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Abstract—Commercial services for provisioning software com-
ponents and virtual infrastructure in the cloud are emerging. For
customers, this creates a multitude of possibilities for outsourcing
part of the IT-stack to third parties in order to run their
applications. These possibilities are associated with different
running costs, so cloud customers have to determine the optimal
solution. In this paper, we present and experimentally evaluate
an algorithm that solves the corresponding optimization problem.

We assume that applications are described as templates, fixing
the deployment structure and constraining the properties of the
used soft- and hardware components. Different parts of the
application may be outsourced to different providers and several
levels of outsourcing can be considered. However, dependencies
between different parts of the application have to be respected.
Our algorithm decomposes the application graph in a first step
in order to discover all suitable cloud provisioning services from
a registry. It determines the optimal solution by representing the
problem as constraint optimization problem that can be solved
by an existing solver implementation.

Keywords-Cloud computing; Minimizing application running
costs; Selecting optimal providers; Constraint programming

I. INTRODUCTION

Cloud computing [1] can be seen as a modern realization
of the utility computing vision that was already formulated by
John McCarthy in 1961: “... computing may someday be orga-
nized as a public utility ...”. Cloud computing allows customers
to outsource applications into the cloud, using provisioning
services from one or several third-parties. Depending on the
level where the IT-stack is divided, this is called Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), or Software
as a Service (SaaS). Amazon [2] for example offers virtual
servers that can be rented for an hourly charge (IaaS)—
eventually with installed middleware or databases for addi-
tional license fees. Salesforce [3] hosts business software that
customers can subscribe to (SaaS). Choosing different levels
of outsourcing and different providers may result in different
running costs for the same application. If applications consist
of several deployment trees, specific levels of outsourcing
and different providers may be chosen for each of them. The
number of cloud provisioning offers is currently growing and
so is the number of possibilities for running an application
in the clouds. It becomes crucial for cloud customers to
choose the best one in order to minimize their running costs,

especially for long-running applications. The original scientific
contributions of the paper are i) an algorithm for determining
the optimal combination of provisioning services for running
an application, and, ii) an implementation of the algorithm that
we evaluated with several benchmarks.

The remainder of the paper is organized as follows. Sect. II
gives an overview of the adopted algorithm and the context
within it is executed. In Sect. III, we introduce the general
concepts by means of an example which will also be used
throughout the remainder of the paper. Sect. IV introduces
the formal models for applications, provisioning services,
and provisioning plans. Sect. V describes how the algorithm
decomposes the application in order to find applicable pro-
visioning services and Sect. VI explains how the algorithm
searches for the cost-optimal solution. In Sect. VII, we shortly
describe the implementation and show some evaluation results.
Sect. VIII compares our approach with related work and
Sect. IX concludes the paper.

II. ALGORITHM OVERVIEW

The algorithm that we present in this paper is executed by
the Provisioning Optimization Engine (see Fig. 1). Its goal is
to find an optimal combination of provisioning services for
running a given application. The input is a template of this
application, a description of the private software and hardware
resources available for running parts of the application, and
constraints on the provisioning plan prescribing the use of spe-
cific services. The provisioning optimization engine consults
a public registry in which cloud providers advertise services
in a machine-readable form. The output of the provisioning
optimization engine is a plan that describes which provisioning
services to use in order to minimize the running costs.

The deployment structure of the application is described as
a graph; nodes may represent all kinds of soft- and hardware
components. The optimization algorithm consists of two steps.
In the first phase (see Sect. V) it enumerates all possibilities
of partitioning the application and requests corresponding
services for each partition from the registry. The second part
of the algorithm (see Sect. VI) searches for an optimal way
of provisioning the desired application by transforming the
provisioning planning problem into a constraint optimization
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Fig. 1. Optimization architecture

problem (COP). Constraint programming is a generic formal-
ism that allows to formulate problems of a broad range of
domains (like operations research and artificial intelligence).
Transforming the problem allows to use existing constraint
solver implementations in order to solve it efficiently.

III. EXAMPLE SCENARIO

In this section, we present a motivating scenario. We will
refer to it later in order to explain our formal model and
the algorithm. Let us assume that we want to determine
the best way of running a simple Customer Relationship
Management (CRM) application for our enterprise within a
cloud environment. Fig. 2 shows a graphical representation of
the corresponding application template as deployment graph,
similar to UML deployment diagrams. The graphical repre-
sentation is meant to reflect the formal model that we will
present in the next section.

The application consists of five components, numbered C1
to C5 in Fig. 2. The type of the different components is
indicated in the top line. Component C1 is of type "Server", a
DBMS (C2) as well as an application server (C4) are deployed
on it. The application server acts as container for a Web
interface (C5), the DBMS as container for the corresponding
database (C3). DBMS, application server and server are stan-
dard components and we might be able to find corresponding
cloud services. The Web interface and the database schema
however are specific to the CRM application, hence we have
to deploy and manage them ourselves. Each component type
is associated with a type-specific set of attributes that describe
the component in more detail. Let us assume that the SQL
code creating the database (component C3) requires support
for T-SQL (a specific SQL extension). Hence we constrain
the property “SQLversion" of the DBMS as shown in Fig. 2
while other properties remain unconstrained. In a similar way
we constrain the application server to support Java at least
in version 5. We can also define constraints on combinations
of attributes instead of single attributes. In the example we
state that the available disc space of the server machine must
be at least equal to the required hard disc for installing
and running DBMS and application server plus 120 GB.
These 120 GB represent the disc capacity needed for the
database and the Web interface. Fig. 3 shows two available

C1 : Server
discSpace = ?
OS = ?

C4 : App Server
JEEversion >= 5
requiredHD = ?
Model = ?

C2 : DBMS
SQLversion=TSQL
requiredHD = ?
Model = ?

Application

Constraint:
C1.discSpace >= 
C2.requiredHD + 
C3.requiredHD +
120 GB

C3 : DB C5 : Web App Custom 
Components

Standard 
Components

Fig. 2. Example: Application Template

provisioned

provisioned

C6 : Server
discSpace = ?
OS = Win

C7 : DBMS
SQLversion=TSQL
requiredHD = 4G
Model = SQLserv08

Own license PaaS offer 1

C8 : Server
discSpace = 160G
OS = Win

C9 : App Server
JEEversion = 5
requiredHD = 3G
Model = IBMws7

$0.6/hour $1.0/hour

Fig. 3. Example: Available services

provisioning services. They are represented as graphs, similar
to the application graph. Note the difference between the
components that a service provisions and the components that
a service requires in order to deploy on them. In our scenario,
Amazon offers to provision a virtual server machine together
with IBM WebSphere Application Server running on it against
a fee of $1.0 per hour. Additionally, we can buy licenses and
administrate Microsoft SQL Server DBMS ourselves. The total
licensing and management costs per Microsoft SQL Server
instance would be $0.6 per hour. In order to deploy this
software, we need a Windows server.

The input to the provisioning optimization engine would
be a description of the application as template (graphically
represented in Fig. 2), a description of our own capability
of providing and running the Microsoft SQL Server software
(Fig. 3, left side) and a constraint stating that both the custom
components cannot be outsourced. The provisioning engine
would then retrieve the Amazon provisioning service (Fig. 3,
right side) from a public registry. One provisioning plan
would be to use the service from Amazon and deploy our
own software license on the virtual Amazon server. The total
running costs would be $1.6 per hour. This plan implies a
mapping between the components from the services to the
components of the template: C6 and C8 to C1, C7 to C2
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and C9 to C4. If available, another possibility would be to
use a service (not shown in Fig. 2) provisioning a virtual
server machine with installed DBMS and application server
as one package. It would be up to the optimization engine
to compare all possibilities in order to find one with minimal
running costs. Note that we assume that the requirements on
the infrastructure of one application instance are known in
advance. Dynamic scalability could be achieved on a higher
level by adapting the number of instances that are created
following our optimal provisioning plan.

IV. FORMAL MODEL

In this section, we introduce a formal model for describing
applications, provisioning services and provisioning plans.

A. Components

Components are used to describe the application that has
to be provisioned and to describe the provisioning services
that are available for provisioning parts of it. Components
are described by a type and some type-specific attributes. We
denote by T the set of all component types (like “DBMS”).
At = {a1, a2, . . .} designates the set of attributes for some
type t ∈ T , A =

⋃
t∈T
At the set of all attributes of all types.

Each of the attributes has a domain of possible values (e.g.
the set {SQL92, SQL99, ...} for attribute “SQLversion”). For
attribute a we denote by dom(a) the set of possible values.
By DOM =

⋃
a∈A

dom(a), we denote the set of all possible

attribute values.

B. Applications

Definition 1 (Application Template): An application tem-
plate is a tuple ap = (Gap, Rap) where

• Gap = (Cap, Dap, Tap, Vap) is called application graph.
• Rap = {r1, . . . , rn} is a set of global constraints.

Gap corresponds to a directed graph where the components
c ∈ Cap are the nodes and the deployment relationships
between the components d ∈ Dap the edges. The semantic
of a pair (c1, c2) ∈ Dap is that component c2 is deployed
on component c1. The graph has to be acyclic since no
component can be deployed on itself. It may be disconnected
since an application can consist of several deployment trees.
The function Tap : Cap → T assigns components to their
types, the function Vap : Cap × A → P(DOM) assigns
attributes to a set of allowed values. Note that Vap is a partial
function, for each component it assigns only those attributes
to values that belong to the type of this component. The
restrictions ri ∈ R allow to model dependencies between the
attributes of different components (we will abstain from a more
formal definition here). An example would be the disc space
constraint in Fig. 2. Such constraints could also relate quality
of service properties of the application to component attributes
and set minimum requirements on them.

C. Provisioning Services

Definition 2 (Provisioning Service): A provisioning service
s ∈ S is described by a tuple (Gs, Ps, cs) where
• Gs = (Cs, Ds, Ts, Vs) is called the service graph.
• Ps ⊆ Cs designates the set of provisionable components.
• cs ∈ N represent the costs per time unit for using the

service.
The definition of the service graph corresponds to the

definition of application graphs. The service graph must be
connected, hence we refer to it as service tree. The nodes of
the service graph represent either components that the service
can provision (provisionable components) or components that
the service requires in order to deploy on them (prerequisite
components). Only the root of the service tree may be a
prerequisite component. Again, the service graph is labeled by
the functions Ts and Vs that describe type and properties of
the components. For provisionable components, each attribute
is assigned to exactly one value by Vs. The service may be
able to deploy on a range of different components, so Vs may
assign several possible values per prerequisite component and
attribute. We denote by S = {s1, s2, . . . , sn} the total set of
provisioning services, including public services as well as our
own provisioning capabilities. Note that we do not impose re-
strictions on the maximal number of service invocations. This
seems a reasonable assumption for public cloud services but
represents a simplification for private provisioning capabilities.

D. Provisioning Actions

Definition 3 (Provisioning Action): A provisioning action
corresponds to the possibility of using one specific service
for provisioning one specific part of the application graph. It
is described by a tuple pa = (s,M) where
• s = (Gs, Ps, cs) is a provisioning service.
• M : Cs → Cap is the component mapping.
The component mapping maps each component of the

provisioning service to its match, an application component.
Mapping a prerequisite component of the service tree to a
component of the application graph means that the service can
deploy on this component. Mapping a provisionable compo-
nent of the service to an application component means that the
service would provision this component. By M [Ps] we denote
the application components that can be provisioned by service
s, given component mapping M . Provisioning components C1
and C4 of the example application (Fig. 2) by the service from
Amazon (Fig. 3) would be a provisioning action.

The mapping function has to satisfy several constraints.
i) Each application component must be assigned to a compat-
ible component in the service graph. We say that a component
c1 ∈ Cap is compatible with a component c2 ∈ Cs, written
(c1 ∼ c2), if they are of the same type (Tap(c1) = t = Ts(c2))
and if they have at least one common value for each attribute
(∀a ∈ At : Vap(c1)∩Vs(c2) 6= ∅). ii) The component mapping
function M has to be injective (different service components
cannot be mapped to the same application component). iii) The
mapping has to be consistent with regards to the deployment
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structures of service tree and application graph. So if one
component is deployed on another in one graph, the match
of the first component must also be deployed on the match
of the second in the other graph (see (1)). iv) M must be a
total function. So each component of the provisioning service
must have a match among the application components. But not
every component of the application must have a match among
the service components.

Later we will show an algorithm that is able to create a
component mapping step by step for two given trees. So we
will work with mappings that do not comply with the last
condition (until they are completed) and call them partial
component mappings. In the following we will assume that
the application template, ap, and the set of available services,
S, are fixed. We denote by PA = {pa1, pa2, . . . , pak} the
total set of possible provisioning actions then.

∀c1, c2 ∈ Cs :

(c1, c2) ∈ Ds ⇐⇒ (M(c1),M(c2)) ∈ Dap (1)

E. Provisioning Plans

Definition 4 (Provisioning Plan): A provisioning plan P ⊆
PA is a set of provisioning actions representing a valid
possibility for provisioning the given application.

A provisioning plan for the example application was de-
scribed in Sect. III using the two services shown in Fig. 3.
For each application component, a plan must contain exactly
one provisioning action that provisions it. On the other hand,
a component can be mapped to the prerequisite components
of different provisioning actions. All service components that
are assigned to one application component must be compatible.
Finally, we assume that some of the application components
are already bound to specific ways of provisioning (e.g. custom
components for which no publicly available services can be
discovered, like C3 and C5 in Fig. 2). By PAfix ⊆ PA
we denote the set of provisioning actions that have to be
included in every provisioning plan (see (2)). For a given
application and set of services, we denote by P the set of
all possible plans for provisioning the application. For any
P = {(s1,M1), (s2,M2), . . .} ∈ P we denote by cost(P ) the
total running costs that the plan implies (see (3) - cs designates
the running costs of service s as in Def. 2). We simplify and
assume that no additional running costs remain for outsourced
components. Note that the same service may be used several
times in the same application instance for different parts of
the application. An optimal provisioning plan Popt fulfills (4).

PAfix ⊆ P (2)
cost(P ) =

∑
(s,M)∈P

cs (3)

∀P ∈ P : cost(Popt) ≤ cost(P ) (4)

V. DETERMINING ALL POSSIBLE PROVISIONING ACTIONS

In this section, we will explain how all interesting provision-
ing services can be retrieved for a given application, and how
the set of applicable provisioning actions can be derived out of
them. Within the listings we will use the following notations.

Algorithm 1 Determine component mappings among services
and applications

1: function FIND_MAPPINGS(Gs, Gap,m)
2: if ∀c1 ∈ Cs∃c2 ∈ Cap : (c1, c2) ∈ m then
3: return {m}
4: end if
5: Cav

s ← {c1 ∈ Cs|@c2 ∈ Cap : (c1, c2) ∈ m}
6: Cav

ap ← {c2 ∈ Cap|@c1 ∈ Cs : (c1, c2) ∈ m}
7: cs ←oneOf {c ∈ Cav

s |D−1s (c) /∈ Cav
s }

8: if cs = root(Gs) then
9: Cm

ap ← {c ∈ root(Gap) ∩ Cav
ap |c ∼ cs}

10: else
11: Cm

ap ← {c ∈ Dap(m(D−1s (cs))) ∩ Cav
ap |c ∼ cs}

12: end if
13: M ← ∅
14: for all cap ∈ Cm

ap do
15: m̃← m ∪ {(cs, cap)}
16: M ←M ∪ find_mappings(Gs, Gap, m̃)
17: end for
18: return M
19: end function

We will use the deployment graph relation Dap ⊆ Cap ×Cap

as function: Dap(c) denotes the set of all components deployed
on c ∈ Cap and D−1ap (c) the container component of c
(D−1ap (c) = ε /∈ Cap if c has none). The same notation applies
for the service graph. root(Gap) or root(Gs) denotes the set
of components that are not deployed on other components.
Given a subset of application components C̃ ⊆ Cap we denote
by GC̃

ap the corresponding vertex induced subgraph of the
application graph (the same notation applies for the service
graph). By Cfix

ap we refer to the application components for
which the provisioning is already fixed by the provisioning
actions in PAfix (like C3 and C5 in the example application):

Cfix
ap = {c ∈ Cap|∃(s,M) ∈ PAfix : c ∈M [Ps]} (5)

A. Finding Possible Mappings between Component Trees

Given a service tree and a subtree of the application graph,
Alg. 1 determines all valid mappings from the service tree
to (part of the) application tree. We will use this function
in order to find all possible provisioning actions for one
specific service. It has three input parameters: the service
tree Gs = (Cs, Ds, Ts, Vs), the subtree of the application
graph Gap = (Cap, Dap, Tap, Vap), and a partial completed
component mapping m among these two graphs (m = ∅ for
non-recursive calls). The output of the function is the set of
all possible, complete mappings between the two component
trees. Each instance of the function tests at first whether
the partial mapping m is already complete and returns the
mapping as result in this case (line 2). If the mapping is not
complete then there are still service components that are not
assigned to an application component (they are available). The
function arbitrarily selects one service component (cs) that was
not matched, yet, but whose container component (if it has
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Algorithm 2 Determine set of possible provisioning actions
1: function PROVISIONING_ACTIONS(Gap, C

fix
ap )

2: PA← ∅
3: for all c ∈ Cap do
4: at← {c}; S ← ∅
5: while
∃(c1, c2) ∈ Dap : c1 ∈ at ∧ c2 /∈ (Cfix

ap ∪ at) do
6: at← at ∪ {c2}
7: end while
8: if c /∈ Cfix

ap ∧ c ∈ root(Gap) then
9: S ← S ∪ find_services(Gat

ap, at)
10: end if
11: S ← S ∪ find_services(Gat

ap, at− {c})
12: for all s = (Gs, Ps, cs) ∈ S do
13: M ← find_mappings(Gat

ap, Gs, ∅)
14: for all m ∈M do
15: PA← PA ∪ {(s,m)}
16: end for
17: end for
18: end for
19: return PA
20: end function

any) was already matched (line 7). Hence the service tree is
treated bottom-up. A list of candidate application components,
Cm

ap, is calculated to which cs could be mapped (line 8). The
deployment structure of the two graphs restricts the set of
candidates: If cs is the root component of the service tree
then the only possible match is the root of the application
tree. Otherwise, the candidates are application components
deployed on the match of the container component of cs
(see (1)). Additionally, the candidates must not be assigned to
any other service component and they must be compatible with
cs. Each candidate is tried out: the pair consisting of cs and the
respective candidate cap is added to the partial mapping and
the function calls itself recursively with the extended mapping
as parameter. The result is the union between the return values
of all recursive calls.

B. Generating the Set of Applicable Provisioning Actions

Alg. 2 generates the set of applicable provisioning actions
using the service registry. Its input parameters are the graph
of the application Gap = (Cap, Dap, Tap, Vap) and the set
of components Cfix

ap ⊆ Cap with a predetermined way of
provisioning. Its output is the set of all applicable provisioning
actions. The basic idea of the function is to divide the applica-
tion graph into trees and request corresponding provisioning
services for each of them. The for-loop from line 3 to 18
iterates over all application components. In each iteration a
tree is created with the current application component as root.
The nodes of this tree are determined by a flooding algorithm
that starts from the root component and adds all deployed
components for which no provisioning action has been fixed.

The function find_services represents the interface to the
service registry. Its first parameter is a deployment tree, the

Request as provisionable

Request as prerequisite

C4C2

C1

C5C3

Fig. 4. Partitioning of example application

second parameter the subset of components within this graph
that the requested service has to provision. The registry returns
all services whose deployment tree is a subtree of the requested
one, meaning that they are able to provision at least a part of
the required components. Only if the root of the currently
examined deployment tree is also a root within the total
application graph, services without prerequisite component are
applicable (line 8). Services with prerequisite component are
applicable in each case (line 11). Note that we can retrieve
all relevant services with a linear number (in the number of
application components) of requests to the registry.

For each service in the total set of retrieved services—
with and without prerequisite component—the function
find_mappings is used in order to determine possible compo-
nent mappings (line 13). For each service and each component
mapping, a corresponding provisioning action is added to the
result set of function provisioning_actions. After all applica-
tion components have been tried as root for the provisioning
action, the result set of the function (variable PA) contains all
possible provisioning actions for the given application. Fig. 4
shows the two requests that would be sent for our example
application (excluding requests for prerequisite components
only). One request for services that are able to provision a
subtree of tree C1-C2-C4. Another request for services that
are able to deploy C2 and/or C4 on top of C1.

VI. REPRESENTATION AS CONSTRAINT OPTIMIZATION
PROBLEM

Constraint satisfaction problems [4] consist of a set of
variables with an associated value domain each, and of a set
of constraints that link the variables. Constraint optimization
problems (COP) additionally integrate an objective function
that has to be maximized or minimized. The following sub-
sections describe how our problem can be represented in this
formalism.

A. Variables of the COP

The main idea is to introduce a variable for each application
component that represents the provisioning action by which it
should be provisioned. This variable is called provc (we refer
to it as provisioning variable) where c ∈ Cap represents the
component it refers to. Its value domain is the set of provi-
sioning actions that provision this component: PAc ⊆ PA. In
a solution to the COP, each provisioning variable is assigned
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to a provisioning action such that the global running costs are
minimal. If a group of application components is provisioned
by the same provisioning action, their provisioning variables
are assigned to the same value. By adopting this COP struc-
ture, we already make sure that each solution to the COP
corresponds to a provisioning plan in which each component
is provisioned exactly once. The variable costc designates
the costs for provisioning the component c ∈ Cap, we refer
to it as costs variable. Obviously, it is linked to the chosen
way of provisioning for this component. valac represents the
value of attribute a ∈ At of component c ∈ Cap. The initial
value domain are all values that are allowed by the application
template Vap(c, a) ⊆ dom(a).

B. Constraints and Goal Function of the COP

In the following we will represent groups of constraints
as first-order equations. The COP variables will be marked
within the equations in order to separate them visually from the
constants. The following constraints need to be added for all
application components (∀c ∈ Cap), all component attributes
(∀a ∈ At), and for all possible provisioning actions (∀pa ∈
PA with pa = (s,M) and s = ((Cs, Ds, Ts, Vs), Ps, cs)):

@c ∈ Cap : provc = pa ∨ ∀c ∈M [Cs] : provc = pa (6)
provc = pa ⇒ costc = distributeCosts(pa, c) (7)
provc = pa⇒ ∀c ∈M [Cs] : valac ∈ Vs(M−1(c), a) (8)∧
r∈Rap

r (9)

minimize
∑

c∈Cap

costc (10)

Constraint (6) is due to the fact that provisioning actions may
provision more than one component. So, either all of them
are provisioned by this action or none. By constraint (7),
we link specific ways of provisioning a component to the
corresponding costs. If several components are provisioned
by some provisioning action, the whole running costs are
associated with the costs variable of one of them. The costs
variables of the others are set to zero. We use the auxiliary
function distributeCosts(pa, c) that assigns the whole costs
of a provisioning action to one arbitrary component that is
provisioned by it. Choosing one specific provisioning action
for provisioning some component has an influence on the
values of its attributes. This is expressed by constraint (8).
Several global constraints may already be associated with the
application description. Constraint (9) corresponds to the con-
junction of all global constraints. Constraint (10) corresponds
to the goal of our COP: we want to minimize the total running
costs of the provisioning plan which is the sum of the costs
variables over all components.

VII. EVALUATION

We implemented a testbed in order to evaluate the algorithm
experimentally. Our testbed generates application deployment
graphs, global constraints and corresponding provisioning ac-
tions randomly. The test cases are then transformed into a
COP as described in Sect. VI. We measure the time it takes

TABLE I
TESTBED PARAMETERS

Category Parameter Value range

General No. component attributes 50
No. attribute values 100

Application Tree height 1 - 4
No. trees 2

Service No. provisionable components 1 - 5
Prob. of service with prerequisite 25 %
Prob. prerequisite matches 80 %
Costs 1 - 50

to transform the test case into a COP and to solve it by a
constraint solver. This is the critical part of the algorithm in
terms of performance since solving the generated COP is NP-
hard (we allow arbitrary application constraints). Our testbed
can be configured by a set of parameters such as the number of
application components. In the following we will analyze the
influence of these parameters on the performance. We executed
our tests on a server machine running Linux Debian version
2.6.26. As constraint solver we used the G12 solver [5]—an
open-source, non-commercial product—in version 1.1.2. We
restricted the virtual memory for the solver process to 2 GB
in order to demonstrate that our approach does not result in
high memory consumption. It used one AMD Opteron Quad-
Core processor with 3 GHz.

In the following we will present several test series. For
each test series we vary some of the configuration parameters
of our testbed and analyze the impact on the performance.
We generate 50 different test cases for each configuration
and report the arithmetic mean of the computation times.
We set the number of deployment trees that the application
consists of to 2 and the maximal height of these trees to 4.
We assume that each component is described by 50 attributes
with value domains of cardinality 100. The probability to
generate a provisioning action without prerequisite component
is set to 75%, provisioning actions provision between 1 and
5 components. We assume a probability of 80% that services
with prerequisite component can be applied (if an arbitrary
provisioning service is chosen for the component they want to
deploy on). The cost of a service is chosen arbitrarily between
1 and 50 units. Table I summarizes these parameters. We
optimized the representation of the COP in comparison to the
version presented in Sect. VI. First, we replaced the Boolean
equations (7) and (8) by table constraints linking for each
component the values of its provisioning variable with costs
and attribute values. Table constraints express admissible value
combinations for a subset of COP variables as tuple set and are
handled more efficiently by the solver than Boolean equations.
Second, we applied a pretreatment in order to integrate only
those attribute variables into the COP that are addressed in
global constraints.

A. Influence of the Number of Provisioning Actions

For the first test series (see Fig. 5) we generated applications
without global constraints. We will justify later that having
no global constraints at all corresponds to a more difficult
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case. For the first test series, we successively increased the
number of provisioning actions while keeping the number
of application components at 40. Without global constraints,
we are still able to calculate an optimal provisioning for
applications with 40 components and 120 provisioning actions
within less than 9 seconds in average. Note that the number
of components corresponds to the number of components for
which the provisioning is not fixed, yet. The application may
have more components. Also the total number of provisioning
services in the registry may be much higher than the number
of provisioning actions.

B. Influence of the Number of Application Components

In series 2 (see Fig. 6), we set the number of provisioning
actions to 105 and increase the number of application compo-
nents. While the computation time grows exponentially with
the number of provisioning actions, this is obviously not the
case for the number of components. This is understandable
since—from another point of view—provisioning planning
corresponds to selecting an optimal subset out of a set of
available provisioning actions. The complexity of this problem
depends primarily on the number of provisioning actions.

C. Influence of the Number of Constraints

Adding global constraints to the application helps pruning
the search space and accelerates the search. For the last test
series (see Fig. 7), we assumed a fixed ratio of 1 to 3 between
application components and applicable provisioning actions.
We compared two versions of the COP: one with global
constraints and one without. We added constraints of the form
a1 + . . . + an ≤ 80 ∗ n where the ai represent attributes
of different components and n ≤ 5. Since attribute values
of provisioned components are chosen arbitrarily between 1
and 100, these constraints are satisfied with a probability of
80 %. For the version with global constraints, we assumed
that each component is involved in 2 constraints in average
(this seems a moderate assumption since components are
described by 50 properties). For 50 application components
and 150 provisioning services, the version of the problem that
integrates constraints can be solved in average about 10 times
faster than the other. This justifies our claim from before that
having no constraints at all corresponds to a more difficult
case.

VIII. COMPARISON WITH RELATED WORK

A general analysis about the risks and benefits of using
public cloud computing offers can be found in [6]. In our
case we assume that the typical risks associated with cloud
computing—e.g. concerning privacy and service availability—
have been found acceptable. The financial benefits of using
cloud offers have been studied in several publications. Some
general formulas are presented in [6], in [7] the benefits of
purchasing versus leasing storage from cloud services are
compared. Different execution modes of a scientific workflow
are studied in [8], finding that cloud computing can be a cost-
effective solution especially for data-intensive applications.
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Our scenario and our data model for describing applications
and provisioning services is most similar to the Cafe model
[9]–[11]. However, Cafe uses an external file, the variability
descriptor, for representing variability within the application.
We use a template based model instead (similar to the one
presented in [12]) which facilitates discovery and transforma-
tion into a COP. In [11], a simple algorithm for choosing the
best cloud providers is presented. However, it performs only
local optimization and no experimental evaluation has been
published. A more sophisticated algorithm for optimizing the
usage of Storage as a Service offers is presented and evaluated
in [13]. Similar to our approach, a COP solver is used in
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order to determine the optimal storage location for specific
data items and the optimal placement for administrators. The
optimal outsourcing is calculated with regards to a specific
time window. Our work could be extended as well in order
to take into account that services may be offered in different
temporal granularities. However, the approach is specific to
storage outsourcing and does not deal with deployment graphs.
Cost-optimal provisioning of Hadoop applications in the cloud
was examined in [14]. In [15], cost-optimal scheduling for
applications in cloud environments is performed using heuris-
tic algorithms. However, the applications are described as
workflows and not as deployment graphs.

The problem of finding the best combination of provisioning
services for a given application can be compared to the
problem of optimal component placement studied in Grid com-
puting (e.g. [16]). However, applications are usually described
as sets of components with associated requirements on the
infrastructure in this context. We generalize this model by
describing applications as deployment graphs and by consider-
ing different levels of outsourcing. If provisioning services are
realized as Web services (see [10]) our optimization problem
could be seen as a form of quality-aware service composition.
In [17] linear integer programming is used for solving this
type of problems. While we study cost optimization out
of the perspective of the cloud customer, other publications
(e.g. [18]–[20]) treat cost-optimization problems for the cloud
provider and are hence complementary to our approach.

IX. CONCLUSION

In this paper we addressed the challenge of minimizing
application running costs by outsourcing carefully selected
parts into the cloud. This problem is of growing practical
importance since the number of IaaS, PaaS, and SaaS of-
fers is increasing. We presented an algorithm that works
on generic representations of applications and provisioning
services as graphs. In a first step, it decomposes applications
according to all possible levels of outsourcing and retrieves
corresponding services from a registry. In the second step,
it transforms the problem of cost-optimal outsourcing into a
constraint optimization problem which is solved by a stan-
dard solver implementation. We presented benchmarks derived
from solving randomly generated COPs. We calculated a cost-
optimal provisioning for applications consisting of up to 50
components, given 150 provisioning actions, within less than
85 seconds in average (even less than 9 seconds for a moderate
number of global constraints). Investing significantly more
time in order to find the optimal solution to much more
complicated problems may still be a good investment - even
slightly suboptimal solutions for the running costs may add
up to big additional sums over the time, especially if used
for running several application instances over a long time.
Including dynamic aspects directly into our model would be
an interesting point of future research for cases where scaling
in the granularity of application instances is not possible or
desirable. Extending the model to different billing strategies
would be a challenging research topic as well.
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