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Abstract

MapReduce is often used to run critical jobs such as sci-
entific data analysis. However, evidence in the literature
shows that arbitrary faults do occur and can probably cor-
rupt the results of MapReduce jobs. MapReduce runtimes
like Hadoop tolerate crash faults, but not arbitrary or Byzan-
tine faults. We present a MapReduce algorithm and prototype
that tolerate these faults. An experimental evaluation shows
that the execution of a job with our algorithms uses twice
the resources of the original Hadoop, instead of the 3 or 4
times more that would be achieved with the direct application
of common Byzantine fault-tolerance paradigms. We believe
this cost is acceptable for critical applications that require
that level of fault tolerance.

1. Introduction

MapReduce is a framework developed by Google for pro-
cessing large data sets [8]. It is composed by a program-
ming model and a runtime system, being used extensively by
Google in its datacenters to support core business functions
such as index processing for its web search engine. Google’s
implementation is not openly available, but an open source
version called Hadoop' [34] is used by many cloud comput-
ing companies, including Amazon, EBay, Facebook, IBM,
LinkedIn, RackSpace, Twitter, and Yahoo!.> MapReduce is
also a promising approach for scientific computing [10, 15].
A final argument in favor of the importance of MapReduce is
the appearance of commercial versions like Windows Azure’s
MapReduce and Amazon Elastic MapReduce.

MapReduce was designed to be fault-tolerant because at
scales of thousands of computers and hundreds of other de-
vices like network switches, routers and power units, compo-
nent failures are frequent. For instance, Dean reported that
in the first year of a cluster at Google there were 1000 indi-
vidual machine failures and thousands of hard drive failures
[7]. Google and Hadoop MapReduce mostly tolerate crashes
of map and reduce tasks. If one of these tasks stops before

"Hadoop is an Apache open source project with many components. We
use the term Hadoop to mean its MapReduce runtime system.
Zhttp://wiki.apache.org/hadoop/PoweredBy

its conclusion, this is detected and a new instance of the same
task is created. Additionally, data is stored in disk together
with checksums, which allow its corruption to be detected
[14, 23, 34].

Although it is crucial to tolerate crashes of tasks and data
corruptions in disk, other faults that can affect the correct-
ness of the results of MapReduce are known to happen and
will probably happen more often in the future [31]. A re-
cent study of DRAM errors in a large number of servers in
Google datacenters for 2.5 years concluded that these errors
are more prevalent than previously believed, with more than
8% DIMMs affected by errors yearly, even if protected by er-
ror correcting codes (ECC) [32]. A Microsoft study of 1 mil-
lion consumer PCs shown that CPU and core chipset faults
are also frequent [25].

The fault tolerance mechanisms of current MapReduce im-
plementations, namely Hadoop, cannot deal with such acci-
dental arbitrary faults or accidental Byzantine faults [1] (we
do not consider malicious faults). They cannot be detected
using checksums and often do not crash the task they affect,
so they can silently corrupt the result of a task. They have to
be detected and their effects masked by executing each task
more than once. This basic idea was proposed in the context
of volunteer computing to tolerate malicious volunteers, that
return false results of the tasks they were supposed to exe-
cute [29]. That work, however, considered bag-of-tasks ap-
plications, which are simpler than MapReduce jobs. A simi-
lar but more generic solution is Byzantine fault-tolerant state
machine approach, in which a set of programs are executed
in parallel by different servers that execute commands in the
same order [30, 4, 5, 33]. This approach, however, is not di-
rectly applicable to the replication of MapReduce tasks, only
of a service that follows the client-server model (e.g., a file
server). A naive solution for MapReduce would be to execute
each job twice and re-execute it if the results do not match,
but its cost is excessive in case there is a fault.

In this paper we present a Byzantine fault-tolerant (BFT)
MapReduce runtime system. This system tolerates faults that
corrupt the results of computation of tasks, such as the above-
mentioned cases of DRAM and CPU errors/faults. Our BFT
MapReduce follows the approach of executing each task more
than once, similarly to the works mentioned above. The chal-



lenge was to do this efficiently, e.g., by running only 2 copies
of each task when there are no faults. Notice that, for in-
stance, the state machine approach requires 3f + 1 replicas
to tolerate at most f faulty replicas, which gives a minimum
of 4 copies of each task [4, 5]. We use several mechanisms
to minimize both the number of copies of tasks executed and
the time needed to executing them. In case there is a fault,
the cost of our solution is close to the cost of executing the
job twice, instead of 3 times as the naive solution proposed
above; if there is more than one fault, the gap is even larger.

Our solution is more expensive than using the original
MapReduce runtime or Hadoop. A typical configuration will
require that each task is executed twice, which is a consid-
erable overhead in terms of resources used and possibly of
execution time. However, we believe this cost is acceptable
for critical applications that require a high degree of certainty
of the correctness of the results obtained. A large set of scien-
tific computing applications will fall in this category [10, 15].

The main contribution of the paper is an algorithm to ex-
ecute MapReduce jobs tolerating arbitrary faults. We imple-
mented our BFT MapReduce by modifying Hadoop and mea-
sured its performance using the Hadoop’s Gridmix bench-
mark.? These experiments confirmed that indeed it is pos-
sible to run a Byzantine fault-tolerant Hadoop using twice the
resources of Hadoop.

2. MapReduce and Hadoop

MapReduce comprises a programming model based on
map and reduce functions as found in functional program-
ming (with a somewhat modified meaning), and an execution
environment using a large number of computers as found in
clusters and datacenters. Programmers specify map and re-
duce functions: the former is used to process an input file
and generate key-value pairs, the latter is used to merge sev-
eral such pairs (with the same key) into a single key-value
pair. The running environment first splits the input file, then
feeds several instances of the map function with those splits.
The multiple map outputs are then sorted key-wise and split
again, now fed to multiple reduce functions, in a phase known
as shuffle. Multiple reduce outputs are finally concatenated in
an output file. According to Dean and Ghemawat, it is possi-
ble to express many real world tasks using this model [8].

Hadoop is an implementation of MapReduce made from
scratch, freely available through the Apache license [34]. It
is not only a framework to implement and run MapReduce
algorithms in Java, but also a handy tool for developing al-
ternative, improved, systems for MapReduce, such as the one
presented in this paper.

Hadoop users submit jobs to it, containing the imple-
mented map and reduce functions and an input file refer-
ence. The input file must have been previously stored in the

3http://hadoop.apache.org/mapreduce/docs/current/gridmix.html

Hadoop file system (HDFS), which breaks the file in smaller
replicated pieces, called splits. The splits are homogeneously
stored in the same nodes available for running Hadoop jobs.
HDFS is a file system tailored for Hadoop. It manages a
file namespace and allows user data to be stored in files split
into multiple, distributed blocks. It replicates data blocks of
files on multiple hosts, default is three times: two in the same
rack and one in another rack. Although it does not imple-
ment the POSIX semantics, its performance is tuned for data
throughput and large files (blocks in the range of 64 MB).
HDFEFS is implemented using a single NameNode, the mas-
ter server that manages the file namespace operations (open,
close, rename) and regulates access to files by clients. In ad-
dition, there are a number of DataNode slave servers, usually
one per node in the cluster, which manage storage attached to
the nodes that they run on, and serve block operations (cre-
ate, read, write, remove, replicate). DataNodes communicate
to move blocks around, for load balancing and to keep the
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FIGURE 1: Hadoop architecture

The architecture of Hadoop is presented in Figure 1. Jobs
are submitted to and taken care of by a service called Job-
Tracker. The JobTracker, currently implemented as a central-
ized service, breaks a job into pieces, called tasks. It creates
one map task per input split, and a predefined number of re-
duce tasks. Tasks are assigned to nodes based on the task
queue size within the nodes. Also, when assigning a map
task to a node, preference is given to nodes containing the in-
put split, then to the nodes in the same rack, then those in the
same cluster, then datacenter, and so on.

Each node available to run Hadoop jobs hosts a service,
called TaskTracker. This service runs the tasks and sends
heartbeat messages to the JobTracker. Heartbeats carry infor-
mation on the percentage of the input split already processed
by local tasks (if any is running), and signal task ends and er-
ror conditions. Heartbeat replies may carry new tasks to run
in the node.

Hadoop has been built with some level of faults tolerance.
Heartbeat messages, or the lack of them, allow the JobTracker
to figure out that a task stalled or failed. Using different
nodes, the JobTracker runs extra, speculative, tasks for those
lagging behind and restarts the failed ones. Nevertheless, this
model only supports crashes, not arbitrary faults. In this pa-



per we develop and describe the implementation of a more
elaborated algorithm that provides Byzantine fault-tolerance.

3. Byzantine Fault-Tolerant MapReduce

This section present the BFT Hadoop MapReduce system.
We start by presenting the system model, then the algorithm
and the techniques we use.

System model. The system is composed by a set of dis-
tributed processes: the clients that request the execution of
jobs composed by map and reduce tasks, the JobTracker that
manages the execution of a job as explained, a set of Task-
Trackers that execute tasks, the NameNode that manages ac-
cess to data stored in HDFS, and a set of DataNodes where
HDEFS stores file blocks. We say that a process is correct if
it follows the algorithm, otherwise we say it is faulty. We
also use these two words to denominate a task (map or re-
duce) that, respectively, returns the result that corresponds to
an execution in a correct TaskTracker (correct) or not (faulty).
Processes run in servers in a datacenter.

We assume that clients are always correct, because if they
are not there is no point in worrying about the correctness
of the job’s output. We also assume that the JobTracker is
always correct, which is the same assumption that Hadoop
does [34]. It would be possible to remove this assumption
by replicating the JobTracker, but it would complicate the de-
sign considerably and this component does much less work
than the TaskTrackers. The TaskTrackers can be correct or
faulty, so they can arbitrarily deviate from the algorithm and
return corrupted results of the tasks they execute. We assume
that HDFS (NameNode and DataNodes) is Byzantine fault-
tolerant, so it is always correct. We do not study this aspect
because there is already one BFT HDFS implementation in
the literature, based on the UpRight library [5].

The system is asynchronous, i.e., we make no assumptions
about bounds on processing and communication delays for
our mechanisms, although the original Hadoop mechanisms
make assumptions about such times for termination. We as-
sume that the processes are connected by reliable channels, so
no messages are lost, duplicated or corrupted. In practice this
is provided by TCP/IP connections. We assume the existence
of a hash function that is collisions-resistant, i.e., for which it
is infeasible to find two inputs that produce the same output
(e.g., SHA-1).

Our algorithm is parameterized with f. Consider that n
replicas of task 7" are executed with the same input . f is the
maximum number of faults that can affect the replicas of T" in
such a way that the result of the faulty tasks is the same. In
other words, if T is a function and {77}, T%, ..., T,,} the faulty
replicas executed, f is the maximum value that n takes in
such a way that Ty (I) = Tx(I) = ... = T,,(I). Notice that
the meaning of f is different from the meaning of f or ¢ used
typically in fault tolerance, which is the maximum number of

faulty replicas [4, 5, 33, 20, 22, 3]. It is much more probable
that n replicas fail, than that n replicas fail without crashing
and return the same result. Our parameter f, like the other f
or t, has a probabilistic meaning (hard to quantify precisely):
it means that the probability of more than f faulty replicas
of the same task returning the same output is negligible. We
expect f = 1 to be a realistic value.

The algorithm. A simplistic solution to make MapReduce
Byzantine fault-tolerant given the system model would be the
following. First, the JobTracker starts 2 f 4 1 replicas of each
map task in different servers and TaskTrackers. Second, the
JobTracker starts also 2f + 1 replicas of each reduce task.
Each reduce task fetches the output from all map replicas,
picks the most voted results, processes them and stores its
output in HDFS. In the end, either the client or a special task
must make the vote of the outputs to pick the most voted. An
even more simplistic solution would be to run a consensus,
or Byzantine agreement between each set of map task repli-
cas and reduce task replicas. This would involve even more
replicas (typically 3f + 1) and more messages exchanged.
The first simplistic solution is very expensive because it
replicates everything 2 f 4 1 times: task execution, map task
inputs reading, communication of map task outputs, and stor-
age of reduce task outputs. We use a set of techniques to avoid
these costs:
Deferred execution. Crash faults are detected by the previ-
ously existing Hadoop mechanisms, and arbitrary faults are
uncommon, so there is no point in always executing 2f + 1
replicas to usually obtain the same result. The JobTracker
starts only f + 1 replicas of the same task, and the reduce
tasks check if they all return the same result. If a timeout
elapses, or some returned results do not match, more replicas
(up to f) are started, until there are f 4+ 1 matching replies.
Tentative reduce execution. Waiting for f + 1 matching map
results before starting a reduce task can put a burden on end-
to-end latency for the job completion. A better way to deal
with the problem is for the JobTracker to start executing the
reduce tasks just after receiving the first copies of the required
map outputs, and then, while the reduce is still running, vali-
date the input used as the map replicas outputs are produced.
If at some point it is detected that the input used is not cor-
rect, the reduce task can be restarted with the correct input.
This point will be implemented in the future to improve the
performance of the application.
Digest outputs. f + 1 matching outputs of maps or reduces
have to be received to be considered correct. These outputs
tend to be large, so it is useful to fetch one output from some
task replica and compare just digests (hashes). This way, it is
still possible to validate the output without generating much
additional network traffic.
Tight storage replication. We can write the output of both
map and reduce tasks to HDFS with a replication factor of f
(typically 1), instead of 3 (the default value). We are already



Algorithm 1 BFT MapReduce algorithm

1: client stores input data in HDFS and submits the job to Job-
Tracker;

2: JobTracker inserts f + 1 replicas of each map task in the task
queue;

3: JobTracker assigns each map tasks to one TaskTracker that has
one execution slot free and that, preferably, is located in the
same server as the DataNode that contain the input for that task;

4: when a map task starts, it reads the input from a DataNode;

5: during the execution of a map task, every TaskTracker period-
ically sends heartbeat messages to the JobTracker; if a Task-
Tracker stops sending heartbeats for a certain task, the Job-
Tracker inserts the task again in the queue; if a TaskTracker de-
tects that a task stopped, it sends a message to the JobTracker
that does the same;

6: when a map task finishes, the TaskTracker sends a heartbeat with
the digest of the result to the JobTracker; if the JobTracker has
digests of f + 1 or more replicas of a map task and there are no
f + 1 that match, then it starts another replica of the same map;

7: when a certain percentage of the map tasks are concluded (i.e.,
have f+ 1 matching digests), the JobTracker inserts f + 1 repli-
cas of each reduce task in the queue and gives it the digests of
the map outputs;

8: when a reduce task starts, it gets its input from the map tasks
that generated it; for each map, it gets the complete output from
one of the TaskTrackers that executed it and provided a digest
that matches;

9: during the execution of a reduce task, TaskTracker and Job-
Tracker do the same heartbeat management as done for a map
task;

10: when a reduce task finishes, it stores the output and a hash in
HDFS (without replication) and sends a heartbeat with the digest
of the result to the JobTracker;

11: when all reduces are concluded (i.e., have f 4 1 matching di-
gests), the JobTracker informs the client;

12: client picks a copy of the output that matches the digest.

replicating the tasks, and their outputs will be written on dif-
ferent locations, so we do not need to replicate these outputs
even more.

The algorithm is presented in Algorithm 1. In the nor-
mal case, Byzantine faults do not occur, so, these mechanisms
greatly reduce the overhead introduced by the basic scheme.
Specifically, without Byzantine faults, only f + 1 replicas
are executed in task trackers, the latency is similar to the one
without replication, the overhead in terms of communication
is small, and the storage overhead is minimal. Similarly to the
original Hadoop, our BFT version can run speculative tasks
for those lagging behind.

Notice that our algorithm tolerates any number of arbitrary
faults during the execution of a job, because map and reduce
tasks can be re-executed until f + 1 outputs match. The limit
f is only on the number of faulty replicas of a task that return
the same output.

4. The Prototype

The prototype of our system was implemented by modify-
ing the original Hadoop 0.20.0 source code. Hadoop is writ-
ten in Java so we describe the modifications made per class.
The modifications essentially implement Algorithm 1. HDFS
was not modified for the reason already mentioned: there is
already a BFT HDFS so we did not study this issue.

Most modifications were made in the JobTracker com-
ponent and class. For a given job, this component stores in a
queue one object per map and reduce task, from which they
are removed and scheduled to be executed. We modified it to
store in the queue 2 f + 1 replicas of each task (which slightly
differs from how the algorithm is presented in the previous
section), but we modified the scheduler in such a way that
only f + 1 replicas of each task are executed initially (de-
ferred execution). The format of the identifier of tasks (maps
and reduces) was modified to include a replica number, so
that they can be differentiated. A map task takes as input the
path to a split of the input file. The JobTracker gives each
map replica a path to a different replica of the split, stored
in a different DataNode, whenever possible (i.e., as much as
there are enough replicas of the split available). It tries to in-
stantiate map tasks in the same server where the DataNode of
the split is, so this usage of different split replicas forces the
replicas of a map to be executed in different TaskTrackers,
which improves fault tolerance.

The JobTracker stores information of a running job in a
object of the JobInProgress class. TaskTrackers send
heartbeat messages to the JobTracker periodically. We mod-
ified this process to include a digest (SHA-1) of the result in
the heartbeat that signals the conclusion of a task (map or re-
duce). This digest is saved in the JobInProgress object,
more precisely in an object of the class VotingSystem.
When there are digests from the f + 1 replicas of a task, the
JobTracker decides if they match or if it is necessary to launch
another replica. If it is, it schedules for execution one of the
replicas already in the queue (there were f extra); in the very
unlikely case of the 2f + 1 replicas are used and no match-
ing result is obtained, one more replica is both inserted in the
queue and scheduled. The Heartbeat class used to repre-
sent a heartbeat message, was modified to include the digest
and task replica identifier.

S. Experimental Evaluation

In this section, we assess the performance of our BFT
MapReduce in a cluster. Hadoop provides a benchmark ap-
plication called Gridmix that is composed of a set of jobs:
monsterquery, webdatascan, webdatasort, combiner, stream-
ingsort, and javasort. We used it to evaluate our prototype,
mostly comparing it to the non-modified Hadoop (denomi-
nated the official Hadoop MapReduce from now on). We run



our experiments in Grid’5000, a French geographically dis-
tributed infrastructure used to study large-scale parallel and
distributed systems.

The set of experiments was split in half and conducted
in set of 10 machines from 2 different Grid’5000 sites, for
the single purpose of reducing the time taken to run them.
All executions of the same job were done in the same site,
and each value shown in the graph is an average of 5 execu-
tions. We decided that the chosen machines to perform the
tests had the same characteristics. The experiments ran for
many hours and Grid’5000 reservations are limited in terms
of number of nodes x duration. Being the infrastructure
shared, it is unlikely to get identical nodes when reserving
them in large quantities. As a result, we limited the tests to the
chosen set. We run the monsterquery, streamingsort and java-
sort experiments in the Paramount cluster whose machines
are Dell PowerEdge 1950 (Intel Xeon 5148 LV 2.33Ghz 4
cores in 2 CPUs, 8GB RAM, Gigabit Ethernet, 2x300GB
SATA). Webdatascan, webdatasort and combiner were ex-
ecuted in Chicon cluster whose machines are IBM eServer
326m (AMD Opteron 285 2.6GHz, 4 cores in 2 CPUs, 4GB
RAM, Gigabit Ethernet, 80GB SATA).

In the experiments we considered only the case of f = 1.
Recall the meaning of f in our system and that the probability
of the corresponding assumption being violated is even lower
than with BFT replication algorithms. Nevertheless, even for
these algorithms usually only the case of f = 1 is evaluated
[4, 5, 33]. The values we present are averages of 5 executions
of each experiment. Each job was executed with different
numbers of input splits, from 10 to 1000. In all our experi-
ments, an input split consists of 64 MB of data that is stored
in DataNodes. We used at most 1000 splits, so we generated
64 GB of data. The reason why we used 64 MB of data is
that it is the default size of a block in HDFS. We did not use
multiples of 64 MB because the data size would be very large
and the experiments would take longer than we desired.
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number of input splits
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We start by comparing the duration of the execution of
both versions. Figure 2 shows the duration of the executions
with the different numbers of input splits for the webdatascan

combiner —+—
webdatascan —<—
streamingsort —*—
monsterquery —=— | i —
javasorter —=—
webdata‘sort ©

0.5 H

Ratio of job execution (bft/official)

1 1 1 1
0 200 400 600 800 1000
Number of input splits

FIGURE 3: Ratios of job execution duration

job, and the duration of map and reduce tasks specifically.
This figure is similar to those of the other jobs, which we do
not show for lack of space. Instead, Figure 3 shows the ratio
of the durations of the BFT and the official versions for all
jobs. Both figures show that the BFT version is on average
two times slower than the official version. This is what was
expected and is desirable, because the BFT version executes
f + 1 =2 times more map and reduce tasks, and the number
of machines is much lower than the number of tasks. With-
out deferred execution and the same number of servers, the
duration would be 2f 4+ 1 = 3 times. The figures show some
oscillations in relation to the average of 2 times, due to ef-
fects like the execution of speculative tasks and variations in
the duration of reduce tasks.
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To show that the double of the duration corresponds
roughly to twice the consumption of resources, we made a
experiment with a setting that is an exception with respect to
all others: we executed the BFT version in 20 nodes, while
the official version was again executed in 10 nodes. The re-
sults of this experiment for the webdatascan job is shown in
Figure 4. With this difference in the number of nodes, the
duration of the BFT version is only slightly higher than the
official version.

To better understand the factors that impact the duration
of the execution of the two MapReduce versions we provide



some additional graphics. Each map task reads 64 MB of
data from HDFS (one input split). Figure 5 shows the total
data read by map tasks in the combiner job. Figure 6 shows
the ratio of bytes read between the BFT and the official ver-
sion for all jobs. All these values were extracted from the
actual execution logs, not computed by us. The main conclu-
sion is that the fact that BFT version runs twice more map
tasks, also makes it read twice more data from HDFS, with
the corresponding cost in terms of performance.
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We did a similar analysis for the amount of output data
generated by map tasks. Figure 7 depicts the ratios between
the BFT and the official version for all jobs. Again the BFT
version runs twice more tasks, so it produces twice more data.
In some cases more than twice of the data was produced,
which shows that speculative map tasks were executed.
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FIGURE 7: Ratio of map output size

The Hadoop MapReduce default scheduler (as also the
original one [8]) tries to run each map task in the location

where its input split is stored. When that is not possible, the
input split, that is typically large, has to be transferred over
the network, delaying the beginning of the task execution, us-
ing network bandwidth, etc., all factors that have a negative
impact in the system performance. When a task is launched
in the same location as where the split resides, this task is said
to be data local. Figure 8 shows the percentage of data local
tasks in the monsterquery job and Figure 9 shows the ratio
for all jobs. The jobs executed with less input splits shows
more irregular results, and sometimes, the percentage of data
local tasks launched are between 80% and 90%. As the num-
ber of input splits increase, the results tend to be more regular
and become near 100%. For monsterquery the percentage of
data local tasks is similar for both versions. For the other jobs
(except streamingsort) we can observe that the ratio is often
higher than 2, meaning that the BFT version had better local-
ity than the official version.
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6. Related Work

MapReduce has been the subject of much research. Work
has been done in adapting MapReduce to perform well
in several environments and kinds of applications, such
as multi-core and multiprocessor systems (Phoenix system)
[28], heterogeneous environments as Amazon EC2 [35], dy-
namic peer-to-peer environments [21], high-latency eventual-
consistent environments as Windows Azure (AzureMapRe-
duce system) [15], iteractive applications (Twister system)



[9], and memory and CPU intensive applications (LEMO-MR
system) [11]. Another important trend is research on using
MapReduce for scientific computing, e.g., for running high
energy physics data analysis and Kmeans clustering [10], and
for the generation of digital elevation models [18]. Several
systems are similar to MapReduce in the sense that they pro-
vide a programming model for processing large data sets, but
that allow more complex interactions and/or provide a higher
level of abstraction: Dryad [16], Pig Latin [26], Nephele [2].
All these works show the importance of the MapReduce pro-
gramming model, but from the fault tolerance point of view
they do not add to the original MapReduce.

Tolerance to arbitrary faults is a long trend in fault toler-
ance. Voting mechanisms for masking Byzantine faults in dis-
tributed systems were introduced in the early 1980s [27, 19].
State machine replication is a generic solution to make a ser-
vice crash or Byzantine fault-tolerant [30]. It has been shown
to be practical to implement efficient Byzantine fault-tolerant
systems [4, 6] and a long line of work appeared, including
libraries such as UpRight [S] and EBAWA [33]. As already
pointed out, state machine replication is not adequate to make
MapReduce Byzantine fault-tolerant. It would be possible
to replicate the whole execution of MapReduce in several
servers or sets of servers, but the cost would be high.

Byzantine quorum systems have been used to implement
data stores with several concurrency semantics [20, 22], even
in the cloud [3]. Although the voting techniques have some-
thing in common with what we do in our system, these solu-
tions cannot be used to implement BFT MapReduce because
it is not a storage service, but a system that does processing.

For volunteer computing and bag-of-tasks applications,
Sarmenta proposed a mechanism for sabotage-tolerance
based on voting [29]. Most of that work focus on schedul-
ing the workers in a way that no more than a number of false
results are obtained. Although we also use voting, we do
not consider malicious behavior of workers, only accidental
faults, so there is no point in doing complicated scheduling
other than avoiding running twice the same task in the same
node. Furthermore, much of the novelty of our work is on
exploiting the two processing steps (map and reduce) and the
(typical) large data size to improve the performance. This
is completely different from what that paper does. Another
work studies the same problem and presents optimal schedul-
ing algorithms [13]. Ferndndez et al. also study the same
problem, but focus on defining lower bounds on the work
done based on a probabilistic analysis of the problem [12].
Again, our problem is different and this kind of analysis is
not our objective with this paper.

Very recently, a similar work on volunteer computing but
for MapReduce applications appeared [24]. Similarly to our
work, the solution is based on voting. The main differences
are that the work focus on a different environment (volunteer
computing) and does not attempt to reduce the cost and im-
proving the performance, so it does not introduce any of the

optimizations that are the core of our work. That paper also
presents a probabilistic model of the algorithm that allows as-
sessing the probability of getting a wrong result, something
that we do not present here.

The problem of tolerating faults in parallel programs exe-
cuted in unreliable parallel machines was studied by Kedem
et al. long ago [17]. However they proposed a solution based
on auditing intermediate steps of the computation to detect
faults. On the contrary, we assume that it is not practical to
detect arbitrary faults in the execution of arbitrary programs,
so comparing two or more executions of a task is the only
possibility of detecting faulty processing.

7. Conclusions

We present a Byzantine fault-tolerant MapReduce algo-
rithm and prototype, as well as its evaluation using Hadoop’s
Gridmix benchmark in the Grid’5000 testbed. The evaluation
confirms what might be intuited from the algorithm: that with
f = 1 the time to execute a job essentially doubles in a small
cluster, which is equivalent to approximately the double CPU
time. We argue that f = 1 is a realistic assumption because:
(i) arbitrary faults are rare; (ii) it means that the probability of
more than one faulty replicas of the same task returning the
same output is negligible.

It is important to notice that our BFT MapReduce toler-
ates any number of faulty task executions at a low cost: the
re-execution of that task. This is not what happens with a
simplistic solution like executing a job more than once using
the original Hadoop and comparing the outputs. If each exe-
cution was affected by one fault in any task, the job might be
re-executed forever without any two outputs ever matching.
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