
論文 / 著書情報
Article / Book Information

Title Data layout management for energy-saving key-value storage using a
write off-loading technique

Author Masaki KAN, Dai Kobayashi, Haruo YOKOTA

Journal/Book name 2012 IEEE 4th International Conference on Cloud Computing
Technology and Science, , , pp. 75-81

Issue date 2012, 12

DOI http://dx.doi.org/10.1109/CloudCom.2012.6427514

URL http://www.ieee.org/index.html

Copyright (c)2012 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Tokyo Institute Research Repository)

http://dx.doi.org/10.1109/CloudCom.2012.6427514
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Data layout management for energy-saving key-value storage
using a write off-loading technique

Masaki KAN∗†, Dai KOBAYASHI∗, Haruo YOKOTA†,
∗ Cloud System Research Laboratories, NEC Corportaion

1753, Shimonumabe, Nakahara, Kawasaki, Kanagawa, 211-8666, Japan
Email: kan@bq.jp.nec.com, daik@ay.jp.nec.com

† Department of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Email: kan@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract—The objective of our research has been to achieve
energy-saving key-value store system. We introduce architec-
ture of our distributed key value store and control framework
for energy saving. To reduce power consumption, the control
framework should reduce the time required before node power-
down. Since this time depends heavily on the amount of data
migration, we employ an approach which reduce that amount.
We describe and evaluate three control strategies that can be
executed on this control framework, each consisting of a data
allocation algorithm and data control layout algorithm for use
when nodes are to be powered down. With a prototype system
developed for evaluation purposes, the time required before
node power down is reduced by use of our proposed data
allocation algorithm, by means of its taking into account the
possible presence of Write off-loading nodes.

Keywords-Cluster computing, Power-propotionality, Data
layout, Key value store

I. INTRODUCTION

Power consumption in data center is major problem.
Research has shown that the energy used worldwide by data
centers is 1.1 - 1.5% of total electricity use [1]. In Japan, in
the aftermath of the 2011 Tohoku earthquake and tsunami
saving electricity at data centers has become even more
important than before. In recent years, much research has
been focused on reducing energy consumption. Because the
cloud computing paradigm increases importance of large-
scale distributed storage,we focus on a large-scale distributed
storage system for use data centers.

Distributed Key-Value Store systems, or KVSs, are scal-
able, high performance data storage systems that offer a type
of large-scale distributed storage. They consist of multiple
storage nodes connected via networks. Each stored data
object, referred to as a “value” is associated with a unique
identifier called a key. The stored objects are replicated for
enhanced availability and system reliability.

Energy consumption in distributed storage systems can
be reduced by making substantial subsets of nodes into
low-power modes. Disk-array based systems can decrease
power consumption by reducing the spin-rate of some of
their disk drives [2]. In cluster-based systems, powers of

disk-drives power consumption is not a dominant factor
overall.In addition, in these systems, more than half of
the power consumption of any individual computer will be
independent of its workload [3]. Thus, rather than powering
down individual components within nodes in response to
variations in workload, a better balance between active-time
and non-active time power consumption can be achieved
by using control which powers down individual nodes as
a whole.

A. Motivation

Distributed storage system consists of multiple storage
nodes connected via networks. The objects are multiply
replicated (typically three) and stored in some nodes.

Even when some nodes was powered down to reduce
energy consumption, the storage system must maintain the
data store availability and reliability. In other word, the
storage system should be able to respond to read/write access
for all objects properly.

Write-offloading is one of powerful approach to keep
availability, reliability and power proportionality of data
store systems. With write offloading, when write access
requests are made to multiple sleeping nodes each containing
the same object, each of the requests is forwarded to an
available node, in which the relevant information contained
in the request information contained in the request is stored
in a temporary update log. The update logs are then em-
ployed after the sleep nodes wake-up. Originally the write
offloading was proposed by Narayanan et al.[4] for power
management of disk array systems .

To enhance power reduction, the time required before
node power down should be reduced. This time depends on
the amount of data migration, the time required to calculate
which objects should be selected for migration, and the time
required to put nodes into a sleep mode. In this paper, we
focus on the amount of data migration because the time in
our architecture, this element accounts for an overwhelming
percentage of the time required to achieve node power-down.

The requirement for keeping the amount of data migration
as low as possible is a difficult one to meet. The consistent
hashing used by Amazon Dynamo, for example is a scalable
approach, but it is sufficient for coping with the huge amount
of data that would have to the migrated in an attempt to scale
storage nodes dynamically. While it is known that Write-
offloading can be used to measurably reduce the amount
of data migration, the potential for combining it with data
layout management has yet to be thoroughly determined.

B. Data layout management of distributed data store

Our focus is developing a power-proportional Distributed
Key-Value Store system and an energy-saving control frame-
work for it.

In this paper, we propose control strategies which are
consists of data allocation algorithm and data-control layout
algorithm for use in reducing the amount of data migration
needed for node power-down.

We have developed a prototype distributed key value store
(DKVS) system, results of an evaluation of it show our
proposed strategy to be capable of reducing by roughly 90%
the time required to shift a low power state.

The three primary contributions of this paper are:
• We consider problems involved in needed for node. We

propose a new data allocation algorithm that takes into
consideration the potential presence of Write-offloading
nodes.

• We show the useful of Write-offloading mechanisms by
simulation and physical experiments.

• The introduction and evaluation of three control strate-
gies that enables power-saving distributed key value
store.

The reminder of this paper is organized as follows.
Section II describes in detail of our power-proportional
KVS approach and issue of data layout control needed for
node power-down. Section III describes the architecture of
our proposed control framework. Section IV describes data
allocation and control strategies. Section V evaluates the
strategies and the effect of power-saving in our prototype
system. Section VI discusses related research, and Section
VII summarize our work.

II. ISSUES OF ENERGY-SAVING DATA STORE

Distributed data store systems are equipped with only
basic functions for energy-saving operations, and data loca-
tion/control and node power up/down management methods
for energy-saving distributed data storage have yet to be suf-
ficiently developed. In this section, we discuss requirements
of data location/control management methods, and issues of
system operation.

Energy saving control methods for distributed data storage
must be able both to reduce power consumption as much
as possible while minimizing the adverse affects of that
reduction on access performance.

Controller

Distributed data store

Current data layout

•Modify data layout

•Power control storage server

Figure 1. System Architecture

To reduce power consumption, time required before node
power-down control has to be reduced. This time depends on
the amount of data migration, the time required to calculate
which objects should be selected for migration, and the time
required to put nodes into a sleep mode. In this paper, we
focus on the amount of data migration because the time in
our architecture, this element accounts for an overwhelming
percentage of the time required to achieve node power-down.

When multiple nodes have been powered down, the data
distribution much be such that any data object will have
at least one replica in an active node, and when update
process have been performed by means of Write-offloading,
there must be redundancy in the storage of information
regarding the updates. For this purpose, data migration must
be completed before power-down are commenced. Further,
migration will an influence on storage access performance
because it requires the use of the network bandwidth. Mi-
gration processes require the use of resources of computers
that operate meta servers, and accesses object replicas. While
suppressing the rate of data movement might seem to be an
option, that would significantly degrade power-reduction.

Energy saving control should not cause additional perfor-
mance bottlenecks. This means that the distribution of data
in the state following the power-down of multiple nodes
should be such that the number of access requests to active
nodes should be relatively even across the range of those
nodes, which implies that the number of objects contained in
those nodes should also be relatively even across the range.
This is made more difficult by the fact that the load resulting
from update information requests will be extremely heavy
on nodes which have received such information, resulting in
overall skew that can easily create a performance bottleneck.

III. SYSTEM ARCHITECTURE DESIGN

In this section, we introduce a control system architecture
for energy-saving distributed data storage. Figure 1 shows
the overall architecture of our system.

This architecture creates a framework for adjusting node
power-levels, maintaining effective data distribution, and
adjusting the number of active nodes to best accord with
load requirements. Our controller has been designed and

0

r1

r2

r3

r4
Storage Group SG3

Space of Hashed

value of object id

Storage Groups

datastore system

SGM

r5

Figure 2. Hierarchical data location management on the DKVS

developed for our prototype DKVS system. Because we
designed it for use with general-purpose API, however, it can
easily be modified for application to non-DKVS systems,
such as an open-source key-value system.

A. DKVS: Distributed Key-Value Store

In this section, we give an overview of an energy-saving
DKVS system in which individual nodes can be powered
down in their entirety.

Our DKVS system can power down storage nodes. It
stores an object linked with a unique key in one system.
This object consists of multiple properties. The application
programmer describes multiple field records by using multi-
ple properties. In addition, the DKVS has consistency only
at the object level. The DKVS has multiple replicas on
multiple individual servers and deals with access by using
a primary-backup consistency protocol. The objects have
multiple versions’ data in several servers.

The DKVS’s client program can call nodes that have
a target object via the client’s library. This library has
an asynchronous cache of the system nodes’ list and the
objects’ location. This library specifies the nodes that have
objects by accessing meta-servers (discussed below) or this
cache.

We think that there are two requirements for achieving
energy saving operation: (1) balance adaptive data allocation
with system scalability, and (2) avoid overmuch nodes’
power-up by write-offloading. Consequently, we make the
DKVS have the following two functions:

• Hierarchical Data Location Management on the DKVS
(section III-A1)

• Node Power Down (migrate to ACPI S3/S4) and write-
offloading (section III-A2)

1) Hierarchical Data Location Management on the
DKVS: To keep scalability, many distributed key-value
store systems use consistent hashing for the data allocation
scheme. However, these systems lack the flexibility in data
allocation needed to reduce power consumption. To manage
data allocation, the single meta-data server architecture has
risks such as performance bottleneck and single point of

failure. Therefore, a large-scale system prefers consistent
hashing to specify data allocation nodes on several client
servers.

To stop some nodes of systems and provide the storage’s
function continuously, systems should put at least one replica
of each object into an available node for processing all read
requests. If nodes of the access object are powered down,
the system should boot one of the nodes. It takes a very
long time to boot a node. Distributed key-value store systems
with a straightforward consistent hashing mechanism decide
on an object’s allocation on the basis of the key’s hash
values. Therefore, the number of the candidates of nodes
that can be shifted to power-down mode becomes lower. The
straightforward solution fixes the functions of each node,
such as some nodes for primary objects and some nodes for
backup objects. Because this approach is not effective at the
point of load distribution, we think that the data allocation
mechanism should cope with both scalability and flexibility
to reduce power consumption.

Figure 2 shows a simple overview of hierarchical data
location management on the DKVS used to cope with both
scalability and flexibility. The DKVS divides storage nodes
into multiple storage groups (SG). One node of each storage
node is appointed as the SG’s master node (SGM) in each
SG. In addition, the RootMaster node (RM) checks the
state of SGMs for fault detection, handles some processes
to restore faulty SGMs, and does some other minor work.
The DKVS divides the hash value spaces of object keys and
assigns these spaces to SGs. Because the SGM manages data
allocation within a SG, it can control data allocation freely
(not depend on consistent hashing). One SG can undertake
multiple hash value spaces. This hierarchical management
can power down more servers to allocate an object’s replica
suitability when the system’s load is low.

2) Node power down and write off-loading: To power
down a node, ACPI power modes are available. Unlike
disk-based storage, in-memory storage loses stored data
during power down because DRAM is volatile. ACPI power
mode such as S4, called “hibernation,” writes a memory
image onto non-volatile media such as hard disk drives and
shutdown nodes.

Even when some nodes are power down, systems must
process access to sleep nodes for reliability and availability.
Putting at least one replica of each object into an available
node can process all read requests. However, write requests
must be processed on the necessary number of nodes so as
not to lose updating when some node failures occur.

One of useful method for keeping the redundancy of up-
dating data is write offloading, which allows the updating of
objects to be redirected to other available nodes temporarily
for a few minutes or up to a few hours. These objects are
reclaimed slowly in the background after the target node
wakes up.

It is easy to implement write off-loading at in-memory

Distributed data store system (DKVS)
(one of the storage groups)

Storage server (powered by ACPI power mode)

Current data layout

Data migration
Power control storage server

Data allocation algorithm

Controller
(Control procedure)

Change algorithm

Figure 3. System architecture for the controller

KVS. The write off-loading target is decided before node
power-down and written with data location information
or decided statically. The client library has the role of
transferring access to write off-loading nodes on the basis
of the updated data location information when some nodes
are powered down. The write off-loading node records the
accesses into log objects for the power down node. When
the node wake ups, the write off-loading node applies the
update log before the node re-entry to the system.

The write off-loading mechanism in the DKVS allocates a
write off-loading target node every data node. A mechanism
to allocate a write off-loading target node every object is
one other approach. However, this approach needs to search
and get write off-loading logs from all nodes during the
write off-loading log apply process that occurs when nodes
wake up. If sleeping nodes have logs to apply, these nodes
must be woken-up. In this way, this approach needs a more
complicated procedure, which causes more electrical power
to be wasted (by node wake up/power down).

The DKVS’s write off-loading mechanism for allocating a
write off-loading target node every data node needs to check
only one write off-loading target node per sleeping node.
Moreover, ensuring a write order to a write off-loading log
is more simple. In addition, write off-loading target nodes
should not shift to a powered down state for simplicity. The
write off-loading log apply process causes write-offloading
target nodes to be woken up, in a similar way.

B. Controller

Figure 3 shows the system architecture of the controller
for a distributed data store. In this figure, the distributed data
store system is one of the storage groups in the DKVS. The
controller acquires the current data layout from a data store
system, and requests the DKVS’s data migration calls and
node power control calls. The storage servers support ACPI
power modes, are changed by requests from the controller.
The client of the data store system allocates new objects
depending on data allocation algorithms, which are specified
by the data store system. In this system, these algorithms are
implemented on the client library and SGM.

1: plan← calcControlP lan()
2: for all migration objects o of plan do
3: call migration o
4: end for
5: for all power control servers S of plan do
6: call power control request to S
7: end for
8:
9: calcControlP lan() {calculate new data layout plan}

10: estimates the number of nodes for the current load.
11: select S (power control target nodes)
12: plan← S
13: extract o (to move objects)
14: for all migration objects o do
15: select migration target node and input target node

information and o to plan
16: end for
17: return controlPlan

Figure 4. Control procedure

1) control procedure: Figure 4 shows the control proce-
dures in the controller. The performance of the distributed
data store and the effect of energy saving depends on the
concrete algorithms in this procedure and data allocation
algorithms. These algorithms are described next. In this
paper, we call the combination of calculating the control
plan and the data allocation algorithm strategy. This strategy
can be replaced by developers. At the line 11, the controller
should evenly select S from groups of data nodes which
share a write off-loading target node.

2) data allocation algorithm: The data allocation algo-
rithm is a decision method that decides the (initial) nodes to
be allocated. This is the problem of selecting x nodes from
active nodes. x is the replication number of objects.

Though this data allocation algorithm generally can select
nodes from powered down nodes, this algorithm does not
select them in this paper because there are no apparent
advantages in this methods. One of the possible merits is
that data distribution is balanced after node power restitution
to increase the candidates of allocated objects. However,
because the update access of newly created objects needs the
write off-loading process, the system has to apply a write
off-loading log during the restitution of nodes and increase
the size of the write off-loading log.

In this paper, we focus on selecting candidates for allo-
cation from active nodes for this apply log process because
we see virtually no improvement compared with the data
migration as re-balance processing at the restitution of
nodes.

3) data migration at node power control: Data migration
during the node power control should keep the data layout
that has redundancy of update access and avoid unacceptable
levels of decreased performance.

1Nodeid:

(WO)

2 3 4 5 6 7 8

Write
off-loading target: (WO) 1 1 1 2 2 2

ACPI state transition

Write off-loading

Migration

Figure 5. Degrade redundancy by write off-loading

Table I
COMPARISON OF STRATEGIES

No
Write-
offloading

Free data allocation
with WO

Consideration WO
node

Data
allocation
algorithm

Random Random Data allocation
algorithm that takes
into consideration
the potential
presence of write
off-loading nodes

Data
migration
at power
control

All
data at
sleeping
node

Replicas of sleep-
ing node ’s data
(at WO node) and
replicas that share
WO node (at sleep-
ing node)

Migrate replicas
that share WO
node (at sleeping
node)

Figure 5 shows an example of redundancy being degraded
by the write off-loading mechanism. The system in this ex-
ample is a single storage group in the DKVS, and it consists
of two write off-loading target nodes and six standard data
nodes. The nodes (Nodeid 3 - 5) are assigned to the nodeid
1 node to write off-loading, and Nodeid 6 - 8 are assigned
to the nodeid 2 node, too. The white circle is one of the
objects. This object allocates the nodeid 1, 3, and 6 nodes.
When the nodeid 3 node shifts to power-down mode, the
update information on this object replica of nodeid 3 is
transferred to node 1. However, because the nodeid 1 node
has this object replica, this update information is recorded
to only two nodes. Therefore, the replica on the nodeid 3
node should be migrated to other nodes (the nodeid 4 node
in this example).

IV. DATA ALLOCATION/MIGRATION STRATEGIES

In this section, we discuss the data allocation algorithm
and migration strategies at node power-down on our proposal
architecture.

Table I shows a short summary of these strategies. We
describe three strategies in the following sections in detail.

A. No-write off-loading strategy

This strategy is a straight forward approach that does not
use the write off-loading scheme.

The data allocation algorithm in this strategy is randomly
selects x nodes from active nodes during object creation.

In this paper, we employ this method for simplicity of
implementation. Consistent hashing-based method, such as
Amazon Dynamo, may be selected in this strategy.

The general distributed data store, which cannot use a
write off-loading scheme, needs to move all data stocked in
a node that will be changed to a sleeping state because if
clients issue update request for a object on sleeping nodes,
sleeping nodes have access this object must be change to
active. This power state change causes large latency time.
Therefore, all object replicas should be allocated to active
nodes.

The general distributed data store, which cannot use a
write off-loading scheme, needs to move all data stocked in
a node that will be changed to a sleeping state because, if
clients issue an update request for an object on the sleeping
nodes, these nodes that have access to this object must
be changed to active. This power state change causes a
large latency time. Therefore, all object replicas should be
allocated to active nodes.

This strategy demands a large quantity of data migration.
Moreover, the efficiency of storage capacity is low because
sleeping nodes cannot work as having backup replicas.

B. Free data allocation with WO

Free data allocation with the WO strategy uses the write
off-loading scheme, does not intermediate during data cre-
ation, and resolves a paradox of data layout at the node
power control.

The data allocation algorithm in this strategy can be em-
ployed from several algorithms. In this paper, we randomly
select selection-based methods in the same way as the no
write off-loading strategy.

At the power control step, this strategy needs the follow-
ing objects.

• Replicas of scheduled sleeping node ’s data (on WO
node)

• Replicas that share WO node (on scheduled sleeping
and slept nodes)

Figure 6 shows the data migration algorithm in this
strategy. This algorithm is a step of calcControlPlan() in
Figure 4.

C. Consideration WO node

In this section, we propose a data allocation algorithm
and strategy to reduce the amount of data migration at
power down control. One straightforward approach is to
remove write off-loading target nodes from allocated nodes.
However, this approach degrades the efficiency of the storage
capacity.

We propose a new data allocation algorithm that takes
into consideration the potential presence of write off-loading
nodes. Figure 7 describes a data allocation algorithm in
this strategy used during new object creation. X is the
number of replicas. This algorithm takes into consideration

1: create blank migobjects (migration objects list)
2: o← extract objects on scheduled sleeping nodes.
3: for all o do
4: if WO target node has o then
5: migobjects← o
6: end if
7: end for
8: cr ← select replicas (except one replica) share WO target node

on scheduled sleeping and asleep nodes.
9: for all cr do

10: migobjects← cr
11: end for
12: objids ← select all objids that are allocated on sheduled

sleeping nodes.
13: for all objids do
14: if the objects are allocated to all replicas to on scheduled

sleeping and asleep nodes then
15: migobjects← this object
16: end if
17: end for
18: for all migobjects do
19: set migobjects to migrate to active nodes (keep flat data

distribution if at all possible)
20: end for

Figure 6. Data migration control algorithm

1: create blank allocatenodes list
2: candidateNodes = activeNodeList
3: while allcatenodes.size < X do
4: n← random select from candidateNodes
5: put n to allocatenodes
6: remove nodes that are assigned n as WO target from

candidateNodes
7: remove node n’s WO target node from

candidateNodes
8: end while
9: return allocatenodes

Figure 7. A data allocation algorithm that takes into consideration the
potential presence of write off-loading nodes

the potential presence of Write off-loading nodes. If one
of the object’s replicas is allocated on scheduled sleeping
nodes, the controller does not need this object’s replica to
migrate.

However, If this number is smaller than X and the
system selects WO target nodes continuously in the random
selection phase, candidateNodes becomes blank. There-
fore, in order to avoid this case, the system should take
a followed step as exceptional measures. In this step,
the system removes write off-loading target nodes from
candidateNodes, if the number of write off-loading target
nodes of remaining candidateNodes is smaller than the
replication number which doesn’t decide on allocate nodes.

If the number of WO target nodes in the SG is bigger
than X , this algorithm functions well. However, if this
number is smaller than X and the system selects WO target
nodes continuously during the random selection phase, the

0

50,000

100,000

150,000

200,000

250,000

0 2 4 6 8 10 12 14

number of stopped nodes

n
u

m
b

er
 o

f
d

at
a

m
ig

ra
ti

o
n

s

Free data allocation with WO

Consideration WO node

No write off-loading

Figure 8. Result of data migration simulation

candidateNodes become blank. Therefore, to avoid this,
the system should take the following step as an exceptional
measure. In this step, the system removes write off-loading
target nodes from candidateNodes if the number of write
off-loading target nodes of the remaining candidateNodes
is smaller than the number of object replicas, which does
not decide on which nodes are allocated.

V. EVALUATION

In this section, the proposed strategies are evaluated by
using simulation and prototype systems.

A. simulation

1) Amount of data migration: To evaluate the effect of
energy saving, we developed a mock-up distributed proto-
type system. Figure 8 shows the amounts of data migration
at power control with three strategies. The parameters of
distributed data store system in this graph were 1 storage
group and 16 storage nodes (including 4 write off-loading
target nodes), and this system was assumed to be able to
store 100,000 objects.

This result indicates that the write off-loading scheme
reduced the large amount of migration objects. For exam-
ple, when 12 nodes were stopped, the free data allocation
strategy reduced the number of migration objects by 75%,
and the consideration data allocation strategy reduced this by
83%. As a result, the reduction of data migrations reduced
the time before stopping nodes.

Because the increase in the amount of data migrations
increased time until the nodes stop, the system wasted some
electrical power. For example, table II shows wasted power
for 12 node stops when we assumed that the migration speed
in this system was 1,000 objects/sec and the idle power of
the storage node was 100 w. Besides, if using less electrical
power at the data center is requested on a very short notice,

Table II
ESTIMATION OF WASTING POWER CONSUMPTION

No write-
offloading

Free data allocation
with WO

consideration data
allocation with WO

time until
power
control
(sec)

224.47 79.28 62.35

power
consump-
tion(w)

269,364 95,132 74,814

the write off-loading approach and the consideration data
allocation strategy reduce handling time. These parameters
are determined by reference to our DKVS prototype system’s
performance. The migration speed depends it’s implemen-
tation and data object’s size. Because the high speed data
migration hurts this storage performance [5], improving this
implementation of data migration is not sufficient.

2) Effect of data store system: We evaluate storage ca-
pacity per node on a mock-up distributed prototype system.
Because no write offloading strategy has all accessible
objects on active nodes, the number of objects increases
as the number of stopped nodes increases. Thus, because
the nodes cannot hold objects on memories, performance
risks increase. By using the write off-loading mechanism,
the system can make full use of the storage capacity of the
power-saving nodes.

B. prototype system experiments

1) experimental setup and condition: The experiments
were all run using a system consisting of nine standard
servers, each with a dual core Intel Xeon E5504 processor
and 12 GB DDR2-800 memory. All of the servers were
running Debian GNU Linux 5.0.4 (x86-64). The servers
were connected with TCP/IP on Gigabit Ethernet networks.
This experimental DKVS system consisted of eight standard
nodes (one SG; two WO target nodes) and one RM node.
The controller operated on one of the DKVS nodes (SGM).

In order to measure the nodes’ power consumption, we
use Raritan Dominion PXs which are intelligent power tap
product. These taps can measure power consumptions every
node per 3 seconds.

Table III shows the features of the nodes’ power con-
sumption. When these nodes are in a hibernate state (ACPI
S4), They use about 22 (w) per one node for their BMC
controllers. Each server’s peak power consumption was
about 180 (w), and our prototype DKVS standard nodes
used only about 140 (w) at peak load because they were an
underutilized CPU resource.

We use the Yahoo! Cloud Serving Benchmark (YCSB)
[6] in our evaluation’s workload. The YCSB emulates a
synthetic workload generator that can be parameterized to
vary the read/write ratio, access distributions, etc.

Table III
FEATURES OF NODE’S POWER CONSUMPTION

peak power about 180[w] (140[w] at DKVS’s standard node)
idle power about 100[w]
hibernate about 22 [w]

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 400 450

elapsed time from power control (sec)

to
ta

l
p

o
w

e
r

c
o

n
su

m
p

ti
o

n
 (

w
)

Free data allocation with WO

Consideration WO node

No write off-loading

Figure 9. Time-series power consumption on physical servers

Table IV
POWER CONSUMPTION DURING 480 SECONDS FROM POWER CONTROL

strategies power consumption(w)
Free data allocation with WO 439,018

Consideration WO node 404,271
No write off-loading 483,999

2) Evaluation of reducing power consumption with three
strategies: Figure 9 shows time-series power consumption
with three strategies. The x-axis is the progress time from
start to calculating the control plan on the basis of several
strategies. These three strategies use same paek power con-
sumption before controlling the DKVS. YCSB’s workload
parameters are workload B (the read heavy workload, update
5%, read 95%), object number = 100,000, object size = 1
KB(10 fields, field length = 100 bytes), and the distribution
of access is performed by zipfan.

These results show that consideration WO node strategy
can reduce the time it takes to hibernate two nodes. Because
the consideration WO node strategy in this condition does
not need to migrate objects, the system takes time only to
calculate a plan and to shift nodes to hibernate mode until
shifting to the state of low power consumption. Because
the other two strategies have to migrate many objects, they
take a large amount of time until shifting to a low power
consumption state.

Table IV shows power consumption during 480 seconds
from the time of power control. Free data allocation with
the WO strategy/consideration WO node strategy reduced
power consumptions by more than 79,728/44,982 watts in
comparison with the no write off-loading strategy.

Figure 10 shows a time-series of YCSB’s throughputs.
The x-axis is the same scale as that in Figure 9. The through-
puts of all strategies before power control are about 140,000

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50 100 150 200 250 300 350 400 450
elapsed time from power control (sec)

Y
C

S
B

 t
h

ro
u

g
h

p
u

t
(o

p
s)

Free data allocation with WO

Consideration WO node

No write off-loading

Figure 10. Performance-throughput

operations per second (ops), and the throughputs after power
control are about 100,000 ops. In this experiment, because
YCSB’s workload clients requested as many maximum loads
as possible, the DKVS’s performance went down due to the
hibernation of two nodes by the power control.

Considering the data allocation strategy with WO caused
performance to go down about 45 seconds before power
consumption went down. This time is almost the time
required to put nodes into hibernation. Free data allocation
with WO and no write off-loading gradually fell to 100,000
ops during the data migration phase. The reason is that the
number of objects on the scheduled sleep nodes reduced as
data migrations progressed. Therefore, the DKVS system
could not make good use of the scheduled sleep nodes
until immediately before the nodes powered down. Free
data allocation with WO had less of a bad influence than
did no write off-loading because the scheduled sleep nodes
had some objects that remained in sleep mode for the write
off-loading mechanism. However, because the no write off-
loading strategy had to migrate all objects on the scheduled
sleep nodes, these nodes could not work immediately before
the nodes powered down.

VI. RELATED WORK

The importance of power-proportional systems in data
centers is mentioned by Barroso et al. [7]．

For data storage systems, spinning down disks is a typical
approach to decreasing power consumption, such as in a
MAID [2]. However, the early works are related to archival
storages. Write off-loading [4] makes power-proportional
control with on-line storage systems possible.

Studies with cluster-based storage systems, especially for
the Hadoop system, are currently active. GreenHDFS [8]
divides nodes into hot and cold zones and controls data
placement by using access frequency. Leverich et al. [9] and
Amul et al. [10] made some nodes turn off. [10] mentioned
that write off-loading is also useful for cluster-based storage;
however, they did not evaluate it.

Our architecture and controller is similar to SCADs Di-
rector [5]. The objective of this research is to meet strict

performance service-level objectives. Our controller focuses
on energy-saving and reducing migration objects.

VII. FUTURE WORK AND CONCLUSION

Our aspiration is to realize an information society friendly
to humans and the earth. The power-proportional high
performance data store will be an important component
to this earth friendly society. In this paper, we introduced
and evaluated a data allocation algorithm that reduce the
amount of data migrations to some powered down nodes. We
showed that the write off-loading mechanism can make good
use of the storage capacity of sleeping nodes. Moreover, a
physical evaluation showed that our proposed data allocation
algorithm reduces the amount of data migration at power
control and can switch to a low-power state.

ACKNOWLEDGMENT

A part of this work belongs to “Green IT Project” which
NEC contracted with New Energy and Industrial Technology
Development Organization (NEDO) of Japan.

REFERENCES

[1] J. Koomey, Growth in data center electricity use 2005 to
2010. Oakland, CA: Analytics Press, August 2011. [Online].
Available: http://www.analyticspress.com/datacenters.html

[2] D. Colarelli and D. Grunwald, “Massive arrays of idle disks
for storage archives,” in Proc. of the Supercomputing ’02,
2002, pp. 1–11.

[3] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing
the energy efficiency of a database server,” in Proc. of
SIGMOD ’10, Jun. 2010, p. 231.

[4] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-
loading: practical power management for enterprise storage,”
in Proc. of FAST’08, 2008, pp. 17:1–17:15.

[5] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin, M. I.
Jordan, and D. A. Patterson, “The SCADS director: scaling
a distributed storage system under stringent performance
requirements,” in Proc. of FAST’11, 2011, pp. 12–12.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in Proc.of SoCC’10, 2010, pp. 143–154.

[7] L. A. Barroso and U. Hölzle, “The case for Energy-
Proportional computing,” Computer, vol. 40, no. 12, pp. 33–
37, Dec. 2007.

[8] R. T. Kaushik and K. Nahrstedt, “Evaluation and Analysis of
GreenHDFS : A Self-Adaptive , Energy-Conserving Variant
of the Hadoop Distributed File System,” in Proc. of Cloud-
Com 2010, 2010.

[9] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency
of hadoop clusters,” SIGOPS Oper. Syst. Rev., vol. 44, no. 1,
pp. 61–65, Mar. 2010.

[10] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan, “Robust and flexible power-proportional storage,”
in Proc. of SoCC’10, 2010, pp. 217–228.

