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ABSTRACT 

 

This paper introduces the use of two new features for 

speaker identification, Residual Phase Cepstrum 

Coefficients (RPCC) and Glottal Flow Cepstrum 

Coefficients (GLFCC), to capture speaker-specific 

characteristics from their vocal excitation patterns. Results 

on a cross-lingual speaker identification task taken from the 

NIST 2004 SRE demonstrate that these RPCC and GLFCC 

features are significantly more accurate than traditional mel-

frequency cepstral coefficients (MFCC). In particular, these 

two new features give better results with smaller amounts of 

training data, due to lower model complexity. 

 

Index Terms — Speaker identification, Glottal source 

excitation, IAIF and GMM.  

 

1. INTRODUCTION 

 

The task of speaker recognition is an important application 

which has received a great deal of attention from the speech 

community, and there have been substantial gains in 

accuracy as well as channel and background robustness [1, 

2].  However, features for speaker identification are still 

primarily representations of the overall spectral 

characteristics, and thus the models are primarily phonetic in 

nature, with systems differentiating speakers through 

characterization of pronunciation patterns. Little progress 

has been made toward identifying individually unique 

speech characteristics that are independent of phonetic 

content and language. This causes several significant 

limitations, including the need for models that represent a 

speaker’s entire phonetic space and enough enrollment data 

to cover this model space. Additionally, there are some types 

of identification applications where the phonetic 

characteristics of the enrollment data does not necessarily 

match that of the test data, such as cross-lingual 

identification.  

This paper proposes two new features for speaker 

identification, Residual Phase Cepstral Coefficients (RPCC) 

and Glottal Flow Cepstrum Coefficients (GLFCC), which 

capture characteristics from speakers’ excitation rather than 

vocal tract characteristics and is more compact across a wide 

range of phonetic conditions. The goal of these two 

alternative features is to rapidly capture of using the 

characteristic physiological features of a speaker, requiring 

less complex models and enabling better performance in 

cross-lingual or phonetically misaligned enrollment/test 

conditions. 

This paper is organized as follows. Section 2 provides 

the details of each feature extraction method. The 

experiment data, classification method and results are 

described in Section 3 and 4. Final conclusions are given in 

Section 5. 
 

2. FEATURE EXTRACTION 

 

2.1. MFCC 

 

MFCCs are commonly used in most speech and speaker 

recognition systems. These approximate the perceptual 

model of the human auditory system by warping the linear 

frequency axis to match the Mel-scale cochlear frequency 

map. Although there are several possible methods for 

computation, here the filterbank approach is used, where the 

spectrum of each Hamming-windowed signal frame is 

divided into Mel-spaced triangular frequency bins, and then 

a Discrete Cosine Transform (DCT) is applied to calculate 

the desired number of cepstral coefficients.  

 

2.2. RPCC 

 

The LP residual signal of a speaker represents the impulse-

like excitation which is related to the region around the 

glottal closure instant within each pitch period, 

corresponding to a high signal-to-noise ratio region. These 

regions are known to contain speaker-specific information 

[3].  Listening experiments have also shown that residual 

provides valuable information that allows humans to 

distinguish between speakers [4]. Vocal tract excitation 

differs among speakers and stays stable within a given 

speaker. This leads to the possibility that features extracted 

from the residual signal may be useful in speaker 

recognition. Most features related to the residual are based 
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on the magnitude spectrum of the LP residual signal, with 

the phase spectrum discarded. The large fluctuation of the 

residual causes difficulty deriving useful features from the 

LP residual. Gautherot reported that the magnitude spectrum 

of LP residual is flat, suggesting that the major information 

component is retained in the phase [4]. 

To address this, we proposed to use residual phase. The 

residual phase is the cosine of the phase function of the 

analytic signal [5]. The analytic signal is derived from the 

LP residual of a speech signal, defined as the error between 

the actual value ( )s n and the predicted value ˆ( )s n , given by  
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where p is the order of prediction and 
ka are the linear 

prediction coefficients obtained from LPC analysis. Then, 

the phase of the analytic signal is calculated for the posterior 

feature extraction processing. 

The analytical signal of the LP residual ( )r n  is given by  

 ( ) ( ) ( ), a hr n r n jr n  (2) 

where ( )hr n  is the Hilbert transform of ( )r n  and is given by 
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where  R  is the discrete Fourier transform of r(n) and 

IDFT denotes the inverse discrete Fourier transform. 

The cosine of the phase information is calculated by the 

following equation: 
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Figure 1: Block diagram for the proposed RPCC 

implementation. 

In [5], the residual phase is directly implemented as a 

complementary feature to MFCC into their speaker 

recognition system. Instead, the method proposed here 

performs mel-spaced cepstral analysis on residual phase as 

shown in Figure 1. The magnitude spectrum of the residual 

phase is computed and warped to the Mel frequency scale 

followed by the usual log and DCT to obtain RPCC. 

 

2.3. GLFCC 

 

The glottal flow is the airflow arising from the trachea and 

passing through the vocal folds. There are many reasons that 

the glottal flow should be speaker specific. Videos of vocal 

fold vibration [6] show large variations in the movement of 

the vocal folds from one speaker to another. For some 

individuals the vocal folds never close completely and in 

other cases vocal folds close completely and rapidly.  The 

closing manner of vocal fold vibrations is also speaker 

dependent. The closure of vocal folds for some individuals 

shows a zipper-like pattern, while others close along the 

length of the vocal folds about the same time. In addition, 

the configuration of the area of the opening shows 

differences for different individuals [7, 8]. The glottal 

opening for some individuals is approximately equal in 

width along the length of the glottis, such as pressed 

phonation. For some individuals, a more triangular shaped 

opening will occur according to their own anatomical 

structure of vocal folds. Because of this glottal flow contains 

speaker specific information, and features derived from 

glottal flow are useful for speaker identification.  

 

 

Figure 2: Structure of the IAIF Algorithm. 

The accurate estimation of glottal flow has been a target 

of speech research for several decades. Many different 

methods have been developed. Among these methods, 

Iterative Adaptive Inverse Filtering (IAIF) [9] is a popular 

and has been proven to be an efficient method for estimation 

of the glottal flow. A flow diagram of IAIF is shown in 

Figure 2.  

The Iterative Adaptive Inverse Filtering (IAIF) 

algorithm is used to estimate the glottal waveform of speech 

signal by filtering the original speech signal using an inverse 

model of the vocal tract filter, modeled as an all-pole system 

[9]. An example of glottal inverse filtering is shown in 

Figure 3. The top one is a speech signal, the middle is the 

LP residual and the IAIF output is on the bottom.    
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Figure 3: A diagram of glottal inverse filtering. 

Glottal Flow Cepstral Coefficients are computed using 

mel-spaced cepstral analysis on glottal flow as shown in 

Figure 4. The IAIF method here helps in separating the 

source and filtering related information. The magnitude 

spectrum of the glottal flow, similar to the process of RPCC 

feature extraction, is computed and warped to the Mel 

frequency scale followed by the usual log and DCT to obtain 

GLFCC. 
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Figure 4: The feature extraction of glottal flow cepstrum 

coefficients. 

 

3. METHOD 

 

For these experiments, the Gaussian Mixture Model-

Universal Background Model (GMM-UBM) [10] is applied 

for speaker identification. The UBM is a speaker-

independent GMM trained with speech samples from a large 

set of speakers to represent general speech characteristics. 

The individual speaker model is derived from the UBM 

using Maximum A Posteriori (MAP) adaptation with the 

corresponding speech samples from a particular enrolled 

speaker. The UBM technique is incorporate into the GMM 

speaker identification system to reduce the time requirement 

for recognition significantly. The strategy of adapting the 

target speaker model is based on the similarity between the 

enrollment data of target speaker and UBM, adjusting the 

UBM to the speaker training data. During adaptation, the 

distributions of the UBM which are far from the feature of 

target speaker remain almost unchanged. 

 

4. EXPERIMENT RESULTS 

 

4.1. Data 

 
For this particular cross-lingual speaker identification 

experiment, bilingual speaker data is extracted from 2004 

NIST SRE corpus. The NIST speaker corpus is a standard 

corpus to evaluate the performance of a speaker recognition 

system. Since 2004, a special effort has being made to 

recruit bilingual speakers who can speak Arabic, Mandarin, 

Russian or Spanish in addition to English. This corpus was 

originally collected to evaluate the effect of language, 

particularly differences between training and testing 

language, on speaker recognition systems. However, the 

main task of 2004 NIST SRE corpus involves speaker 

detection. The bilingual data of twenty-four bilingual 

speakers is extracted from this corpus to satisfy the data 

requirements of the bilingual speaker identification task. The 

information about the individual speakers’ languages is 

provided by NIST. 

   

4.2. Experimental setup 

 

In this experiment, the UBM is trained using data from all 

twenty-four non-English speakers in the NIST corpus, 

representing 8 Arabic speakers, 7 Mandarin speakers, 6 

Russian speakers, and 3 Spanish speakers. The total number 

of samples for initial UBM training is 262, while there are 

an additional 260 samples from the target speakers used for 

identification. There is an average of 8 speech samples per 

speaker, with an average length of about two minutes. Each 

target speaker’s model is adapted from the global UBM 

using the individual English language speech samples, and 

the identification is performed using their alternative 

language speech samples.  

For comparison, MFCCs are used as the baseline 

feature. The analysis window size is 12.5ms with an overlap 

of 6.25ms. Twenty MFCCs are calculated and an LPC order 

of 22 is used to calculate the residual phase. The LPC 

residual is used to calculate RPCC features as described in 

the previous section, with a matching RPCC dimension of 

twenty.  

Two comparison experiments have been implemented. 

The first experiment focuses on evaluating the performance 

of the system as a function of the number of mixtures. The 

second is to evaluate their individual performance with the 

same dimension size.  
 

4.3. Accuracy with the increasing number of mixtures 

 

The accuracy versus increasing number of mixtures for 

MFCC and GLFCC features is shown in Figure 5. The 

proposed GLFCC feature shows much better performance 

with an increasing number of mixtures than the baseline 

feature MFCC. GLFCC, in particular, has a good accuracy 

even with the lower complexity of speaker model (small 

amount of mixtures). This result supports the idea that 

GLFCC features are more compact, needing a smaller 

number of model parameters to represent the information for 

each speaker.  
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Figure 5: Accuracy versus increasing number of mixtures 

(MFCC&GLFCC). 
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Figure 6: Accuracy versus increasing number of mixtures 

(MFCC&RPCC) 

Figure 6 shows the accuracy versus increasing number 

of mixtures for MFCC and RPCC features. RPCC gives a 

better performance with a small number of mixtures than 

MFCC. MFCC features show better performance with a 

large number of mixtures, but results support the idea that 

RPCC features are more compact with less dependence on 

phonetic content, showing higher accuracy in the 4, 8, and 

16 mixtures.  

According to the above results, the feature of GLFCC 

and RPCC are clearly the strongest individual component 

within the excitation-related measures.   

4.4. The accuracy of individual feature 

 
Table 1: The classification accuracy of individual features 

Individual Feature Accuracy (%) 

MFCC 71.2 

GLFCC 72.3 

RPCC 67.7 

 

Table 1 shows the results of each individual feature with the 

same dimension 20. The number of mixtures for all three 

features is 256. Individually, the best overall feature is the 

GLFCC feature followed by MFCCS. Although RPCC has 

the lowest accuracy comparing to other two features, RPCC 

gives highest classification with the small number of 

mixtures as shown in Figure 5 and Figure 6.  

 

 

5. CONCLUSIONS 

 

This paper has introduced two speaker-specific features for 

speaker identification based on GMM-UBM system.  The 

experimental results show that the proposed features provide 

information about speaker characteristics that is significantly 

different in nature from the phonetically-focused information 

present in traditional speaker identification features such as 

MFCCs. These two new features give better results with 

lower model complexities. The fact that these new features 

are less dependent on the phonetic content of the speaker 

makes it useful for tasks with language or other mismatch 

conditions between training and testing data, such as cross-

lingual speaker identification or verification. 
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