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Abstract

In this paper, we study the quantization errors of modulo sigma-delta
modulated finite, asymptotically-infinite, infinite causal stable ARMA
processes. We prove that the normalized quantization error can be taken
as a uniformly distributed white noise for all the cases. Moreover, we
find that this nice property is guaranteed by two different mechanisms:
the high-enough quantization resolution [2]-[6] and the asymptotic conver-
gence of quantization errors for some quasi-stationary processes [7]-[9], for
different cases. But the assumption of the smooth density of the sampled
random processes is needed in all the cases.

1 Introduction

The use of high resolution theory for quantization error analysis dates back to
late 1940s [1]-[2]. In [2], Bennett demonstrated that under the assumption of
high resolution and smooth density of the sampled stochastic process, the quan-
tization error can be treated as an additive white noise. Since then, researcher
had further proven the following conclusion: “under most circumstances, the
noise is additively white and uncorrelated with the signal being quantized; and it
is uniformly distributed between minus half a quanta to plus half a quanta, with
a zero mean and a mean square as 1

12 of the square of a quanta” [6]. There are
already some nice surveys in this field, e.g. [3]-[6].

In [7]-[8], Chou and Gray studied the quantization error that is derived for a
modulo sigma-delta modulator driven by a quasi-stationary stochastic process.
They proved that the quantization errors for a causal stable MA process behaves
just as an additive white noise, if the sum of the regression coefficients for the
MA processes does not converges to zero.

In a recent report [9], we proved that the conclusion also holds for a fGn
process with the Hurst exponent H ∈ (0, 12 ). Such a fGn process can also be
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viewed as a special causal stable MA process; while the sum of its regression
coefficients converges to 0.

Inspired by this new founding, we will further prove in this short paper that
the conclusion holds for any causal stable MA processes. In the rest of this
paper, we will sequentially discuss the finite, asymptotically infinite and infinite
MA processes, and finally derive the conclusions for the general causal stable
ARMA processes.

Suppose the original signal x(n) is bounded within [−b, b] in a finite time
horizon [0, t]. An M -level uniform quantizer in [−b, b] is applied and the sample
rate and the resolution of the quantizer are high enough.

As shown in [8], by defining ∆ = 2b
M−1 , the normalized quantization noise

e(n) of x(n) through the modulo-limiter modulator can be written as

e(n) ,
1

2
−

〈

n−1
∑

i=0

(

x(i)

∆
+

1

2

)

〉

(1)

where 〈x〉 = x mod 1 is the fractional part of x.

2 The Results for Finite MA Processes

For the uniform quantizer, we have the following useful lemma.

Lemma 1 [2]-[6] Suppose x(n) is a special MA process

x(n) = z(n) (2)

where z(n) is a sequence of 1D random variables having an identical distribu-
tion with a smooth probability density function (actually z(n) does not need to
be independent). The distribution of the normalized quantization error e(n) un-
der modulo-limiter modulation converges to the uniform distribution in [− 1

2 ,
1
2 ]

under the assumption of high resolution. Moreover, the quantization error is
additively white and uncorrelated with the signal being quantized.

The term “under the assumption of high resolution” is frequently used in
quantization error analysis [6], [8]. Indeed, it indicates the existence of a suf-
ficient condition “under high enough resolution”, under which the conclusion
is true according to the criteria of uniformity of distribution and whiteness for
quantization errors. Normally, we will further determine which resolution level
is acceptable by numerical testing, with respect to the practical requirements.

The modulo sigma-delta modulation driven by a input as Eq.(2) can also
be viewed as dithering. As pointed out in [7], the limit distribution of the
normalized quantization error e(n) after dithering is the uniform distribution in
[− 1

2 ,
1
2 ] regardless of the distribution of the input signal.
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Lemma 1 immediately leads to the following result for more general finite
MA Processes.

Theorem 1 Define a causal stable MA process x(n)

x(n) = ψ(L)z(n) =
k
∑

i=0

ψiz(n− i) (3)

where z(n) is 1D i.i.d. stochastic process with a smooth probability density
function. k is a constant, k ∈ N. If ψi does not always equal to 0, for i = 1, ...,
k, the conclusion in Lemma 1 also holds if the other conditions are the same.

Proof 1 Define a process y(n) as

y(n) =

k
∑

i=0

ψiz(n− i) (4)

Consider the weighted sum of independent random variables [10]-[12], if ψi
does not always equal to 0, y(n) is therefore a sequence of random variables
having a certain identical distribution with a smooth density. Following Lemma
1, we can reach the statement naturally.

It should be pointed out that we can allow
∑k
i=0 ψi = 0 in Theorem 1.

3 The Results for Asymptotically Infinite MA

Processes

On the other side, we have the following lemma for the asymptotically infinite
MA processes.

Lemma 2 [7]-[8] Define a causal stable MA process x(n)

x(n) = ψ(L)z(n) =

n
∑

i=0

ψiz(n− i) (5)

where z(n) is an 1D i.i.d process having a certain distribution with a smooth
density. if the regression coefficients ψi of this MA process satisfy

∑∞
i=0 ψi 6= 0,

then the distribution of the normalized quantization error e(n) under modulo
sigma-delta modulation converges to the uniform distribution in [− 1

2 ,
1
2 ] under

the assumption of high resolution, when n → ∞. Moreover, the quantization
error is additively white and uncorrelated with the signal being quantized.

3



Based on Lemma 2, we will first study a simple cases, where z(n) has a
symmetric stable distribution to illustrate the outline of our main proof. Then,
the results will be extended to the general MA processes.

Theorem 2 Define an causal stable MA process x(n) satisfying Eq.(5), where
ψi does not always equal to 0. If z(n) is an i.i.d stochastic process having a
symmetric stable distribution with the stability index (characteristic exponent)
α ∈ [1, 2), the normalized quantization error converges to the uniform distribu-
tion in [− 1

2 ,
1
2 ] under the assumption of high resolution, when n→ ∞.

Proof 2 According to [13], if z(n) is is an i.i.d stochastic process having a
symmetric stable distribution (for simplicity, we assume it is symmetric about
0), the characteristic function of z(n) is written as

ϕz(t) = E
(

eitz
)

= exp {−σα |t|
α
} (6)

where t is the variable of the characteristic function. σ > 0 is the scale param-
eter. When α ∈ [1, 2), the distribution function is smooth.

We will discuss three cases in the follows, respectively.

i) If
∑∞
i=0 ψi 6= 0, according to Lemma 2, the conclusion is true.

ii) If
∑∞

i=0 ψi = 0, but ψi does not always equal to 0 and
∑∞
i=0 |ψi|

α
con-

verges, we will show that x(n) will converge to a sequence of random variables
having an identical certain identical distribution with a smooth density, when
n→ ∞.

According to the definition (5), we have the limit characteristic function of
x(n) as

ϕx(t) = E
(

eitx
)

= lim
n→∞

n
∏

i=0

ϕz(ψit) (7)

Let
∑∞
i=0 |ψi|

α = S > 0, we have

ϕx(t) = exp

{

−σα

(

∞
∑

i=0

|ψi|
α

)

|t|
α

}

= exp {−σαS |t|
α
} (8)

which indicates that x(n) converges to an identical symmetric stable distribution
[12]-[14] (Actually, this is Theorem 9.8.4 shown on page 328 of [14] and a
corollary of Lemma 3 below). Thus, following Lemma 1, z(n) will converge to
the uniform distribution in [− 1

2 ,
1
2 ], when n→ ∞.

iii) then, let’s consider the situation
∑∞
i=0 ψi = 0, but ψi does not always

equal to 0 and
∑∞

i=0 |ψi|
α does not converge.

We will first prove that
∑∞
i=0

∣

∣

∣

∑i
j=0 ψj

∣

∣

∣

α

cannot converge in such a situa-

tion.
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For α ∈ [1, 2), based on the global convexity of f(x) = |x|
α

for x ∈ R,
α ∈ [1, 2) and Jensen’s inequality, we have

2
∞
∑

i=0

∣

∣

∣

∣

∣

∣

i
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

α

= |ψ0|
α
+

∞
∑

i=1





∣

∣

∣

∣

∣

∣

i
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

α

+

∣

∣

∣

∣

∣

∣

−

i−1
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

α



≥ |ψ0|
α
+ 2

∞
∑

i=1

∣

∣

∣

∣

1

2
ψi

∣

∣

∣

∣

α

=
1

2α−1

∞
∑

i=0

|ψi|
α
+

[

1−
1

2α−1

]

|ψ0|
α

(9)

which indicates that
∑∞
i=0

∣

∣

∣

∑i
j=0 ψj

∣

∣

∣

α

also diverges in such situations.

The limit distribution of the quantization noise can be derived through the
limit of the corresponding characteristic functions. As shown in [8], we can
rewrite Eq.(1) as

e(n) = 1−
1

2
〈δ(n)〉 (10)

where δ(n) ,
∑n−1

i=0

(

x(i)
∆ + 1

2

)

.

Notice that
∑∞

i=0 |ψi|
α
does not converge, we can reach the conclusion, if we

then prove that [8]

lim
n→∞

ϕ〈δ(n)〉(t) =

{

1 , t = 0
0 , t 6= 0

(11)

The limit characteristic function of 〈δ(n+ 1)〉 can be written as

lim
n→∞

ϕ〈δ(n+1)〉(2πt)

= lim
n→∞

∣

∣

∣

∣

∣

E

{

exp

[

2iπt
n
∑

i=0

(

x(i)

∆
+

1

2

)

]}∣

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∣

∣

E







exp



2iπ
t

∆

n
∑

i=0

i
∑

j=0

ψjz(i− j)











∣

∣

∣

∣

∣

∣

(12)

The innermost sum in Eq.(12) can be grouped as

n
∑

i=0

i
∑

j=0

ψjz(i− j) = ψ0z(n) + ...+





n
∑

j=0

ψj



 z(0) (13)
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Therefore

lim
n→∞

ϕ〈δ(n+1)〉(2πt) = lim
n→∞

n
∏

i=0

ϕz



2π
t

∆

i
∑

j=0

ψj



 (14)

where by definition of symmetric stable process, we have

n
∏

i=0

ϕz



2π
t

∆

i
∑

j=0

ψj





=

n
∏

i=0

exp



−σα

∣

∣

∣

∣

∣

∣

2π
t

∆

i
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

α



=

n
∏

i=0

exp



−
σα |2πt|

α

∆α

∣

∣

∣

∣

∣

∣

i
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

α

 (15)

Noticing that
∑∞

i=0

∣

∣

∣

∑i
j=0 ψj

∣

∣

∣

α

does not converge, given any a small positive

number ǫ ∈ (0, 1) and a certain t ∈ R− {0}, we can we can always find a large
enough integer n∗ such that

n
∑

i=0

∣

∣

∣

∣

∣

∣

i
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

α

≥ − ln(ǫ)
∆α

σα |2πt|
α (16)

for n > n∗, as n goes to infinity.
Thus, for t 6= 0, we have

n
∏

i=0

ϕz



2π
t

∆

i
∑

j=0

ψj



 ≤ exp (ln ǫ) = ǫ (17)

for n > n∗, which clearly indicates limn→∞ ϕ〈δ(n)〉(t) = 0 for t 6= 0, if we
consider (14).

On the other hand, we can easily have limn→∞ ϕ〈δ(n)〉(0) = 1 by definition.
Therefore, the limit distribution of e(n) is the uniform distribution among

[− 1
2 ,

1
2 ] due to the definition Eq.(10).

The proof for the additively whiteness and non-correlated property of the
quantization error is similar to what had been given in [2]-[9] and is thus omitted
here. So are the rest.

The proof for Theorem 2 can be extended to the general cases by using the
following useful lemma.
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Lemma 3 (Lévy Continuity Theorem) [14] If Pn are probability laws on R
k

whose characteristic functions fn(t) converge for all t to some f(t), where f is
continuous at 0 along each coordinate axis, then Pn −→

L
P for a probability law

P with characteristic function f .

Based on Lemma 3, we have the following general conjecture.

Theorem 3 Define a causal stable MA process x(n) satisfying Eq.(5), where
ψi does not always equal to 0. If z(n) is an i.i.d stochastic process having a
certain smooth density function, the normalized quantization error converges
to the uniform distribution in [− 1

2 ,
1
2 ] under the assumption of high resolution.

Moreover, the quantization error is additively white and uncorrelated with the
signal being quantized.

Proof 3 If
∑∞

i=0 ψi 6= 0, according to Lemma 2, the conclusion is true. In the
follows, we will focus on the cases with

∑∞
i=0 ψi = 0.

Noticing that ϕz is bounded as |ϕz | ≤ 1 and
∏n
i=0 ϕz(ψit) is a monotonic

series in terms of n for any given t ∈ R, we can see that
∏∞
i=0 ϕz(ψit) must

converge pointwise as

ϕx(t) = lim
n→∞

ϕxn
(t) =

∞
∏

i=0

ϕz(ψit) = ϕ̂(t) (18)

Notice that function ϕz is sufficiently smooth, for any t 6= 0, we can have
the Taylor’s expansion of ϕz(ψit) around 0 in Lagrange form as

ϕz(ψit) = ϕz(0) + ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

= 1 + ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2 (19)

where ξi ∈ [0, ψit] if ψit ≥ 0, or ξi ∈ [ψit, 0] if ψit < 0. Since ϕ
′

z(0)
∑∞
i=0(ψit) =

0, we have ψn → 0 as n→ ∞, and thus ξn → 0.
Clearly, we have −1 ≤ ϕ

′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2 ≤ 0 due to |ϕz | ≤ 1.

For any t 6= 0, we have

ln
n
∏

i=0

ϕz(ψit)

=

n
∑

i=0

ln
[

1 + ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2
]

=
n
∑

i=0

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi
(20)

where we use Taylor’s expansion of f(x) = ln(1 + x) in the last row.
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Here, ηi is between 0 and
(

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2
)

. Similarly, we have

ηi → 0, ϕ
′′

z (ξi) → ϕ
′′

z (0) as n→ ∞.
Given any a small enough non-positive number x, we always have 2x ≤

x
1+ǫx ≤ x, when ǫ ∈ (0, 1). Thus, given a t 6= 0, there must exit a large enough

N∗ ∈ N, constants C1, C2 ∈ R, C3, C4 ∈ R
+ that

n
∑

i=0

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi

=

(

N∗

∑

i=0

+

n
∑

i=N∗+1

)

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi

= C1 +
n
∑

i=N∗+1

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi

≤ C1 +

n
∑

i=N∗+1

[

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2
]

≤ C1 + C2 +

n
∑

i=N∗+1

ϕ
′′

z (ξi)(ψit)
2

≤ C1 + C2 + C3

n
∑

i=N∗+1

(ψit)
2 (21)

and

n
∑

i=0

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi

= C1 +

n
∑

i=N∗+1

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi

≥ C1 + 2

n
∑

i=N∗+1

[

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2
]

≥ C1 + 2C2 + C4

n
∑

i=N∗+1

(ψit)
2 (22)

Therefore, we have two situations:

i) if
∑∞

i=0(ψi)
2 converges,

∑∞
i=0(ψit)

2 converges for any a given t 6= 0.
Based on Ineq.(21), we can see that limn→∞ ln

∏n
i=0 ϕz(ψit) also converges.

Moreover, given a t 6= 0,
ϕ

′

z
(0)ψi

1+ηi
,
ϕ

′′

z
(ξi)(ψi)

2

1+ηi
are bounded. From Ineq.(22),

8



there exist two constants C5 to C8 ∈ R such that

ln

∞
∏

i=0

ϕz(ψit)

=

(

N∗

∑

i=0

+

∞
∑

i=N∗+1

)

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi

≥ C5t+ C6t
2 +

∞
∑

i=N∗+1

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2

1 + ηi

≥ C5t+ C6t
2 + 2

∞
∑

i=N∗+1

[

ϕ
′

z(0)(ψit) + ϕ
′′

z (ξi)(ψit)
2
]

= C7t+ C8t
2 (23)

Similarly, we have ln
∏∞
i=0 ϕz(ψit) ≤ C9t+ C10t

2 based on Ineq.(21), where
C9, C10 ∈ R.

Thus, ln
∏n
i=0 ϕz(ψit) → 0 as t→ 0. This shows that

∏n
i=0 ϕz(ψit) → 1 and

equivalently ϕ̂(t) is continuous around 0.
According to Lemma 3, if ϕ̂(t) is continuous around 0, it is a characteristic

function to a certain probability law. Thus, x(n) converges to a sequence of
random variables having a certain identical distribution with a smooth density.
Following Lemma 1, z(n) will converge to the uniform distribution in [− 1

2 ,
1
2 ],

when n→ ∞.

ii) otherwise,
∑∞
i=0(ψi)

2 diverges,
∑∞

i=0(ψit)
2 diverges for any a given t 6=

0, which indicates ϕ̂(t) is not continuous around 0. More precisely, based on
Ineq.(22), we can easily have

lim
n→∞

n
∏

i=0

ϕz(ψit) =

{

1 , t = 0
0 , t 6= 0

(24)

for t ∈ R.
According to Eq.(14), we only need to prove that

lim
n→∞

n
∏

i=0

ϕz



2π
t

∆

i
∑

j=0

ψj



 =

{

1 , t = 0
0 , t 6= 0

(25)

or equivalently

lim
n→∞

n
∏

i=0

ϕz



t

i
∑

j=0

ψj



 =

{

1 , t = 0
0 , t 6= 0

(26)

to reach the major conclusion.
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Based on the global convexity of f(x) = x2 and Jensen’s inequality, we know
that

2

∞
∑

i=0





i
∑

j=0

ψj





2

= |ψ0|
2
+

∞
∑

i=1







∣

∣

∣

∣

∣

∣

i
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

−

i−1
∑

j=0

ψj

∣

∣

∣

∣

∣

∣

2






≥ |ψ0|
2
+ 2

∞
∑

i=1

∣

∣

∣

∣

1

2
ψi

∣

∣

∣

∣

2

=
1

2

∞
∑

i=0

|ψi|
2
+

1

2
|ψ0|

2
(27)

which implies that
∑∞

i=0

(

∑i
j=0 ψj

)2

will also diverge if
∑∞

i=0(ψi)
2 diverges.

Therefore, using the similar skills in the proof for Theorem 2, we can draw
the conclusion based on Eq.(14) and Eq.(24).

4 The Results for Infinite MA Processes

It should be pointed out that Theorem 3 can be extended to infinite causal
stable MA processes. Actually, we have

Theorem 4 Define a causal stable MA process x(n)

x(n) = ψ(L)z(n) =

∞
∑

i=0

ψiz(n− i) (28)

The quantization error e(n) also converges to the uniform distribution in
[− 1

2 ,
1
2 ] under the assumption of high resolution.

The proof is almost the same to that given for infinite cases except
i) we always have

∑∞
i=0 ψi converges for infinite cases; otherwise, it is not a

well defined MA processes;
ii) Eq.(14) is changed to

lim
n→∞

ϕ〈δ(n+1)〉(2πt)

= lim
n→∞

n
∏

i=0

ϕz



2π
t

∆

i
∑

j=0

ψj



 ·

∞
∏

i=1

ϕz



2π
t

∆

n+i
∑

j=i

ψj





(29)
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Noticing that |ϕz| ≤ 1, we can still apply the above proof, because we can

check limn→∞

∏n
i=0 ϕz

(

2π t
∆

∑i
j=0 ψj

)

instead.

Indeed, Theorem 4 is a general case to the conclusion that we had drawn
for fGn processes with Hurst exponent H ∈ (0, 12 ) in [9].

5 Conclusion

Based on the theory of ARMA processes [15]-[16], we can see that any a causal
stable ARMA process can be formulated into a corresponding causal stable MA
process. Thus, the above conclusions can be extended to causal stable ARMA
processes.

Reviewing the above discussions, we can find that the nice property of
quantization error is guaranteed by two different mechanisms: when ϕx(t) =
∏∞
i=0 ϕz(ψit) converges to a continuous characteristic function pointwise, the

asymptotically convergence to uniformly distributed white noise can be guaran-
teed by the high-enough quantization resolution [2], [6]; otherwise, this property
is guaranteed by the asymptotic convergence of quantization errors for certain
ARMA processes [7]-[9]. But in both cases, the assumption of the smooth den-
sity of the sampled random processes is needed.

It should also be pointed out that in many applications, the cases
∑∞

i=0 ψi =
0 are non-trivial. Some interesting yet important examples can be found in [9].
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