW system with n participants (players) is a 5-
tuple

B=({C;(b):i=1,..,n; be N},
{D;(b) :i=1,..,n; be N},
{W(b) : b e N}, k, ¥y),

where

— C;(b) € C denotes the computing power of player i
at block b. For simplicity, if not specified, we assume
the computing power of each player is a constant
and remains all the same. Intuitively, we can think of
computing power as internal power.

— D;(b) € D denotes the difficulty of player i at block b.
Intuitively, we can think of difficulty as external power.

- W(b) € {0,1,...,n — 1} denotes who wins at block b.

— k is the number of blocks we look into the past.

— Wy is the difficulty function that looks into k past
blocks.

The process is actually overdetermined. The difficulty
{D;(b)} are recursively defined by the winning history
{W(b)}, the number of blocks we look in the past k
and the difficulty function Wj. Similarly, we denote the
probability of the ith player to compute for block b as
P;(b). And for convenience, we denote the recent m histories
{w®) =1 W b=m+1 a5 m-history.

The probability of winning matters the most. With some
probability argument, we can derive a simple relation be-
tween winning probability, difficulty, and computing power
stated in the following theorem.

Theorem 1. The winning probability of player i at block
b is proportional to the winning probability divided by
the difficulty. That is, Pi(b) ~ g((g)) The proof is left in
Appendix [A]

Intuitively, Theorem|I]tells us that the winning probability
of each player is proportional to the ratio of computing
power and the assigned difficulty. As a result, once this
ratio is approximately the same for all participants, then the
winning probability will close to uniform.

With Theorem |I} we calculate the winning g)robability
for player 7 at block b by dividing its ratio G0 with the

D;(b)
summation of all ratio Z;’:—Ol gj((z)) And Theorem |1| tells

us the winning probability is proportional to the rafio of
computing power and difficulty. Thus, it’s convenient for us
to analyze the whole system.

C. Difficulty function

Definition 3 (difficulty function).

A difficulty function that considers k past blocks Uy, :
{0,1,....,n—1}* — [0, 1]" is a mapping from k past history
W(b—1),W(b—2),...,W(b—k) to a difficulty vector for
n players: D1(b), Da(b), ..., Dy, (b).

Also, with Theorem we assume Z;L;Ol Dj(b) =1 for
simplicity.
Example II.1 («a-exponential non-ordered difficulty func-
tion). Denote the winning times of player i in the past k
blocks from current block b as w;(b) = 2521 Lew (b—j)=i}-
An a-exponential non-ordered difficulty function W§ maps

D;i(b) = (Up(W(b—1),W(b—2),..W(b—k)))
awi(b)

%

= 427:_01 awi(b)

Suppose we take o = 2,n = 3,k = 3 and every player
has the same computing power. If the 3-history right now
is (W) = 0,W(b-1) = 2,W(b—2) = 0), then the
winning times of each player is:

The difficulty for each player at block b+ 1 is:

Db 2wo(b+l) 22 4
]. = = e
o(b+1) S22 2wt 224204217 7
2w1(b+1) 20 1

1b+1) 522wty 22420421 T 7
quwz(b+1) 9l 2

20+ 1) = 5= Py 4ol 7

ijo Qw; (b+1)

The winning probability for each player at block b+ 1 is:

Pr[0[0,2,0] = 21/D°(b+ H _1
> =0 1/Dj(b+1) 7
Pr{1)0,2,0] = — /26D 4
di—ol/Djb+1) 7
Pri2(0,2,0] = — /P20 + D :%

Yo 1/D(b+1)

p.s. we denote Pr[W(b+1) =21 |[W(b) =22, W(b—1) =
x3, W(b —2) = 4] as Prizy|xs, 3, 4]

This example shows the intuition of a—exponential non-
ordered difficulty function: the winning probability at block
b+ 1 is proportional to o+ (0+1),

III. RATE OF CONSECUTIVE WINNING

Now we want to examine how well the PDA mechanism

prevents us from consecutive winning.

We define the scenario we care about.

o Setting: A PDA PoW system with n players: B =
({Ci(b) i = 1,.,n; b € N}p{D;(b) : i =
1,..,n; b € NEL{W() : b € N}k, ¥y). Assume
the computing power is constant for each player, i.e.
" =" Vi, j € {0,..on — 1}, Vb,V

e Goal: We want to know the probability of
player 1 consecutively winning for % time,



ie. lim, o0 Pr{W(n) =
1,..Wh—-k+1)=1].
First, we consider the case with no difficulty function
(or we choose the 1—exponential non-ordered difficulty
function).

A. No difficulty function

As the winning probability for each player at a single
block is all the same: %, the probability of player 1 to
consecutively win k blocks is (1)*. From another point
of view, we can think of this as a no-difficulty-case as the
winning probability of each block is i.i.d while, in other
cases the winning probability of each block is correlated.

1,W(n—1) =

B. Arbitrary difficulty function

And then we consider choosing an arbitrary difficulty
function Wj;. However, since the winning probability of
each block is correlated, we can not simply utilize the
i.id. property to calculate the goal: lim,, o, Pr{W(n) =
IL,LWn-1) = 1,..,W(n—-k+1) = 1]. Instead, joint
probability of consecutive blocks should be considered as:

PrW(b+1) = i|W(b), ..., W(1)]
= PrIW(b+1) = i|W(b), ... W(b—k +1)]

We find out that system obeys high-order Markov chain,
or k-th order Markov property.

Definition 4 (high-order Markov chain). The idea of high-
order Markov chain is as follows.

The transition probability of a stochastic process is only
conditioned on the previous k events. Formally, suppose
(X,) is a k-th order Markov chain over state space X,
then forn > k and Vr; e X,0<i<n-—1,

PIX, = x| Xp_1=21,..X1 = Tp_1]

= P[Xn = $O|Xn71 =T1, e Xpog = l’k]

Therefore, we can directly encode the winning probability
into a transition matrix as we regard each possible £ history
as a state. Formally speaking, we define the state space of
the Markov chain as M(B) = (S, P), where S is the state
space and P is the transition probability function.

- S =1{1,...,n}*: the k history.

- P:Sx%xS8 — [0,1]: suppose s = (81,...,8%),8 =
(sh,...,8}) then
Cyr (b)
<‘I/k(s)>5/1
n—1_Cy(b)
» / Zz:() <‘Pk(5)>z
(5,5") = if si=si Vi=1,..,k—1,

0, otherwise.

where (¥, (s)>l is the difficulty for player ¢ conditioned
on history s.

Let W (b) be the probability vector over S denoting the
probability of & past history started from block b. Then, the
stationary distribution of k past history is W, that satisfies
Wi, = limp_yoo Wy (b). Or, equivalently, Wy, = PW,.

C. a—exponential non-ordered difficulty function

Suppose we choose the aw—exponential non-ordered dif-
ficulty function in a n participants, k past history PDA
PoW system B. Then, we get M(B) = (S5, P), where
S=1{1,..,n}* and

"Ulsi
Vsimam _ 1/a™
—1 w; - —1 IR
>ico 1/ Z?io a7 Do L/a™
Zf S; = 8;+1Vi = 1, ,k - 1,

0, otherwise.

Here we calculate the probability of consecutive winning
with the different number of past history and different
difficulty functions. The number of participants is 5.

Table I: Probability of consecutive winning. n = 5.

2 3 4 5
No difficulty 4e-2 8e-3 1.6e-3 | 3.2e-4
2-exponential non-ordered | 2.34e-2 | 1.59e-3 | 6.14e-5 | 1.35e-6
5-exponential non-ordered | 1.12e-2 | 1.64e-4 | 6.38e-7 | 6.74e-10

D. Calculation issue

We have discussed the probability of consecutive winning
with different difficulty functions. And in Table [I| we show
that the probability of consecutive winning drops down
obviously as we increase the number of past history and
the difficulty ratio a.

However, once we increase the number of participants, the
size of transition matrix drastically increases. For example,
if we consider 4 past history, the number of states in the tran-
sition matrix of 5 participants is 5* = 625. As we consider
20 participants, the number will become 20* = 160000,
which hardly can be computed by a normal computer! As a
result, once we create a new difficulty function and want to
see its performance of preventing from consecutive winning,
we cannot efficiently compute the results if there is a large
number of participants with the above calculation model.

When looking deeper into the transition matrix, we can
find out that there are so many 0’s. Namely, the matrix is
extremely sparse.

IV. STATE REDUCTION

While the number of states grows up, the outcomes are
full of super-symmetry. We intuitively put them all together



and reduce the number of outcomes, which will drastically
reduce the computation.

A. Abstract model

We find out that PDA PoW system and the basic dynamics
share many similarities. However, some parameters in PDA
PoW system change over time according to the outcome
makes it more complicated. Therefore, we divide the system
into two parts: The base rules and the parameters. Moreover,
the parameters can also be categorized into fixed parameters
and dynamic parameters.

The PDA PoW system has the base rules analogous to
the basic mechanisms such as mining policies, proof of
work, timestamps, etc. The parameters are the number of
players, computing power, difficulty function, difficulty etc.
We formalize the abstract model of PDA PoW system as
follows:

Table II: Analogy in PDA PoW system.

Basic rules Mining policies, proof of work, timestamps.

. Difficulty function, number of players*,
Fixed
Parameters computing power.
Dynamic | Difficulty.

We define the fixed and dynamic parameters respectively
as follows:

Definition 5 (fixed parameters).
The fixed parameters of PDA PoW system, denoted as 0,
is a 4-tuple
9f = {n, {Cl}, k‘, \I/k}

, where

o n: number of players.

o {C;}: computing power of each player.

o k: number of history considered in the difficulty func-
tion.

o Uy the personalized difficulty function.

Definition 6 (dynamic parameters).
The dynamic parameters of PDA PoW system on block b,
denoted as Héb), is a 2-tuple

6 = ({D"}, {w®}},

where

. {ng)}: the difficulty of each player of block b.
o {W®)}: the winning history in the system.

B. Framework

There are three steps in the reduction process:
1) Reduce states.

2) Transition matrix.

3) Stationary distribution.

In the first step, Reduce states, we scan through all possible
past configurations and generate reduced states. Next, Tran-
sition matrix, we construct the corresponding transition
matrix according to the reduced state, the basic parameters of
the system, and the decay parameter of the exponential non-
ordered model. Finally, Stationary distribution, we use an
iterative method to find the stationary distribution of reduced
transition matrix and obtain the stationary probability of
consecutive winning.

1) Reduce states

We construct a mapping from the standard state space to
the reduced state space based on the intuition in Section
Formally, we define the standard state space and reduced
state space as follows:

Definition 7 (standard state space). The standard state space
of the PDA PoW system, denoted as S, is the m-Cartesian
product over the player space.

Ss:={0,1,....,n — 1},
which is the state space for m-history.

Definition 8 (reduced state space). The reduced state space
of the PDA PoW system, denoted as S, is a subset of Ss
defined as follow:

Sy = {(81,..,8m) € S5 :

VO <i < j <m, il L=y 2 2pmy oy}

. . . m m
Vo< i< 1< m,lf Zk:l 1{sk:i} = Zk:l 1{Sk:j}’
then arg mini<g<m lis,—i) < argmini<g<m lis,—j

which is the reduced state space for m-history.

Note that the first constraint regulates the number of the
smaller index should not be less than the number of the
larger index. And the second constraint regulates if two
indices appear the same number of times, the smaller index
should appear first.

After defining the standard state space and reduced state
space, now we are going to construct a mapping between
them. And this is trivial since we can directly get the
mapping by the definition of reduced state space.

Definition 9 (Reduced mapping). A reduced mapping from
standard state space S to reduced state space S, denoted
as R: S5 — S,. Vs = (81,...,8m) € Ss, R(s) is defined as
follow

R(s) = (81, 8m) € Sr 8.t Vi # j,5;, = 8 & 5 = 55,
and Vi sit. s, =0& s, =0

Here, we give an example of a PDA PoW system. For
general application, one should observe the structure in their
system and find a good way to reduce the number of states.

2) Transition matrix

In this step, we are going to formalize the transition func-
tion over the reduced state space, i.e., we apply the reduced



mapping on the standard transition function. Suppose the
standard transition function defined on standard probability
space is Ps : S; — Ss. Then we define the reduced transition
function as follows:

Definition 10 (reduced transition function). Suppose Ps :
Ss — S5 is the standard transition function, then the
reduced transition function, denoted as P, : S, — S, is
defined as

o Z{SZR(S):ST} Z{s’:R(S’):S'r} P8(57 S/)
N number of {s : R(S) = Sr}

P.(s,s.):

3) Stationary distribution

To define the notion of stationary distribution in reduced
state space, we need to specify the notion of the probability
distribution over reduced stated space. We denote the space
of probability distribution of reduced state space as

Pr = A{pr = (p1,.-,p15,)) :
|Sr]
pi = 0V1I<i<[S,[,> pi=1}
i=1
Note that we can view the stochastic process W1 W ()
as another stochastic process of m-history:

{(w® we=b _wemiiy,
{w D) gy ®) gy bmm+2)n

Moreover, we describe such stochastic process with random
variables Wm(b),W,sfH), ... where the support of W,gf) is
S,.. As a result, the distribution of W&b) can be represented
by probability distribution in P,.. That is, W ~ p® € P,.

Finally, we can define the stationary distribution of the
stochastic process W®) WO+ " in the sense of m-
history as follows:

Definition 11 (reduced stationary distribution of m-history).
Suppose p € Py, we say p is a reduced stationary distribu-
tion of reduced transition function P, if

D= Pr(pv )
C. Analysis

Table shows the probability of consecutive winning
with different system settings.

V. DISCUSSION

We have shown that the probability of consecutive win-
ning is drastically decreased after using the personalized
difficulty adjustment proof-of-work mechanism. See Ta-
ble The likeliness of double spending is decreased as
the result. In this section, we will first summarize the results
and compare with other’s works. Then, discuss the major
assumption, address identifiability, in this work. In the end,
we will elaborate on some future works and open questions.

Table III: Probability of consecutive winning.

mk |1 ]2 3 4 5 6

1 |1 1 1 1 1 1

2 05 | 019 |556e-2 | 1.18¢-2 | 1.80e-3 | 1.97¢c-4
3 | 034 | 7.30e-2 | 1.04e-2 | 9.4le-4 | 5.39¢-5 | 1.94e-6
4 025 383e2 | 3.52¢-3 | 1.93¢-4 | 6.25¢-6 | 1.20e-7
5 020 | 235¢2 | 1.59-3 | 6.14¢-5 | 1.35¢-6 | 1.70e-8
6 | 0.17 | 1.59e2 | 8.46e-4 | 2.52¢-5 | 4.17¢-7 | 3.84e-9
7 [ 0.14 | 145¢2 | 5.03e-4 | 1.21e-5 | 1.60e-7 | 1.14e-9

A. Summary and comparison

In Table we summarize the consecutive winning
probability from different mechanisms. The first row is the
consecutive winning probability computed from the program
in [1f] and the following two rows are the results from the
PDA for PoW mechanism we have proposed.

Table IV: Summary: Attacker has 10% computing power.
Mechanism) k 1 2 3

Bitcoin PoW 0.2046 0.0510 1.312e-2
PDA PoW: 2-exponential | 0.1011 0.0054 1.560e-4
PDA PoW: 5-exponential | 0.1030 0.0024 1.218e-5

Mechanism) k 4 5 6

Bitcoin PoW 3.455e-3 | 9.137e-4 | 2.428e-4
PDA PoW: 2-exponential | 1.214e-5 | 1.953e-8 | 8.447e-11
PDA PoW: 5-exponential | 1.412e-8 | 3.660e-12 | 2.135e-16

Clearly, the consecutive winning probability of PDA
mechanism decreases much faster than that of traditional
PoW setting. However, the double spending criteria in two
mechanisms are actually not exactly the same. The tradi-
tional PoW mechanism allows forking in their blockchain,
so the double spending probability in their estimation will
be a little higher than that under the address-identifiability
assumption.

B. Address identifiability

In the paper by Satoshi Nakamoto [1], he abandoned
address identifiability in favor of complete anonymity. As
a consequence, the traditional POW system such as Bitcoin
allows forking to happen in the blockchain and thus requires
an analytical model that is different from our high-order
Markov chain. In the analysis of our personalized difficulty
setting, we adopt the address identifiability assumption so
that the double spending probability will be smaller than
that in traditional fork-style PoW system.

VI. CONCLUSION

In this paper, we solve the intrinsic overhead problem of
proof-of-work-based blockchain by proposing a new PoW
mechanism. We first formalize it as a voting system and
then generalize it to a personalized difficulty adjustment
system. The adjustment mechanism balances the winning
distribution in the network because those who win a lot
recently will less likely become the next verifier. Next, we



use a high-order Markov chain to quantitatively model the
PDA system. Finally, we show that the consecutive winning
rate drastically decreases from 0.02% to 0.00000008% after
adopting the exponential non-ordered difficulty function. As
a result, PDA successfully decreases the probability of dou-
ble spending by proposing a modified PoW protocol instead
of the traditional approaches via information propagation.

However, the performance of accelerating the transaction
confirmation is not fully examined, which is a potential
future work. On the other hand, we would like to point out
the possible breakdown of a balanced motivation system.
Since we increase the difficulty for those who have won
recently, they might decide to have a break after winning and
thus damage the dynamics of the system. Related problems
were studied by Rosenfeld [16] and Kroll et al. [17] under
the traditional setting. Another future work is the analysis
of the winning distribution under PDA mechanism. It is
possible that the winning distribution under PDA may not
incentivize some participants, thus the PoW process suffers
sabotage. We are actively working on the analysis and its
implications.
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APPENDIX A.
PROOF OF THEOREM

Computing power C;(b) is the rate to calculate a hash
value; difficulty D;(b) here is the upper bound value the
participant is required to solve. For participant i, we model
the waiting time of solving the hash value for blocks as an
exponential random variable with mean o x Di(b) - Given
C;(b) and D;(b) with respect to a block b, the waiting time
T; is

T, it xp(a C;i(b)
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Therefore, the probability Pi(b) is proportional to

Ci(b)
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