
* Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

ESBMT: Enabling Multi-Tenancy in Enterprise Service Buses

Steve Strauch*, Vasilios Andrikopoulos*, Frank Leymann*, Dominik Muhler‡

© 2012 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{StrauchALM2012,
author = {Steve Strauch, Vasilios Andrikopoulos, Frank Leymann, and

Dominik Muhler},
title = {ESBMT: Enabling Multi‐Tenancy in Enterprise Service Buses},
booktitle = {Proceedings of the 4th IEEE International Conference on Cloud

Computing Technology and Science, CloudCom 2012,
3‐6 December 2012, Taipei, Taiwan},

year = {2012},
pages = {456‐463},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

‡ Center of Excellence F&R,
SAP (Schweiz) AG, Switzerland

dominik.muhler@sap.com

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
456

ESBMT: Enabling Multi-Tenancy in Enterprise Service Buses

Steve Strauch, Vasilios Andrikopoulos, Frank Leymann
Institute of Architecture of Application Systems (IAAS),

University of Stuttgart, Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Dominik Muhler
Center of Excellence F&R, SAP (Schweiz) AG, Switzerland

dominik.muhler@sap.com

Abstract—Multi-tenancy is an essential property of Cloud
computing. It helps service providers to maximize resource uti-
lization and reduce servicing costs per customer. It is therefore
important for key components of the contemporary enterprise
environment like the Enterprise Service Bus (ESB) to support
and enable multi-tenancy. For this purpose, in this work we
investigate the requirements for multi-tenant ESB solutions,
propose an implementation-agnostic ESB architecture that
addresses these requirements, and discuss our proof-of-concept
realization of this architecture.

Keywords-Multi-tenancy; Enterprise Service Bus; Cloud-
enabled middleware

I. INTRODUCTION

Multi-tenancy and virtualization are the key enablers
that allow Cloud computing solutions to serve multiple
customers from a single system instance. Using these
techniques, Cloud service providers maximize the utilization
of their infrastructure, and therefore increase their return
on infrastructure investment, while reducing the costs of
servicing each customer. While many industrial strength
solutions exist for virtualization1, multi-tenancy is an issue
still under research and as such, it is the focus of this work.

Two different consumer types have to be distinguished for
multi-tenancy purposes: tenants and users. Tenants separate
the consumers using a multi-tenant service or application
into groups like companies, organizations or departments.
These groups are not necessarily completely disjoint since a
consumer may belong to more than one tenant at the same
time. Users enable the differentiation between consumers
potentially belonging to more than one tenant and therefore
introduce a finer level of granularity. Consider for example
the case of a provider offering a multi-tenant Cloud service
in the taxi domain managing client requests and assigning
them to drivers. A small taxi company using this service is a
tenant of this multi-tenant service. The customers of the taxi
company are consuming the service and therefore act as the
users of the tenant. Such differentiation between consumers
using users is essential for performing tasks like accounting
and billing on behalf of the tenant.

Multi-tenancy has been defined in different ways in the
literature, see for example [1], [2], [3]. Such definitions

1See for example: http://www.xen.org, http://www.vmware.com/products/,
and http://www.flexiant.com/

however do not address the whole technological stack behind
the different Cloud service models [4] (IaaS — Infrastructure
as a Service, PaaS — Platform as a Service, SaaS — Software
as a Service). For this purpose, in this paper we define multi-
tenancy as the sharing of the whole technological stack
(hardware, operating system, middleware and application
instances) at the same time by different tenants and their
corresponding users. This definition affects the different
Cloud service models in different ways. In this work we focus
solely on the PaaS model and investigate how multi-tenancy
can be enabled for platforms offered as a service. In particular,
we show how a critical middleware component of the PaaS
model like the Enterprise Service Bus (ESB) [5] can be made
multi-tenant, irrespective of the particular implementation
technology used (i.e. which ESB solution is used). The
concept of ESB as the messaging hub between applications
addresses the fundamental need for application integration
and in the last years it has become ubiquitous in enterprise
computing environments. ESBs control the message handling
during service invocations and are at the core of each Service-
Oriented Architecture (SOA) [5], [6]. In order therefore to
leverage the transition of enterprise environments to the
Cloud paradigm, it is essential to make ESBs multi-tenant.

The contributions of this paper can be summarized as
follows:

1) An identification of the requirements of enabling multi-
tenancy for ESB solutions.

2) A proposal for a implementation-agnostic ESB archi-
tecture called ESBMT that fulfills these requirements.

3) A prototype implementation of ESBMT.

The rest of this paper is organized as follows: Section II
motivates this work by means of an informative scenario.
Drawing from this scenario, Section III proceeds to identify
and discuss the requirements for multi-tenancy in ESB
solutions as a part of the PaaS model. These requirements are
addressed in Section IV, which presents ESBMT, a generic,
implementation independent ESB architecture. Section V
discusses the realization of this architecture as a proof-of-
concept implementation of our proposal and the evaluation of
this realization; Section VI compares it with existing works.
Finally, Section VII summarizes our findings and briefly
presents future work.

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
457

TAXI

Customer GUI Taxi Drivers’ GUI

Taxi Service Provider Process C CAST CMF
Adapter

Google Maps
Web Services

Adapter

(1) Send taxi
request

(2) Get available taxis
and contact information
of drivers

(3) Get distance
of taxi drivers

(4) Contact
nearby taxis

(5) Get transport
confirmation

(6) Send
transport
notification

Servlet Container

Figure 1. Communication of Web applications of Taxi Scenario without
ESB

Servlet Container

Servlet Container

Taxi Company Taxi Service Provider

Multi Tenant Enterprise Service Bus

Figure 2. Communication of Web applications of Taxi Scenario after
introducing multi-tenant ESB

II. MOTIVATING SCENARIO

The European Union research project 4CaaSt2 aims to
create a Cloud platform to design services and compositions
based on Cloud-aware building blocks provided by the
platform, offer them in a marketplace, and operate them
at Internet-scale. The goal of the 4CaaSt platform is to
lower the entry barrier for small and medium enterprises by
offering an advanced environment, which reduces the effort to
create innovative applications leveraging the benefits of Cloud
computing. In the scope of 4CaaSt, the Taxi Scenario use
case has been defined, where a service provider offers a taxi
management software as a service to different taxi companies,
i.e., tenants. Taxi company customers, who are the users of
the tenant, submit their taxi transportation requests to the
company that they are registered with. The taxi company uses
the taxi management software to contact nearby taxi drivers.
Once one of the contacted taxi drivers has confirmed the
transportation request, the taxi management software sends
a transport notification containing the estimated arrival time
to the customer.

2The 4CaaSt project: http://www.4caast.eu

Figure 1 provides an overview of the realization of the
taxi scenario without using an ESB. The taxi management
software is implemented as a BPEL process [7]. The BPEL
process leverages the Context Casting Context-Management
Framework (C-CAST CMF)3, which provides context in-
formation about taxi cab locations and taxi driver contact
details. Moreover, Google Maps Web Services [8] provide
distance calculations between the location of a taxi cab and
the pick up location. All components of the taxi booking
service are Web applications deployed in a Servlet Container.
Additionally, the BPEL engine Orchestra [9] is deployed
as a Web application, executing the taxi service provider
process. As the service endpoints of the C-CAST CMF and
the Google Maps Web Services are incompatible with the
BPEL process, two adapter applications mediate between the
BPEL process and these external services. All applications
communicate via point-to-point messaging connections.

Introducing an ESB as the messaging middleware (Fig-
ure 2) enables loose coupling and provides a more flexible
integration solution by avoiding hard-coded point-to-point
connections. This makes the monitoring, management, and
maintenance of the taxi application easier and more effective.
Furthermore, enabling multi-tenancy at the ESB level allows
multiple taxi companies to use the same taxi application
offered as a service by a single provider (using customized
GUIs for their customers and drivers if required) as shown
in Figure 2. Apart therefore from allowing taxi companies
to outsource the development, deployment, operation, and
management of such an application to a service provider,
this solution also maximizes the benefits on the provider
side. For this reason, the 4CaaSt project takes special care
in developing a multi-tenant ESB as an essential building
block of its PaaS offering.

III. REQUIREMENTS FOR MULTI-TENANT ESBS

In the following, we discuss the requirements for multi-
tenancy of ESBs solutions as a key component of the
PaaS model. For this purpose we first discuss how multi-
tenancy affects the PaaS model in general, before refining
the discussion further for ESBs.

A. Multi-tenancy in the PaaS Delivery Model

Discussing multi-tenancy requires that the views of all
involved parties are considered, namely both the providers
and the consumers of multi-tenant aware services and
applications. From the providers’ point of view, multi-tenancy
allows to maximize the utilization of provided resources
and therefore enables maximization of profit. For service
consumers, multi-tenancy has to be largely transparent, apart
from providing access credentials when using the service
or application. More importantly, consumers must have the
impression that they are the only ones using the multi-tenant

3The C-CAST project: http://www.ict-ccast.eu

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
458

service or application, without suffering from side effects
caused by other consumers regarding, e.g., quality of services.
Finally, consumers need to be provided with customization
capabilities, such as taxi company-specific Web interfaces in
the Taxi Scenario.

The three Cloud service models (I-,P- and SaaS) differ
significantly in the granularity of the functionality provided to
the consumer, and the required capability of the consumer to
manage and control the underlying Cloud infrastructure. The
responsibility of the provider and the effort of the consumer
to enable multi-tenancy is therefore different, depending on
the chosen Cloud service model. PaaS in particular, is the
Cloud service model where the responsibility and effort of
provider and consumer are nearly the same with respect
to our definition of multi-tenancy. The exact effort of the
consumer depends on the scenario and the application to
be realized. The consumer is responsible to enable multi-
tenancy of the application and the corresponding artifacts
deployed on the platform; for example, the database schema
used has to support multi-tenancy natively [10]. The provider
has to enable multi-tenancy for the hardware resources and
infrastructure, as well as the platform on which the various
applications are deployed. Furthermore, for the sake of
backward compatibility the deployment of non multi-tenant
applications has also to be possible, otherwise the target
community of the PaaS offering will be limited. Therefore,
the service offered via PaaS by the provider has to support
the deployment of both multi-tenant and non multi-tenant
services and applications.

B. ESB Multi-tenancy requirements
Following the discussion about multi-tenancy of PaaS

components, in the context of project 4CaaSt we identified
and categorized a set of functional and non-functional
requirements for multi-tenant ESBs. Toward this goal we
also refined the multi-tenancy characteristics (e.g. tenant
awareness) identified in the literature, e.g. [11], [1], [2], [3].
Functional requirements: The following functionalities
must be offered by any multi-tenant ESB.
FR1 Tenant awareness: An ESB must be able to manage and

identify multiple tenants, i.e. tenant-based identification
and hierarchical access control for tenants and their
users must be supported.

FR2 Tenant-based deployment and configuration: The de-
ployment and configuration of the ESB and the services
available for a certain tenant should be managed in a
transparent manner by the ESB.

FR3 Tenant-specific interfaces: A set of customizable inter-
faces must be provided, enabling administration and
management of tenants and users, including both GUIs
and Web services interfaces.

FR4 Shared registries: As the ESB solution will be em-
bedded in a PaaS platform with other applications
demanding similar information, the approach must

come with a shared for other PaaS components registry
of tenants/users and a shared registry of services.

FR5 Backward compatibility: The ESB solution should be
able to used seamlessly and transparently by services
and applications that are not multi-tenant aware.

Non-functional requirements: In addition to the required
functionalities, multi-tenant ESBs should also respect the
following properties.

NFR1 Tenant Isolation: Tenants must be isolated to prevent
them from gaining access to other tenant’s data
(i.e., data isolation) and computing resources (i.e.,
performance isolation). Data isolation can be further
decomposed into communication isolation, referring to
keeping the message exchanges for each tenant sepa-
rate, and application isolation, referring to preventing
applications and services of one tenant from accessing
data of another tenant’s applications or services.

NFR2 Security: The necessary authorization, authentication,
integrity, and confidentiality mechanisms must consider
and enforce tenant- and user-wide security policies
when required.

NFR3 Reusability & extensibility: The multi-tenancy enabling
mechanisms and underlying concepts should not be
solution-specific and depend on specific technologies
to be implemented. ESB components should therefore
be extensible when required and reusable by other
components in the PaaS model (as for example in the
case of the shared registries functional requirement).

Both functional and non-functional requirements are taken
into consideration for the design of the architecture we present
in the following section.

IV. A MULTI-TENANT AWARE ESB ARCHITECTURE

Figure 3 provides an overview of our proposal for a
generic multi-tenant ESB architecture (ESBMT), which fulfills
the requirements identified in the previous section. More
specifically, the three layer ESBMT architecture consists of a
Presentation layer, a Business Logic layer, and a Resources
layer. In the following we present the components required
for each layer of the architecture in a bottom-up fashion.

A. Resources layer

The Resources layer consists of an ESB Instance Cluster
and a set of registries. The ESB Instance Cluster bundles
together multiple ESB Instances. Each one of these Instances
performs the tasks usually associated with traditional ESB
solutions, that is, message routing and transformation. In
the simplest case, the ESB Instance Cluster may consist of
only one (running) ESB Instance handling all tenants and
users using an ESBMT implementation. Since this however
may create performance issues, in the ESBMT architecture a
clustering mechanism similar to the one provided for example
by Apache ServiceMix [12] is recommended.

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
459

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry
Manager

Tenant Registry Manager

Service Registry Manager

Messaging Adapter / Message Processor
Manager

Messaging Adapter / Message Processor
Configuration Manager

Service Registry
Database Cluster

Configuration Registry
Database

Enterprise Service Bus
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Figure 3. Overall ESBMT Architecture

Each ESB Instance consists of three main components:
a Normalized Message Router, Messaging Adapters, and
Message Processors (Figure 4, zooming in on the bottom
right part of Figure 3). Messaging Adapters are responsible
for handling the communication with external services and
applications (External Service Providers and Consumers in
Figure 4) and converting to and from a normalized internal
format for all incoming and outgoing messages, respectively.
Message Processors provide additional business logic internal
to the ESB related to message processing such as routing. The
Normalized Message Router takes care of the internal routing
between Messaging Adapters and/or Message Processors.
These components appear under different names in many
existing ESB solutions.

In order to enable multi-tenancy in any ESB solution,
these components, and all other components in the ESB
architecture, must be multi-tenant aware, i.e. able to operate
with multiple tenants and users using the same instance
of the ESB. For an ESB Instance in particular, this means
that Adapters and Processors are able to handle messages
containing tenant and user information, and process such
messages accordingly in a multi-tenant manner (FR1). For
example, a message may be routed to different endpoints
based on the tenant information contained in the message.
Additionally, message flows of tenants and users when com-
municating with an ESB Instance, as well as message flows
inside the ESB Instance, must be isolated from the message
flows of other tenants and users (NFR1). Furthermore, the
Messaging Adapters and Message Processors have to be
able to support tenant- and user-specific configurations when
required (FR2). This enables for example, that for each
tenant a new endpoint for communication with the protocol
specific adapter is created during configuration (NFR1). The
deployment/undeployment and configuration of Messaging
Adapters and Message Processors in an ESB Instance is
performed by means of a set of standardized interfaces.

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry
Manager

Tenant Registry Manager

Service Registry Manager

Messaging Adapter / Message Processor
Manager

Messaging Adapter / Message Processor
Configuration Manager

Service Registry
Database Cluster

Configuration Registry
Database

Access Layer

Web UI

Tenant Registry
Database

Runtime Environment

Standardized Interfaces for Message Processors

Standardized Interfaces for Messaging Adapters

Normalized Message Router

Message
Processor

Messaging
Adapter

Messaging
Adapter

Messaging
Adapter

Messaging
Adapter

Message
Processor

Message
Processor

Message
Processor

External
Service

Providers

External
Service

Consumers

Figure 4. Architecture of an ESB Instance

While these interfaces, and all other components of the
ESB Instance, are multi-tenant aware, special care has to be
taken to ensure backward compatibility (FR5). This means
that installation and configuration of non multi-tenant aware
Adapters and Processors must still be possible. Processing
and routing of non multi-tenant aware messages has to be
performed normally, by assigning them for example into a
default tenant for this purpose.

Going back to Figure 3, within the Resource layer we
also introduce three different types of registries. The Service
Registry stores the services registered with the various ESB
Instances, as well as the configuration of the Messaging
Adapters and Message Processors installed in each ESB
Instance in the ESB Instance Cluster (Figure 4) in a tenant-
isolated manner [10] (FR2). Currently we are focusing on
the approach that each ESB instance of the ESB Instance
Cluster has the same messaging adapters and message
processors installed. As the messaging adapters and message
processors are common, and in order to offer the possibility
of horizontal scalability support [13], a load balancer (not
shown in Figure 3) must retrieve the required configurations
from the Service Registry and deploy them when starting an
additional ESB instance, e.g., to cover increased load. As
we propose to share the Service Registry with other PaaS
components, e.g., composition engines (FR4), and for the
sake of reusability (NFR3), we recommend to realize the
Service Registry as a database cluster to avoid performance
bottlenecks.

The Tenant Registry stores a set of users for each tenant
and the corresponding unique identifiers (FR1). Additionally,
each tenant and user may have associated properties such as
tenant or user name represented as key-value pairs (NFR3).
The Configuration Registry stores all configuration data

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
460

created by a tenant and the corresponding users, except
from the service registrations and configurations stored in
the Service Registry. The Configuration Registry stores for
example the configuration of ESB Instances (FR2), the
mapping of ESB Instances to tenants (FR1), and the mapping
of permissions to roles according to the role-based access
control mechanisms offered by the Access Layer component
in the next layer (NFR1). When a tenant or user interacts
with the multi-tenant ESB system, the data in more than
one registry might have to be changed. Consequently all
operations and modifications on the underlying resources
have to be handled as distributed transactions based on a
two-phase commit protocol [14] so that a consistent state of
all resources is ensured (NFR1).

B. Business Logic layer

The Business Logic layer contains an Access Layer
component, encapsulating the functionality that ensures tenant
awareness and security (FR1 and NFR2, respectively). The
Access Layer acts as a multi-tenancy enablement layer [1]
based on role-based access control [15]. The tenants and
their corresponding users have to be identified and authen-
ticated once when the interaction with the ESB is initiated.
Afterwards, the authorized access should be managed by
the Access Layer transparently. Prior to authentication
and identification of tenants and users, the Access Layer
component handles authorization by registering tenants and
users and granting them access to ESB Instances (NFR2).
Therefore, in case of a multi-tenant aware interaction with
the system, each tenant and user has to identify themselves
by providing a unique tenantID and userID (FR1).

In addition to the Access Layer component, the Business
Logic layer also contains a set of Managers (Figure 3)
encapsulating the functionality to manage and interact with
the underlying components in the Resources layer. The
Tenant Registry, Configuration Registry, and Service Registry
Managers implement the business logic required to retrieve
and store data in the corresponding registries in the Resources
layer. The Messaging Adapter/Message Processor Managers
deploy and undeploy Messaging Adapters and Message
Processors in each ESB Instance in the Cluster, while
the Configuration Managers take care of configuring them
appropriately. Both managers are using the standardized
interfaces provided by each ESB Instance for this purpose
(Figure 4), as discussed in the Resources layer.

C. Presentation layer

The Presentation layer contains two components allowing
the customization, administration, management, and inter-
action with an ESBMT implementation: the Web UI and
the Web service API. The Web UI offers a customizable
interface for human and application interaction with the
system, allowing for the administration and management of
tenants and users (FR3). The Web service API offers the same

functionality as the Web UI, but also enables the integration
and communication of external components and applications
(NFR3). For both interface mechanisms, security aspects
such as integrity and confidentiality of incoming messages
must be ensured (NFR2) by, for example, using Web Services
Security (WS-Security) for the Web Service API and Secure
HTTP connections for the Web UI. A discussion on the
particular mechanisms to be used for this purpose is outside
of the scope of this work.

V. REALIZATION & EVALUATION

A proof-of-concept realization of the ESBMT architecture is
provided as a deployment diagram in Figure 5. The realization
is based on the open source ESB Apache ServiceMix version
4.3.0 (hereafter referred to simply as ServiceMix) [12] and
components and libraries being reused are marked in gray.
ServiceMix is based on the OSGi Framework [16]. OSGi
bundles realize the ESB functionality complying to the JBI
specification [17].

ServiceMix is provided with several JBI components.
Binding Components (BCs) are Messaging Adapters (in the
sense of Figure 4) supporting various protocols such as SOAP
over HTTP, FTP, or JMS. Service Engines (SEs) are JBI
components providing additional business logic within the
ESB. For example, the SE for Apache Camel [18] enables
usage of Enterprise Integration Patterns [19]. In this sense
they serve as the Message Processors in our architecture.

The original ServiceMix BC for HTTP version 2011.01 and
the original Apache Camel SE version 2011.01 were extended
in our prototype in order to support multi-tenancy (see
the servicemix-http-mt and servicemix-caml-mt components
in Figure 5). In addition, ServiceMix was extended by an
OSGi-based management service (JMSManagement Service
component), which listens to a JMS topic for incoming man-
agement messages sent by the Web Application (Figure 5). As
the Web Application might modify more then one resources,
all operations are handled within distributed transactions.
The Web Application itself implements the Presentation
and Business Logic layers of ESBMT (Figure 3) and is
running in the Java EE 5 application server JOnAS version
5.2.2 [20], which can manage distributed transactions. As
the management components of the underlying resources are
implemented as EJB components, we use container-managed
transaction demarcation, which allows the definition of
transaction attributes for whole business methods, including
all resource changes [21].

As many JBI containers deployed on several ServiceMix
instances can be involved in the distributed transactions, and
the distributed transaction can contain many JBI containers,
this might lead to a performance bottleneck. Hence, the Web
application subdivides the transaction to the JBI containers
using messaging with guaranteed delivery [19]. If the message
is persistently stored in the message topic, the distributed
transaction will commit. Afterwards, each JBI container

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
461

Apache Service Mix Instance II

Apache Service Mix Instance I

<< OSGi service>>

JMSManagement Service

<< OSGi service>>

AdminCommandsService

Web Application

<< JSF component>>

WebGUI

<< JAX-WS component>>

WebService

<< EJB component>>

ServiceRegistry

<< EJB component>>

TenantRegistry

<< EJB component>>

ConfigurationRegistry

<< PostgreSQL>>

TenantRegistry

<< PostgreSQL>>

ConfigurationRegistry

<< PostgreSQL>>

ServiceRegistry

<< JMS topic>>

ManagementMessages

<< JBI component>>

servicemix-http-mt

<< JBI component>>

servicemix-camel-mt

<< EJB component>>

AccessLayer

<< EJB component>>

JBIContainerManager

<< library>>

JBIManagementXMLBinding

<< library>>

JBIPackagingBinding

<< library>>

TenantContextXMLBinding

<< OSGi service invocation>>

Figure 5. Deployment diagram of prototype realization of ESBMT

acts as selective, transactional, and durable subscriber. A
transaction between each corresponding JBI container and
the topic ensures that the message is successfully processed
before being deleted from the topic. For JMS messaging we
use Apache ActiveMQ version 5.3.1 [22]. The ServiceReg-
istry, TenantRegistry, and ConfigurationRegistry components
are realized based on PostgreSQL version 9.1.1 [23]. The
AccessLayer of the Web Application applies the Session
Façade pattern [24], which is a design pattern for EJB
projects encapsulating business logic in order to minimize
the number of calls to the EJB container. The Web Service
API of the Web Application is based on the Java API for
XML-Based Web Services version 2.0 [25]. The WebGUI
has been specified and designed based on JavaServer Faces
version 1.2 [26], but the implementation is still ongoing.

The evaluation of the realization of the architecture
within the context of 4CaaSt is based on the Taxi Scenario
introduced in Section II. For this purpose, we implemented
the motivating scenario discussed in Section II for two taxi
companies (tenants). Both companies are using the same

taxi management application hosted by the 4CaaSt platform.
The application provides an interface for their registered
customers and drivers (users) that is customizable by the
companies on demand. Using this interface, the customer
can request a taxi by providing the necessary information
through, e. g., a smartphone device.

The customer request is then forwarded to the two nearest
drivers and pops up in their GUIs (as shown in Figure 6).
The first driver that confirms the request is assigned to
the customer. The driver further has the option to get
routing information to the designated pick up location
through an integration with Google Maps Web Services.
Based on the distance between the driver and the pick up
location, the customer receives a notification containing the
estimated pick up time. All messaging between services
in the scenario as shown in Figure 2 is handled by our
realization of the ESBMT architecture discussed above.
A video demonstrating the taxi application in action is
available at http://tiny.cc/4caast taxi video. We are currently
in the process of evaluating the performance of our ESBMT

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
462

Figure 6. Screenshot of the GUI used by the taxi drivers of one company

realization (see Section VII).

VI. RELATED WORK

The central component of each SOA realization is the
ESB, which connects service providers to service consumers,
mediates messages between them, and supports the essential
concept of loose coupling [5], [6]. For this reason, in [27] we
surveyed a number of existing ESB solutions and evaluated
their multi-tenancy. More specifically, we evaluated Apache
ServiceMix, Microsoft BizTalk Server, JBoss ESB, Mule
ESB, OW2 Petals ESB, IBM WebSphere ESB, and WSO2
ESB.

Our investigation showed that the surveyed ESB solutions
in general lack in support of multi-tenancy [27]. Even in the
case of products like IBM WebSphere ESB [28] and WSO2
ESB [29] where multi-tenancy is part of their offerings, multi-
tenancy support is implemented either based on proprietary
technologies like the Tivoli Access Manager (in the former
case), or by mitigating the tenant communication and
administration on the level of the message container (Apache
Axis2 [30] in the latter case). In either case, the used method
can not be applied to other ESB solutions and as a result
no direct comparison of the applied multi-tenancy enabling
mechanisms can be performed.

In addition to ESB solutions we also investigated the PaaS
offering Force.com operated by Salesforce.com [31] regard-
ing multi-tenancy. Force.com is an application development
platform focusing on multi-tenancy requirements tenant-based
deployment and configuration as well as performance isola-
tion. In contrast to the architecture we propose, Force.com
is a meta data-driven architecture. Thus, when a customer
requests for example the business application of a tenant,
all components of the application are created dynamically
based on meta data. Sharing is therefore achieved only on
platform level, and not on application level, which makes

this solution not truly multi-tenant based on our definition
of multi-tenancy.

The approach presented in this paper differs from existing
approaches by integrating multi-tenancy independently from
the implementation into the ESB. Therefore, our solution
can also be applied and reused to enable multi-tenancy for
other PaaS offerings, e.g., composition engines. Moreover
our architecture realizes a broader range of functional and
non-functional multi-tenancy requirements, in contrast to the
existing approaches focusing on a subset.

VII. OUTLOOK AND FUTURE WORK

Multi-tenancy on the PaaS level allows service providers
to offer multiple tenants customizable versions of the same
version for consumption by their users. ESB solutions
have become ubiquitous in the last years for enterprise
environments and as such enabling multi-tenancy for ESBs
is essential. The requirements for this effort, as identified
by the literature and in the context of European Union’s
project 4CaaSt, span from functional (e.g. tenant awareness
and tenant-specific interfaces) to non-functional (e.g. tenant
isolation). In order to address these requirements we propose
the generic, implementation-agnostic ESBMT architecture in
three layers (presentation, business logic, and resources),
which also allows for extensibility and reusability of its
components by other PaaS building blocks, e.g. orchestration
engines. As we demonstrate by means of a proof-of-concept
realization, ESBMT can be realized in a straightforward
manner using open source technologies, validating our
approach and allowing for further evaluation of our work in
the future.

In particular, we are already working on evaluating the
performance of our multi-tenant ESB implementation using
different workload profiles for the Taxi Scenario application,
and compare it with that of a similar non multi-tenant
ESB solution under equivalent load. In addition, for the
same workloads we will also monitor and compare the
resource requirements for multi-tenant and non multi-tenant
solutions so we can demonstrate quantitatively the benefits
of multi-tenancy on the ESB level. Furthermore, and for
purposes of completeness, we are working on finalizing the
implementation of the Web GUI component as discussed in
Section V. Finally, we plan to investigate how horizontal scal-
ability [13] can also be enabled for solutions implementing
the ESBMT architecture in order to offer a fully Cloud-ready
ESB solution.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the 4CaaSt project (http://www.4caast.eu) part of the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 258862.

The company, product and service names used in this pub-
lication are for identification purposes only. All trademarks

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
463

and registered trademarks are the property of their respective
owners.

REFERENCES

[1] C. Guo, W. Sun, Y. Huang, Z. Wang, and B. Gao, “A
Framework for Native Multi-Tenancy Application Develop-
ment and Management,” in Proceedings of the 9th IEEE
International Conference on E-Commerce Technology and the
4th IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services (CEC/EEE’07). IEEE, 2007.

[2] R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining
Different Multi-Tenancy Patterns in Service-Oriented Applica-
tions,” in Proceedings of the 13th IEEE Enterprise Distributed
Object Conference (EDOC 2009). IEEE, September 2009.

[3] R. Krebs, C. Momm, and S. Konev, “Architectural Concerns
in Multi-Tenant SaaS Applications,” in Proceedings of the 2nd
International Conference on Cloud Computing and Service
Science (CLOSER’12). SciTePress, April 2012.

[4] P. Mell and T. Grance, “The NIST Definition of
Cloud Computing,” September 2011. [Online]. Available:
http://www.nist.gov/customcf/get pdf.cfm?pub id=909616

[5] D. A. Chappell, Enterprise Service Bus. O’Reilly Media,
Inc., 2004.

[6] N. Josuttis, SOA in Practice. O’Reilly Media, Inc., 2007.

[7] A. Alves et al., “Web Services Business Process Execution
Language Version 2.0,” Comitee Specification, April 2007.
[Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf

[8] Google, Inc., “Google Maps API Web Services.”
[Online]. Available: http://code.google.com/intl/en/apis/maps/
documentation/webservices/

[9] OW2 Consortium, “Orchestra: Open Source BPEL / BPM
Solution.” [Online]. Available: http://orchestra.ow2.org

[10] F. Chong, G. Carraro, and R. Wolter, “Multi-tenant
data architecture,” MSDN, 2006. [Online]. Available:
http://msdn.microsoft.com/en-us/library/aa479086.aspx

[11] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana,
D. Leelaratne, S. Weerawarana, and P. Fremantle, “Multi-
tenant SOA Middleware for Cloud Computing,” in Proceedings
of IEEE 3rd International Conference on Cloud Computing
(CLOUD’10), July 2010.

[12] Apache Software Foundation, “Apache ServiceMix.” [Online].
Available: http://servicemix.apache.org

[13] D. Pritchett, “BASE: An ACID Alternative,” Queue, vol. 6,
no. 3, pp. 48–55, 2008.

[14] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed
Systems: Concepts and Design. Addison Wesley, June 2005.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based Access Control Models,” Computer, vol. 29, pp.
38–47, February 1996.

[16] OSGi Alliance, “OSGi Service Platform: Core Specification
Version 4.3,” 2011. [Online]. Available: http://www.osgi.org/
Download/Release4V43/

[17] Java Community Process, “Java Business Integration (JBI)
1.0, Final Release,” 2005, jSR-208. [Online]. Available:
http://jcp.org/aboutJava/communityprocess/final/jsr208/

[18] Apache Software Foundation, Apache Camel User Guide
2.7.0, 2011. [Online]. Available: http://camel.apache.org/
manual/camel-manual-2.7.0.pdf

[19] Gregor Hohpe and Bobby Woolf, Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Professional, 2003.

[20] OW2 Consortium, “JOnAS: Java Open Application Server.”
[Online]. Available: http://wiki.jonas.ow2.org

[21] Java Community Process, “Enterprise JavaBeans (EJB)
3.0, Final Release,” JSR-220, 2006. [Online]. Available:
http://jcp.org/aboutJava/communityprocess/final/jsr220/

[22] Apache Software Foundation, “Apache ActiveMQ.” [Online].
Available: http://activemq.apache.org

[23] PostgreSQL Gobal Development Group, “Postgresql.” [Online].
Available: http://www.postgresql.org

[24] F. Marinescu, EJB Design Patterns: Advanced Patterns,
Processes, and Idioms. John Wiley & Sons, Inc., 2002.

[25] Java Community Process, “The Java API for XML-
Based Web Services (JAX-WS) 2.0, Final Release,”
JSR-224, 2006. [Online]. Available: http://jcp.org/aboutJava/
communityprocess/final/jsr224/

[26] ——, “JavaServer Faces Specification (JSF) 1.2, Final
Release,” JSR-252, 2006. [Online]. Available: http://jcp.org/
aboutJava/communityprocess/final/jsr252/

[27] 4CaaSt Consortium, “Immigrant PaaS Technologies: Scientific
and Technical Report D7.1.1,” Deliverable, July 2011. [Online].
Available: http://www.4caast.eu/wp-content/uploads/2011/09/
4CaaSt D7.1.1 Scientific and Technical Report.pdf

[28] IBM, “IBM WebSphere ESB.” [Online]. Available: http://ibm.
com/developerworks/webservices/library/ws-multitenant/

[29] WSO2, “WSO2 Enterprise Service Bus.” [Online]. Available:
http://wso2.com/products/enterprise-service-bus/

[30] Apache Software Foundation, “Apache Axis2.” [Online].
Available: https://axis.apache.org/axis2/java/core/

[31] C. D. Weissman and S. Bobrowski, “The Design of the
Force.com Multitenant Internet Application Development Plat-
form,” in Proceedings of SIGMOD International Conference
on Management of Data (SIGMOD’09). ACM, 2009.

All links were last followed on October 5, 2012.

	cover-IEEE
	INPROC-2012-46 - ESBMT Enabling Multi-Tenancy in Enterprise Service Buses

