
 

  

 

Aalborg Universitet

Spatio-temporal filtering methods for enhancement and separation of speech signals

Christensen, Mads Græsbøll; Jensen, Jesper Rindom; Benesty, Jacob; Jakobsson, Andreas

Published in:
Proceedings of the 2013 IEEE China Summit & International Conference on Signal and Information Processing
(ChinaSIP)

DOI (link to publication from Publisher):
10.1109/ChinaSIP.2013.6625349

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Christensen, M. G., Jensen, J. R., Benesty, J., & Jakobsson, A. (2013). Spatio-temporal filtering methods for
enhancement and separation of speech signals. In Proceedings of the 2013 IEEE China Summit & International
Conference on Signal and Information Processing (ChinaSIP) (pp. 303-307). IEEE Signal Processing Society.
https://doi.org/10.1109/ChinaSIP.2013.6625349

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 17, 2024

https://doi.org/10.1109/ChinaSIP.2013.6625349
https://vbn.aau.dk/en/publications/9bc1cc60-25b9-4f8b-895e-be98a1269c3f
https://doi.org/10.1109/ChinaSIP.2013.6625349


SPATIO-TEMPORAL FILTERING METHODS FOR
ENHANCEMENT AND SEPARATION OF SPEECH SIGNALS

Mads Græsbøll Christensen1, Jesper Rindom Jensen1, Jacob Benesty1,2, and Andreas Jakobsson3

1Audio Analysis Lab, AD:MT 2INRS-EMT 3Dept. of Mathematical Statistics
Aalborg University, Denmark University of Quebec, Canada Lund University, Sweden

{mgc,jrj}@create.aau.dk benesty@emt.inrs.ca aj@maths.lth.se

ABSTRACT

In this paper, we give an overview of the background for,
the ideas behind, and the challenges to be addressed in the
project "Spatio-Temporal Filtering Methods for Enhancement
and Separation of Speech Signals," which is funded by the
Villum Foundation. The project aims at addressing the prob-
lem of enhancing and separating speech signals from noisy
mixtures, a problem also known as the cocktail party problem.
It aims at exploring new ways of solving this problem by gen-
eralizing a new class of optimal temporal filtering methods
for periodic signals to multiple microphones, resulting in so-
called spatio-temporal filtering methods that are controlled by
two parameters, the direction-of-arrival and the fundamental
frequency. These filters are optimal in that they let the signal
of interest pass undistorted while everything else is attenuated
as much as possible. Unlike state-of-the-art methods, they do
not require knowledge of the statistics of noise and interfering
speech signals, something that is especially important when
dealing with non-stationary noise.

Index Terms— Speech enhancement, microphone arrays,
beamforming, pitch estimation, DOA estimation

1. INTRODUCTION

Speech enhancement and separation algorithms aim at ex-
tracting a speech signal of interest from a signal composed of
multiple signals and undesired noise. This should be done in
such a way that the influence of interfering sources and noise
is minimized while a minimum distortion is incurred on the
extracted signal. The quality of the extracted speech signal
can be quantified in terms of two aspects, namely perceived
quality and intelligibility. The first reflects whether unnatural
and annoying distortion has been incurred while the second
reflects whether the underlying information has been pre-
served. In the past few decades, development of methods
for speech enhancement from signal recorded with only one
microphone has received much attention, and numerous dif-
ferent methods have been proposed. For an overview, we
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refer the interested reader to [1, 2] and the references therein.
Of particular relevance to the present project is the methods
based on the quasi-periodicity of voiced speech [3, 4]. There
also exist multichannel extensions of some of the single-
channels methods, e.g., the multichannel Wiener filter [5, 6].
Using beamforming in microphone arrays, it is possible to
steer the focus of the microphone array such that sources im-
pinging on the array from a certain angle, called direction-of-
arrival (DOA), are unchanged, whereas noise and interfering
sources are suppressed. In recent years, beamforming has
found new applications in noise reduction and speech separa-
tion in digital hearing aids and entertainment systems, and the
use of microphone arrays is becoming ever more widespread.
The seminal work [7, 8] laid the foundation of modern beam-
forming and DOA estimation for narrowband signals and
many variations of these designs have since followed (see,
e.g., [9, 10]). In the past decade, convex optimization meth-
ods have gained widespread use in signal processing and this
has also led to advances in beamformer design, notably, in
designing robust beamformers [11,12], wherein model uncer-
tainties, like array calibration errors, are taken into account.
Many of these methods have in common that they are based
on the narrowband assumption. Furthermore, they rely on
only one source impinging on the array from a particular an-
gle, being based only on spatial information. It is well-known
in the speech enhancement community that noise reduc-
tion algorithms struggle to increase speech intelligibility for
signals recorded with a single microphone, at best rendering
them unchanged, but rather increase secondary properties like
the perceptual quality and reduce listener fatigue. By using
multiple microphones, it is, however, in principle possible
to increase speech intelligibility. In fact, it is theoretically
possibly to achieve super-human performance in tasks such
as speech recognition and speaker identification this way.

Filtering is a fundamental tool when separating and en-
hancing signals, and this project aims at performing filtering
in two domains simultaneously, namely in the temporal and
spatial domains. Separately, filtering approaches in either do-
main works well when the contents of the sources are well-
separated in either frequency or angle. The fundamental idea



behind this project is that by combining temporal and spatial
filters and operate jointly in these domains, i.e., by forming
spatio-temporal filters, it is possible to separate sources under
conditions where the other two approaches may fail.

Speech signals do not satisfy the constraints mentioned
above, as such signals are well-known to be broadband, and
there can be multiple speakers in close vicinity of each other.
Generalizations of the methods mentioned above exist in sev-
eral forms, allowing for multiple sources from the same angle
(e.g., [13]), but these are still based on the assumption that
the individual sources are narrowband. These methods also
do not take the temporal characteristics of the sources into ac-
count, and the typical way of extracting such information is to
apply a temporal filter after the spatial filter has been applied.
Such approaches are therefore, generally, not optimal as they
do not exploit the additional knowledge about the signal of
interest. Much research has been devoted to the problem of
dealing with broadband sources. Many approaches, however,
avoid the explicit design of the beamformer, but rather resort
to either parametric approaches, where the underlying param-
eters, or simply time-delays between different microphones,
are found [14, 15], or various kinds of heuristics or subopti-
mal methods for dealing with the problem. These methods,
however, generally do not possess the desirable properties of
beamformers to adaptively reject interference and noise. In
fact, they do not address the question considered here, namely
how to extract the signals of interest. The use of explicit
speech models in solving the problems associated with ar-
ray speech processing, which is the underlying idea promoted
here, has been strongly advocated by Brandstein [16]. In [17],
an attempt to do this was proposed with some success, by
modeling the speech signal as an auto-regressive process, but
this approach relies on a priori knowledge of the speech sig-
nal.

Recently, a new class of filters for enhancing and sepa-
rating periodic signals was introduced in [18] and these form
the theoretical basis of the project. The preliminary, but also
very promising, results reported in [18] suggest that the filters
can be applied to speech signals, as these are approximately
periodic for voiced speech. The filters are temporal filters
and operate only on signals recorded by a single microphone.
They exploit that periodic signals can be expressed as a sum
of sinusoids having frequencies that are integer multiples of
a fundamental frequency. The filters can thus be thought of
as optimal, signal-adaptive, FIR comb filters. These filters
were demonstrated in [18] to have a number of desirable prop-
erties compared to existing ones, including IIR comb filters
and Fourier-based filters, in fact, they reduce to various well-
known designs under certain conditions. In particular, they
are signal-adaptive meaning that they automatically adapt to
the acoustic environment and they are optimal in that they
suppress interfering sources and noise as much a possible
while leaving the signal of interest undistorted. A key feature
of the filters is that they do not require any knowledge about

the noise statistics or the interfering sources, something that is
not the case for most state-of-the-art enhancement algorithms.
This means that, unlike methods based on the noise statistics,
these filters are likely to work for non-stationary noise. An
additional feature of the filters is that they also offer a com-
plete, implicit parametrization of periodic signal that can be
extracted and processed, if desired.

2. OPTIMAL FILTERS FOR PERIODIC SOURCES

We will now briefly review the generalization of one of the
optimal filter designs in [18] to arrays. We will do this by
first introducing the signal model. We are concerned with es-
timating the parameters of and extracting the periodic source
s(nt) which, due to its periodic nature, can be modeled as
s(nt) =

∑L
l=1 αle

jωtlnt , where L is the model order and
αl = Ale

jφl is the complex amplitude of the lth sinusoid
withAl > 0 and φl being the amplitude and the phase, respec-
tively. Next, the source s(nt) impinges on an array containing
Ns sensors, which, in our case, are microphones. The signal
is corrupted by the noise source wns

(nt) for each sensor. The
signal sampled by the nsth sensor, for nt = 0, . . . , Nt − 1
and ns = 0, . . . , Ns − 1, can then be written as xns

(nt) =
s(nt − τns

) + wns
(nt), where τns

is the relative time delay
of the signal for sensor ns. In what follows, we will assume
that a uniform linear array (ULA) is used and that the signals
of interest are located in the so-called far-field. Curiously,
the employed model can be interpreted as a sum of narrow-
band sources, which means that the principles of narrowband
beamforming can be applied to each of these. The problem
considered is a) the joint estimation of the DOA θ and the
pitch ωt of the periodic source s(nt) and b) extraction of the
periodic source s(nt). For this purpose, this project will em-
ploy optimal filtering techniques that let the signal s(nt) pass
undistorted while they attenuate wns

(nt) as much as possible
to obtain the highest possible quality of the extracted signals.

We will now proceed to state the filter design problem as
an optimization problem. To do so, we organize the observed
signal xns

(nt) in an Ns × Nt matrix X. Similarly, the im-
pulse response of the Ms ×Mt order finite impulse response
(FIR) filter is also organized in a matrix Hωt,ωs

whose entries
are given by [Hωt,ωs ]nm = Hωt,ωs(n − 1,m − 1), with n
denoting the row, m the column, and Hωt,ωs(·, ·) is designed
for the temporal and spatial frequencies ωt and ωs. The fil-
ter is then applied to Ms × Mt sub-blocks Xns

(nt) of the
data matrix, where the entries are defined as [Xns

(nt)]nm =
xns+n−1(nt − m + 1). Due to the ULA and far-field as-
sumptions, the spatial frequency is given by ωs = ωtfs

d sin θ
c ,

where fs is the sampling frequency, d is the inter-sensor spac-
ing, θ is the DOA in radians, and c is the wave propagation
velocity. To simplify the notation, the filter response Hωt,ωs

and the sub-blocks Xns(nt) are stacked to form vectors of



length MtMs, i.e.,

hωt,ωs
= vec{Hωt,ωs

} and xns
(nt) = vec{Xns

(nt)},

with vec{·} denoting the column-wise stacking operator.
With this notation, the various filter designs in [18] can be de-
rived directly. We will here demonstrate how to do this with
the so-called Capon filter design (which is sometimes also
referred to as MVDR or LCMV, depending on the context).
First, we obtain an expression for the output power as

E{|yns
(nt)|2} = hHωt,ωs

Rhωt,ωs
, (1)

where R = E{xns(nt)x
H
ns

(nt)} is theMsMt×MsMt covari-
ance matrix. Note that E{·} and (·)H denote the expectation
operator and the complex transpose, respectively. In practice,
we do not have access to the true covariance matrix and an
estimate must be used, like

R̂ =
1

κsκt

κs−1∑
p=0

κt−1∑
q=0

xp(nt − q)xHp (nt − q) , (2)

where κs = Ns − Ms + 1 and similarly for κt. The next
task is to design the filter such that the output power is min-
imized subject to a distortionless constraint at desired angles
and frequencies, which are here harmonically related due to
the periodic nature of the sources. The presented filter de-
sign that follows next can be seen as a generalization of the
Capon method [13]. It is obtained by introducing multiple
harmonic constraints in the filter design and minimizing the
output power:

min
hωt,ωs

hHωt,ωs
Rhωt,ωs

s.t. hHωt,ωs
alωt,lωs

= 1, (3)

for l = 1, . . . , L ,

where aωt,ωs
= aωt

⊗ aωs
with ⊗ denoting the Kronecker

product and aωt
=
[
1 e−jωt · · · e−j(Mt−1)ωt

]T
and

similarly for aωs . The quantity aωt,ωs can be thought of as
the combination of the time-domain Fourier vector account-
ing for the temporal frequency ωt and the steering vector
corresponding to the spatial frequency ωs. For the above
problem in (3) to have a non-trivial solution, we require that
L < MtMs. It is a quadratic optimization problem with lin-
ear constraints (given ωt and ωs), and its solution can readily
be found using the Lagrange multiplier method and is given
by

ĥωt,ωs
= R−1Aωt,ωs

(AH
ωt,ωs

R−1Aωt,ωs
)−11, (4)

where Aωt,ωs
=
[
aωt,ωs

· · · aLωt,Lωs

]
and with 1 be-

ing a column vector containing L ones. From (4), it can be
seen that it is required that R is invertible, and hence that
κtκs ≥ MtMs. By inserting (4) into (1), we obtain an ex-
pression for the output power of the filter for an angle of θ
and a fundamental frequency of ωt:

E{|yns
(nt)|2} = 1H(AH

ωt,ωs
R−1Aωt,ωs

)−11. (5)

From this expression, we can jointly estimate the DOA and
the pitch by treating these quantities as unknowns and max-
imizing the output power of the filter over a set of candidate
DOAs Θ and fundamental frequencies Ω as [19]

(θ̂, ω̂t) = argmax
(θ,ωt)∈Θ×Ω

1H(AH
ωt,ωs

R−1Aωt,ωs
)−11, (6)

i.e., an optimal filter is essentially designed for each combina-
tion of θ ∈ Θ and ωt ∈ Ω and the output power is measured.
Other approaches that are capable of this are [20, 21]. The
optimal filter for extracting the periodic source with funda-
mental frequency ω̂t and DOA θ̂ is then obtained by inserting
these quantities into the optimal filter design (4). In [18], it
was shown how various filter designs can be obtained by re-
placing R with, for example, a noise covariance matrix es-
timate (see also [22]), or an identity matrix, corresponding
to the assumption that the noise or observed signal is white.
Moreover, by using asymptotic approximations, some simpli-
fied filter designs can be obtained that reduce to simply using
the Fourier transform to extract the signal of interest, an ap-
proach which is often used in the speech enhancement and
separation community.

Fig. 1. Example of the response of an optimal filter in (4)
designed for an angle of 30◦ and a pitch of 250 Hz with 4
harmonics for a white noise signal.

Next, we will briefly illustrate the properties of the opti-
mal spatio-temporal filters obtained using (4). In Fig. 1, the
magnitude response of an optimal filter is shown for a com-
plex signal comprised of four harmonics with a fundamental
frequency of 250 Hz impinging on the array from an angle of
30◦ and diffuse, white complex Gaussian noise at an SNR of
−10 dB. The signal was sampled at a frequency of 2.5 kHz
and 8 microphones were used with 300 temporal samples and
a temporal filter length of 50. From the figure, it can be seen
that the gain of the filter is one at the location and angle of
the harmonics of the signal of interest. The output power of
the optimal filter in (4) is depicted as a function of the angle



and the fundamental frequency in Fig. 2. As can be seen, de-
spite the poor conditions, it is possible to easily identify both
the angle and the pitch at the maximum, as described in (6).
A remarkable feature of the adaptive, optimal filters is that
this is also the case when strong, periodic interferences are
present, even without any knowledge of these.

3. CHALLENGES AND HYPOTHESES

As mentioned earlier, the project aims at generalizing the fil-
ters of [18] to the spatio-temporal domain and to address the
challenges in using them on real speech signals. Here, we will
briefly discuss these challenges and then proceed to discuss
some potential solutions. The challenges are the following.
1) Voiced speech is only approximately periodic, as the in-
dividual harmonics may deviate from being integer multiples
of a fundamental frequency. Moreover, speech signals are
nonstationary. These problems must be addressed or the per-
ceived quality and intelligibility of the extracted signals may
be compromised. 2) Some parts of speech signals, namely
unvoiced speech, are not periodic at all but are still impor-
tant with respect to both perceived quality and intelligibility.
Hence, the filters must be able to handle both unvoiced and
voiced speech in a compatible manner. 3) The filter designs
of [18] are computationally expensive and their generaliza-
tion to spatio-temporal filters will lead to even higher dimen-
sionality resulting in a prohibitive complexity for many real-
time applications, and fast implementations must be devised
to mitigate this. 4) Microphones often behave in a non-ideal
way and timing issues between microphones may occur due
to calibration errors and this may render the estimated sig-
nals and parameters useless. It is therefore important that this
problem be addressed in a tractable manner. These challenges
can be addressed in the following way. There are several pos-
sible solutions to the first one. A promising approach is to
use so-called perturbed signal models allowing for small de-
viations of the frequencies of the individual harmonics [23],
although their generalization to the present case is non-trivial.
To deal with the nonstationarity, sample-by-sample updates
of parameters and filters and by time-recursive implementa-
tions, both based on exploiting that the statistics and parame-
ters evolve smoothly most of the time (e.g., fundamental fre-
quency and DOA), are possible solutions. A potential solu-
tion to the second challenge is to generalize the filter designs
of [18] and incorporate the ideas of [17], in which the speech
process is modeled as an auto-regressive process, something
that works well for unvoiced speech. The third challenge can
be addressed by exploiting the structure of the involved ma-
trices and vectors, using rooting algorithms, time- and order-
recursive implementations, LMS-like algorithms and asymp-
totic approximations [23, 24]. Finally, solutions to the fourth
challenge can draw upon inspiration from recent theoretical
advances in robust beamforming [12].

The underlying hypothesis of the project is that it is possi-

Fig. 2. Example of the output power in (5) as a function of the
pitch and the DOA for a signal in white noise having a pitch
of 250 Hz and DOA of 30◦.

ble to address separation and enhancement of speech signals
by incorporating adaptive signal models in beamformers, i.e.,
taking the properties of speech signals into account, thus re-
sulting in spatio-temporal filters. This should lead to a signif-
icant improvement in speech intelligibility and speaker iden-
tification as compared to state-of-the-art methods, two fac-
tors that are of the utmost importance in many applications.
There is reason to believe that the spatio-temporal filters have
the potential to do this for the following reasons: 1) they in-
corporate speech models, such that the design is optimized
for the signal of interest; 2) they are capable of adapting to
the environment and the speaker of interest, i.e., the design
is adaptive; 3) they can reject interfering speakers and noise
by suppressing everything as much as possible, while leaving
the desired signal unchanged without prior knowledge of the
statistics of interfering sources and noise; 4) they do all this
jointly and optimally in both time and space.

4. CONCLUSION

In this paper, we have given an overview of the motivation and
ideas behind an ongoing research project. The project aims at
addressing the problems of speech enhancement and separa-
tion using microphone arrays based on optimal filtering meth-
ods. Using a new class of optimal filtering techniques derived
specifically for periodic sources, adaptive spatio-temporal fil-
ters are obtained that let the signal of interest pass undistorted
while interferences are cancelled and noise is suppressed. The
project seeks to address a number of challenges associated
with making these filters applicable to speech signals, namely
that speech is not perfectly periodic, that both unvoiced and
voiced speech should be handled in a consistent manner, that
the computational complexity is reduced, and that robustness
towards imperfections in the hardware is achieved.
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