
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
3
9
4
3
0
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
6
.
4
.
2
0
2
4

Dynamic Optimization of SLA-Based Services
Scaling Rules

Alexandru-Florian Antonescu∗†, Ana-Maria Oprescu‡, Yuri Demchenko‡, Cees de Laat‡, Torsten Braun†
∗SAP (Switzerland) Inc., Althardstrasse 80, 8105 Regensdorf, Switzerland

†University of Bern, Communication and Distributed Systems (CDS), Neubrückstrasse 10, 3012 Bern, Switzerland
‡SNE, Universiteit van Amsterdam, The Netherlands

alexandru-florian.antonescu@sap.com, {a.m.oprescu,y.demchenko,delaat}@uva.nl, braun@iam.unibe.ch

Abstract—Current advanced cloud infrastructure management
solutions allow scheduling actions for dynamically changing the
number of running virtual machines (VMs). This approach, how-
ever, does not guarantee that the scheduled number of VMs will
properly handle the actual user generated workload, especially
if the user utilization patterns will change. We propose using a
dynamically generated scaling model for the VMs containing the
services of the distributed applications, which is able to react to
the variations in the number of application users. We answer the
following question: How to dynamically decide how many services
of each type are needed in order to handle a larger workload
within the same time constraints? We describe a mechanism
for dynamically composing the SLAs for controlling the scaling
of distributed services by combining data analysis mechanisms
with application benchmarking using multiple VM configura-
tions. Based on processing of multiple application benchmarks
generated data sets we discover a set of service monitoring
metrics able to predict critical Service Level Agreement (SLA)
parameters. By combining this set of predictor metrics with a
heuristic for selecting the appropriate scaling-out paths for the
services of distributed applications, we show how SLA scaling
rules can be inferred and then used for controlling the runtime
scale-in and scale-out of distributed services. We validate our
architecture and models by performing scaling experiments with
a distributed application representative for the enterprise class
of information systems. We show how dynamically generated
SLAs can be successfully used for controlling the management
of distributed services scaling.

I. INTRODUCTION

A Service Level Agreement (SLA)[1], [2] is a contract
between a consumer and a provider of a service regarding its
usage and quality. It defines guarantees or Quality of Service
(QoS) terms under which the services are provided, as well
as the procedures needed for checking those guarantees. In
[3] we presented how SLAs can be used as a control input
for a cloud management platform in order to guide both the
mapping of distributed services to infrastructure resources, and
the dynamic scaling of services based on measured system
state parameters.

Current advanced cloud infrastructure management solu-
tions, such as OpenNebula [4], VMware vCloud [5] allow
the use of scheduling for dynamically changing the number
of running virtual machines (VMs). This approach, however,
does not guarantee that the scheduled number of VMs will
properly handle the actual user generated workload, especially
if the user utilization patterns will change. We propose using

a dynamically generated scaling model for the VM bounded
services of distributed applications, for adapting the number
of VMs as a reaction to the variations in the users’ generated
application load. We answer the following question: How to
dynamically decide how many services of each type are needed
in order to solve a bigger problem within the same time
constraints?

In this paper we describe a mechanism for dynamically
generating SLA bounded scaling rules for controlling allo-
cation of distributed services, by combining data analysis
mechanisms with application benchmarking using multiple
VM configurations.

We extend the Service Middleware Layer (SML) ([2], [3])
developed in EU FP7 GEYSERS [6] project with a new
component that brings self-adjusting capabilities to our system.
We investigate how SLAs can be dynamically optimized for
enhancing the rules controlling the scaling- out and in of
services belonging to distributed applications, in particular En-
terprise Information Systems (EIS). We describe a mechanism
for discovering the dependencies between the service metrics
contained in the SLAs. First, we generate allocation profiles
for the services of the distributed application and instantiate
virtual machines accordingly. Next, we perform a set of
benchmarks typical for the application domain, where we
continuously increase the number of concurrent EIS requests.
Following that, we apply linear regression on the obtained
time series in order to learn the dependencies between the
different service metrics contained in the SLAs. Finally, we
convert the obtained linear models (LMs) into SLA scaling
rules, by adjusting the number of distributed service instances
according to the value predicted by the LMs.

We combine the inter- and intra- analysis on the time series
to determine a Pareto set [7] of scaling solutions that cannot
be further improved with respect to all features/metrics. The
solutions of the Pareto set can be used to create new SLA
rules and to schedule SLA actions on distributed applications.
We apply a heuristic algorithm for selecting a service scale-
out pattern, which is then converted into actual SLA service
scale- out and in rules.

We validate our models by performing SLA-driven service
scaling experiments using a distributed application represen-
tative for the enterprise information systems class of appli-
cations. We present how time series analysis can be used for



determining dependencies between the services composing the
distributed application and how these dependencies can be
used for enhancing the SLA rules controlling the application
scaling.

The rest of the paper is organized as follows. In Section II
we shortly describe our previous research concerning the SLA
management in distributed cloud environments. In Section III
we give a short overview of related work concerning mech-
anisms for dynamic discovery of services inter-dependencies
and service scaling. In Section IV we describe the architecture
and functional block of the proposed system. In Section V
we present the approach and algorithms used for the dynamic
generation of SLA scaling rules. In Section VI we describe
the system evaluation. Finally, in Section VII we present our
conclusions and future work.

II. PREVIOUS WORK

The GEYSERS project ([6], [8], [9]) provides a novel
architecture to leverage the technical advances in networking
and IT resource virtualization for multi-provider cloud infras-
tructure management. This research effort created the Service
Middleware Layer (SML) [6] framework for exploring the
use of SLAs for automated management of distributed VM-
bounded services. The SML represents a convergence layer
for coordinating IT resources on behalf of various distributed
applications. We shortly describe the SML, including its
consumption of SLAs during the management of applications
and cloud landscape.

The GEYSERS architecture [6] consists of three actors, each
performing a different functional role: provider, broker and
operator.

The provider usually owns the virtualizable physical re-
sources (e.g. networks and servers). A provider allows access
to its resources by installing the Lower Logical Infrastructure
and Composition Layer (LICL) component.

The broker component interfaces between multiple
providers and operators. This functionality is implemented by
the Virtual Infrastructure Provider (VIP), which is managing
the Upper LICL component of GEYSERS. The VIP aggregates
multiple resources belonging to different providers into virtual
resource pools.

The operator usually represents the application/user of the
composed virtual resources. An operator expresses the expec-
tations and requirements of distributed applications through
SLAs. SLAs [2] may contain both (a) consumer-specified
service scaling rules and (b) composed application-wide mon-
itoring conditions.

In a typical scenario, the Lower LICL discovers its physical
resources and informs the broker accordingly. The broker
maintains a list of aggregated resources per provider (e.g. total
number of CPUs, memory, disks). When asking for resources,
the operator receives information about the maximum re-
sources available at each provider and the maximum available
bandwidth between the providers (the possibly virtualized
optical networks). The operator selects the corresponding
provider(s), SLAs are agreed and the VIP manages the selected

resources such that the SLA is maintained with regards to the
agreed amount of virtual resources.

This scenario allows us to identify one shortcoming of
the GEYSERS environment: how can the operator select the
optimum amount of resources allocated to its multi-tenant
applications, so that distributed applications will offer the
agreed performance levels? For answering this question we
implemented the component presented in this paper, Dynamic
SLA optimizer (DynSLAOp), which is able (1) to measure
the performance increase of a distributed application using
an increasing number of service instances, (2) to determine
the correlation between the performance indicators of the
services composing the distributed application and to use these
correlations for calculating a service scaling model and (3) to
transform these scaling model into SLA scaling rules.

III. RELATED WORK

We do not consider the variability of the performance of
virtual resources for several reasons: first, the cloud providers
are constantly improving the isolation mechanisms; second,
a large body of work has been dedicated already to this
subject; third, the performance is an expected quantity and
our estimates have the same property of being observed over
a longer time interval.

There are multiple frameworks and tools, which allow
management of distributed applications composed of multiple
interdependent services. One such example is OpenNebula
AppFlow [10], which allows definition and management of
applications composed of services mapped to one or multiple
VMs, enabling automatic VM elasticity management. An
important difference between AppFlow and SML is that SML
[2] permits definition of distributed application configurations
with a variable number of services. Also, SML allows associa-
tion of SLA-defined application-monitoring states (guaranteed
states) by using an extension to USDl-SLA [11].

Gandhi et al. [12] propose a hybrid solution for predicting
the data center resource demands using historical monitoring
data. They are pro-actively predicting the load, for handling
the periodic changes that characterize most cloud utilization
patterns. They also propose using a reactive workload demand
prediction for capturing the differences from the seasonal
workload patterns. We also combine SLA-based control of
distributed systems with action scheduling based on previously
determined relations between application load and the number
of active services.

Anh et al. [13] analyze the performance of cloud applica-
tions, which share resources with other running applications
in the same physical host, by looking at the correlations
between application and system performance. We use statisti-
cal correlation [14] between the time series corresponding to
the performance monitoring metrics of distributed services in
order to determine the set of predictors of critical SLA metrics,
which can then be used for controlling services scaling.

IV. DYNSLAOP ARCHITECTURE

Intuitively, the new DynSLAOp component answers the
following question: How to dynamically decide how many



Application SLA
Max. Budget

Target Service Metrics

Distributed 
Landscape 
Generator

Application 
Benchmark 

Trigger

Service Midleware

Deployment Orchestration Monitoring

Benchmark 
Manager

Distributed Infrastructure

SLA Service Metric 
Correlation Engine

Multi-variate 
Regression Model 

Builder

Multi-Step 
Scaling Model 

Builder

SLA Scaling 
Engine

SLA 
Evaluation 

Engine

Benchmark 
Store

Fig. 1. DynSLAOp System Architecture

distributed service instances are needed in order to solve the
problem of handling a larger workload within the same amount
of time it takes to handle a lower workload with a lower
number of service instances?

To that end, we need to identify the relevant regression
parameters in the dependency between problem size, quality
metrics and combination of workers (VMs). We then describe
the metrics as functions of the number of workers and the
workload. We implement a component that dynamically an-
swers the above question by solving newNrWorkers in Eq. 1.

A ∗ oldNrWorkers +B ∗ oldWorkload =

C ∗ newNrWorkers +D ∗ newWorkload (1)

The goal of DynSLAOp is to enable the SML to dynam-
ically adjust the number of VMs to the shifting application
loads, while maintaining the contract with the user, i.e. the
SLA. This is achieved by producing an SLA containing scaling
rules for the application services with a variable number of
instances, given (1) a semantic representation of the distributed
application, (2) the maximum scale-out factor for each service
and (3) critical SLA performance indicators. An example of
managed distributed application is described in Section VI.

The information flow through the DynSLAOp occurs in
several stages, and is represented in Figure 1.

DynSLAOp takes as input to the Benchmark Manager an
SLA with the service descriptions of a distributed application
and a critical SLA performance metric along with its critical

threshold. The benchmark manager communicates with the
Distributed Landscape Generator for preparing a different
number of virtual landscapes composed of different numbers
of VMs allocated to each service (within the service cardinality
described by the Application SLA). Each virtual landscape
contains a monotonically increasing number of VMs.

For each distributed landscape, corresponding VMs will be
deployed on the physical infrastructure by the Orchestration
and Deployment components of the SML, including resolv-
ing the configuration dependencies between the VM-hosted
services.

Once the landscape has been provisioned, the Application
Benchmark Trigger will be notified, which will (1) identify
the VM holding the generator of application requests, followed
by (2) triggering generation of an increasing batch of con-
current user requests (creation of reports based on database
queries), until the requests’ average execution time, as reported
by SML’s monitoring component, will reach a given critical
threshold.

The collected monitoring data is stored in the Benchmark
Store. Once all the virtual landscapes have been benchmarked,
the SLA Service Metric Correlation Engine will begin
calculating the correlation coefficients between the time series
corresponding to the monitoring metrics defined in the SLA
and the time series corresponding to the critical performance
metric. The metrics with the correlation coefficient above a
given threshold will be selected as the set of predictors for
the critical SLA performance metric. The identified set of
predictor metrics will then be given to the Multi-variate
Regression Model Builder, which will then calculate a linear
model for estimating the critical SLA metrics, using the
specified set of predictors.

Finally, the Multi-Step Scaling Model Builder will take
the calculated linear models and will combine them with the
information about the number of service instances in the cor-
responding virtual landscape for calculating a linear model for
estimating the number of services in each landscape based on
the linear estimation of the critical SLA metric (including the
application workload metric - e.g. number of concurrent user
requests). The final step consists in selecting a scaling path of
virtual landscapes for the distributed application, by applying
a heuristic described in Section V and then combining the
linear models for the selected virtual landscapes for creating
the final scaling models for each service type defined in the
application description.

The following section describes the algorithms used by
DynSLAOp components.

V. DYNAMIC GENERATION OF SLA SCALING RULES

The generation of the SLA services scaling rules is per-
formed in three phases:

1) application benchmark data collection
2) benchmark data analysis (aggregation and monitoring

metrics correlation calculation)
3) application scaling path analysis and service scaling

model calculation



A. Data Collection

The monitoring information is collected from probes run-
ning in each VM. Each probe periodically records the value
of a single SLA metric and sends the gathered data at fixed
intervals to the monitoring component in the SML. The system
observes via the monitoring subsystem both the values for the
metrics related to the application load (e.g. the number of
requests), and the values indicating the system performance
(e.g. query execution time).

In order to properly stress the application performance, a
benchmark data profile is created containing a snapshot of
the monitoring database and the application landscape. This
includes all the measured values for the SLA-defined service
metrics. The actual application benchmark is packaged within
a VM and deployed along with the other VMs of the ap-
plication. The decision of having the benchmark running on a
separate VM was taken in order to ensure the independence of
the DynSLAOp framework from the benchmarked application.
The DynSLAOp is only aware of the API used for starting the
benchmark and for checking its status for determining whether
the benchmark has completed.

B. Data Analysis

The monitoring data for each service instance is aggregated
(e.g. averaged) into specified time intervals (e.g. 10 seconds).
The data for the same service type is further aggregated, by
averaging it. This is done under the assumption that the load is
equally distributed between the instances of the same service
type.

Once the monitoring data has been aggregated, a correlation
matrix will be calculated between each time series correspond-
ing to the SLA service monitoring metrics. Starting from the
given critical SLA metric, a set is formed from the metrics
that are highly correlated (e.g. correlation coefficient higher
than 0.7). This is then repeated for each metric in the set.

The set of metrics is then added to the benchmark profile,
along with (1) the maximum number of concurrent user
requests determined by the benchmark and (2) the virtual
landscape configuration in terms of VMs per application
service.

After the benchmark was run on all the application land-
scapes configurations, the system enters the last phase for
determining the services scaling-out model.

C. Building the services scaling-out model

During this phase, the system will first construct an applica-
tion ”scaling path” and then will calculate a linear model for
estimating the number of services required for achieving the
selected maximum performance. The scaling path is composed
of a sequence of virtual landscapes able to handle an increasing
number of concurrent user requests, while maintaining the
defined SLA contracts, as presented in the algorithm below.

1: ScalingPath = {Lmin} where Lmin is the landscape
with the minimal number of service instances of each type

2: SI is the user requests minimum scaling increment
3: VMDifference← 1

4: repeat
5: Sel = {} is the set of selected landscapes
6: Llast ← last landscape in ScalingPath
7: URmax ← maximum concurrent user requests(Llast)
8: for all L ∈ Landscapes do
9: if VMDifference(L, Llast) < VMDifference

AND maximum concurrent user requests(L) >
URmax + SI then

10: Sel← Sel
⋃
{L}

11: end if
12: Landscapes← Landscapes− {L}
13: end for
14: if IS EMPTY Sel then
15: VMDifference← VMDifference+ 1
16: else
17: select optimal landscape from Sel
18: VMDifference← 1
19: end if
20: until NOT empty Landscapes

The optimal landscape is selected by calculating a utility
cost function for each landscape and choosing the landscape
with the minimum cost value. The algorithm might return
multiple scaling paths of equal cost.

The maximum common set of predictor metrics is chosen
from the selected of benchmark profiles. For each scaling path,
using the selected collection of metrics, a larger data set is
formed as follows. The aggregated values of the monitoring
metrics corresponding to the first landscape in the scaling path
are added to the data set. For the next scaling-landscape, the
monitoring samples corresponding to the selected aggregated
monitoring metrics are chosen such that their timestamps are
higher than the time when the concurrent user requests reached
the maximum value achieved for the previous landscape.
This creates a single data set with an increasing number of
maximum supported concurrent user requests. To this data set,
the number of service instances in the landscape is added as
a new time series.

Next, the system computes for each service type a linear
model [15] for estimating number of services in the scaling
path.

Assuming that C is the critical value of the SLA target
metric m∗, mi, i ∈ (1..p) are values of p SLA predictor
metrics for mc, vj are number of VMs associated with service
Sj , j ∈ (1..s) then

lmk(m1,m2, ..,mp, v1, v2, .., vs) =

α0 +
∑p

1 αimi +
∑s

1 βjsj , j 6= k (2)

Equation 2 defines the linear model lm for estimating the
number of service instances of type Sk. The actual SLA
scaling rule for service Sk is then written as in Equation 3

SLAout
k : if lmk > vk then scale-out(Sk)

SLAin
k : if lmk < vk then scale-in(Sk) (3)



Equation 3 defines two SLA rules per service type Sk,
which continuously monitor the estimated number of service
instances lmk and perform either a scale-out, or a scale-in if
the required number of VMs for handling current application
workload is either greater or lower than the actual number of
VMs vk.

VI. EVALUATION

We have evaluated the DynSLAOp by analyzing the SML
behavior when using a DynSLAOp generated SLA for man-
aging a distributed application, representing the enterprise
information systems class.

We have checked whether the calculated landscape sequence
provides a good ”plan-of-attack” and how sensitive it is to
the level of difference between the training set (benchmarks
generated) and the synthetic workload. The application was
tested using a different type of user load, as shown in Figure
2.

The number of concurrent requests at successive time
moments was given, and the validation application client
maintained a number of concurrent requests equal to the in-
terpolated value between the two time moments. For example,
if at time t = 0 there should be 10 concurrent requests and
at time t = 10 there should be 20 concurrent requests, then
at time t = 3 the validation client would maintain a number
of 13 concurrent requests. The validation client performs this
check every 50ms.

îïæíê îïæìè îîæðð îîæïî îîæîì

ð
ëð

ïð
ð

îð
ð

Fig. 2. Concurrent Requests Distribution used for SLA validation

While the training data has a clear increasing trend for
the number of requests, the same is not true for the actual
monitoring data obtained from the virtual machines. Here,
the data is being sampled every x milliseconds, leading to
difficulties understanding the real state of the system. To this
is added the fact that the load is not perfectly balanced across
the worker services, leading to the addition of ’noise’ within
the observed monitoring time series. In order to level-out
the differences between the same service running in different
VMs, data aggregation is performed over predefined time inter-
vals (e.g. one minute). This helps taking the decision whether
the distributed application performs within the specified SLA
contracts.

A. Enterprise Information System
We consider a general Enterprise Information System (EIS)

as the application under study, as this is simple to explain, has
high availability and quality of service requirements, involves
large data volumes, and is moreover a good representation
of the multi-tier, distributed architecture seen in most modern
enterprise systems. A typical EIS consists of the following
tiers, each contributing to the SLA management problem:
consumer, load balancer, business logic and storage layer.
Figure 3 provides an overview of the overall EIS topology.

Benchmark 
Consumer

Registry / 
Messaging

Consumer

Registry / 
Messaging Load 

Balancer

Registry / 
Messaging

Worker

Registry / 
Messaging

Storage

Registry / 
Messaging

Virtual 
Infrastructure

Service Middleware Platform

Dynamic SLA Optimizer (DySLAOp)

Fig. 3. EIS Topology

Each service is packaged in its own VM along with all
necessary supporting software, such as service container and
OSGi (Open Service Gateway Initiative) [16] bundles, but
also operating system level support scripts, such as boot time
initialization scripts and OSGi container start script.

The business logic or worker layer contains components
that implement the data queries, analysis algorithms, transac-
tion execution and arithmetic processing for the application.
Different types of queries, algorithms and arithmetic work-
loads place different demands on the processing available.
They also impact on the end-to-end latency of user requests,
such that scaling the size of the CPU and memory available
to this layer has a significant impact on the QoS and SLA
compliance. There are various benchmarks available, such
as Transaction Processing Performance Council (TPC) [17],
for creating different transaction or analytics workloads, each
generating volumes of data representative of how these EIS
applications are loaded in everyday usage.

The storage layer provides the interface to resources and
mechanisms for creating, reading, updating and deleting data.



¿

¾

½

¼

»

º

¹

¸

·

¿ ¾ ½ ¼ » º ¹ ¸ ·

óðòê

óðòì

óðòî

ðòð

ðòî

ðòì

ðòê

ðòè

ïòð

Fig. 4. Correlogram

As input/ouput storage latency has an impact on the end-to-
end response time, parallelization and redundancy are used to
increase performance and availability.

The load balancer redirects requests to appropriate workers
based on algorithms and rules, which determine which worker
instances are best suited for handling incoming requests.
This depends on their current activities, resource consumption
and priority of the request. Load balancers can also make
decisions about starting and stopping workers in order to free
physical processing, memory and storage resources for other
activities. This enables more efficient resource management of
the underlying resources.

As each component, layer and service in the EIS are dis-
tributed and autonomous, there is a need for a registration and
messaging architecture that coordinates interactions between
the distributed components and services. The EIS implemen-
tation used in our analysis and development uses (1) the
Apache Zookeeper [18] registry and synchronization service
for the above mentioned functions, and (2) the Distributed
OSGi [19] implementation for transparently exposing the local
OSGi services as distributed SOAP [20] services.

B. Experimental Setup

The following experiments pipeline was executed.
• define application as (1) the set of semantic service

descriptions, (2) critical SLA metrics and (3) service
dependencies and initialization parameters

• set maximum service scale-out factor
• set SLA range for application response time tr, as an

example of a monitored metric for Worker service
DynSLAOp outputs the following information: (1) correl-

ogram matrix, (2) the predicted sequence of landscapes, (3)
linear regression coefficients, and (4) the final set of regression
coefficients associated with this scaling sequence. Finally, the

ë ïë íð ìë êð éë çð ïðë ïîð ïíë ïëð ïêë ïèð

ïð
ðð

íð
ðð

ëð
ðð

éð
ðð

Fig. 5. EIS Benchmark response for a landscape configuration with 4 Worker
VMs and 6 Storage VMs

set of regression coefficients are transformed into SLA scaling
rules and the generated SLA is tested as described below.

C. Synthetic Workloads for Offline Machine Learning

The DynSLAOp Benchmark Manager fires up the workload
generator after customizing it for the application agreed during
User-SML interaction. The VM containing the benchmark
service is used to generate the workload according to four
parameters: (1) maximum response time, (2) initial number
of requests, (3) concurrent requests increment step, and (4)
number of repetitions for each batch of requests. The request
generator will perform the following steps:

1) send the initial number of requests in parallel
2) wait for all requests to complete their execution
3) record the requests’ execution time
4) calculate the average execution time for all the requests

in the batch
5) if the average execution time is lower than the maximum

specified benchmark response time, then the generator
will increase the number of requests and will repeat the
procedure from step (1).

6) each batch of requests is repeated for the specified
number of times.

The correlogram depicting the correlation between all the
pairs of aggregated time series corresponding to the EIS
monitoring metrics is presented in Figure 4, where each metric
is represented by a letter. From this graph it can be observed
that metrics belonging to the Load Balancer service (a-e)
are highly correlated, together with the aggregated average
execution time of the Worker (g) and Storage (l), and the
average number of Worker requests. The before mentioned
metrics form the actual metrics, which have been used for
estimating the linear models for Worker and Storage scaling.

For each virtual landscape configuration, the maximum
concurrent load, for which the average worker execution
time is below 5000ms, is determined. Figure 5 displays the
dependency between the concurrent EIS consumer requests



Í¬±®¿¹» Í»®ª·½» Ê³­
É±®µ»® Í»®ª·½» ÊÓ­

Î»¯«»­¬­

èð

ïðð

ïîð

ïìð

ïêð

ïèð

îðð

îîð

Fig. 6. System requests’ handling capacity vs. number of Worker and Storage
VMs

and the response time measured at the worker, for a virtual
landscape composed of 4 Worker VMs and 6 Storage VMs.

The dependency between the maximum number of con-
current user requests and the number of worker and storage
service instances is displayed in Figure 6. From the graph
can be observed that the request handling capacity of the
distributed application stops increasing after a certain point.
From the application source code profiling it became clear
that the bottleneck was caused by the database connection
management at the storage service. The authors think that
replacing the current database connection release mechanism
with a pooled connection management would increase the
application parallelization. However, at the time we performed
the experiments, there was no such straightforward implemen-
tation for MySQL [21] using OSGi [16].

Figures 7 and 8 show the regression models for Worker,
respectively Storage services. Each plot presents the number of
VMs for Worker, respectively for Storage services (black line),
the regression model fitted values (blue line) and the filtered
number of VMs resulting by applying a moving average
smoothing combined with truncating the resulting value.

In each graph, the blue line represents the model fitted
values, while the black line represents the actual number of
service instances determined from the scaling path.

For the application under test, the maximum request han-
dling capacity was reached for a virtual landscape composed
of 4 Worker VMs and 8 Storage VMs. After this point there
was no significant increase in application processing capacity,
given the requirement of executing the concurrent requests in
less than 5000ms.

As previously mentioned in Section V-C, the resulting set of
regression model coefficients were transformed into an SLA
scaling rule, expressed as two IF statements using MVEL [22]

ð ëð ïðð ïëð îðð îëð íðð

ï
î

í
ì

ë ß½¬«¿´
Ú·¬¬»¼
Ú·´¬»®»¼

Fig. 7. Worker Service Scaling Model

ð ëð ïðð ïëð îðð îëð íðð

ï
î

í
ì

ë
ê

é
è ß½¬«¿´

Ú·¬¬»¼
Ú·´¬»®»¼

Fig. 8. Storage Service Scaling Model

expression language, as required by SML.
Figure 9 shows the actual application response while the

SML was managing the EIS using the DynSLAOp generated
SLA scaling rules. The graph of the number of concurrent
requests is displayed in Figure 2. The actual VMs scaling
for Worker and Storage services is presented in Figure 10,
showing both the scaling-out and scaling-in.

îïæíê îïæìè îîæðð îîæïî îîæîì

ð
ëð
ðð

ïð
ðð
ð

ïë
ðð
ð

Fig. 9. Average Worker Execution Time [ms]

Due to the fact that the service scale-out was triggered
when the number of EIS concurrent user requests reached
the maximum handling capacity of the application (average
request execution time exceeded the maximum execution
time), combined with the fact that VM instantiation is not



îïæíê îïæìè îîæðð îîæïî îîæîì

ð
î

ì
ê

è É±®µ»®
Í¬±®¿¹»

Fig. 10. Actual Service Scaling

an immediate action (average VM instantiation time was one
minute plus around one minute for the OSGi bundles to start
and to register to the distributed OSGi registry), the actual
average execution time exceeded the SLA defined limit of 5
seconds (plotted as the red line), because of the delay between
the VM instantiation time and the moment when the service
becomes operational. This situation was repeated several times
during the experiment, but only during the ramp-up phase.
Towards the end of the experiment there was no SLA breach
as the application had enough free capacity.

Overall, the experiment was a success, with 84% of the time
enforcing the SLA, and a median execution time of 4284ms.

VII. CONCLUSION

We have presented a way of dynamically enhancing SLAs
by generating SLA-bounded scaling models for the the VM-
bounded services of the distributed applications. The resulting
SLA scaling rules enable a service management system to
react to the variations in the number of application users,
while minimizing the number of SLA violations, therefore
facilitating service scale-out and service-in. We have described
the analytic and benchmark mechanisms for dynamically
generating the SLA scaling rules. By using heuristics for
selecting the appropriate scaling-out paths for the services
of distributed applications, we have shown how SLA scaling
rules can be inferred and then used for controlling the runtime
scale-in and scale-out of VM-bounded services. We have
validated our architecture and models by performing scaling
experiments with a distributed application representative for
the enterprise class of information systems. We have then
shown how dynamically generated SLAs can be successfully
used for controlling the management of distributed services
belonging to a distributed application.

As future work we mention using statistical analytics mech-
anisms, for (a) detecting periodicity patterns in the SLA moni-
toring data, and (b) including these patterns as triggers of SLA
actions. We also mention SLA violation debugging as another
motivation for using SLA metrics statistical correlation, in
order to find the cause of SLA violations.

ACKNOWLEDGMENT

The work in this paper has been (partially) funded by
the European Union through projects GEYSERS (FP7-ICT-
248657) and Mobile Cloud Networking (FP7-ICT-318109).

REFERENCES

[1] W. Theilmann, J. Happe, C. Kotsokalis, A. Edmonds, K. Kearney, and
J. Lambea, “A reference architecture for multi-level sla management,”
Journal of Internet Engineering, vol. 4, no. 1, 2010.

[2] A.-F. Antonescu, P. Robinson, and T. Braun, “Dynamic topology or-
chestration for distributed cloud-based applications,” in Network Cloud
Computing and Applications, IEEE 2nd Symposium on, 2012.

[3] ——, “Dynamic sla management with forecasting using multi-objective
optimizations,” in Integrated Network Management, IFIP/IEEE Sympo-
sium on, May 2013.

[4] J. Fontán, T. Vázquez, L. Gonzalez, and R. S. Montero, “Opennebula:
The open source virtual machine manager for cluster computing,” in
Open Source Grid and Cluster Software Conference, 2008.

[5] J. Y. Arrasjid, B. Lin, R. Veeramraju, S. Kaplan, D. Epping, and
M. Haines, “Cloud computing with vmware vcloud director,” 2011.

[6] E. Escalona and S. Peng, “GEYSERS: A novel architecture for virtual-
ization and co-provisioning of dynamic optical networks and it services,”
in Future Network & Mobile Summit (FutureNetw). IEEE, 2011, pp.
1–8.

[7] V. Podinovskii and V. Nogin, “Pareto-optimal solutions of multicriteria
problems,” Moscow: Sci, 1982.

[8] A.-F. Antonescu and P. Robinson, “Towards cross stratum sla man-
agement with the GEYSERS architecture,” in Parallel and Distributed
Processing with Applications, IEEE 10th Int. Symposium on, 2012.

[9] A.-F. Antonescu, P. Robinson, and M. Thoma, “Service level manage-
ment convergence for future network enterprise platforms,” in Future
Network & Mobile Summit (FutureNetw), 2012, 2012, pp. 1–9.

[10] “Opennebula appflow,” http://opennebula.org/documentation:archives:
rel4.0:appflow, 2013.

[11] Leidig, T. and C. Momm, “USDL service level agreement,” http://www.
linked-usdl.org/ns/usdl-sla, April 2012.

[12] A. Gandhi and Y. Chen, “Minimizing data center sla violations and
power consumption via hybrid resource provisioning,” in Green Com-
puting Conference and Workshops (IGCC), Int., 2011, pp. 1–8.

[13] A. V. Do and J. Chen, “Profiling applications for virtual machine
placement in clouds,” in Cloud Computing (CLOUD), IEEE Int. Conf.
on, 2011, pp. 660–667.

[14] F. E. Croxton and D. J. Cowden, Applied general statistics. Prentice-
Hall, Inc, 1939.

[15] F. A. Graybill, Theory and applications of the linear model. Duxbury,
1976.

[16] O. Alliance, “OSGi-the dynamic module system for Java,” accessed,
May, vol. 25, 2009.

[17] T. P. P. Council, “TPC-H benchmark specification,” Published at http:
//www.tcp.org/hspec.html, 2008.

[18] “Apache zookeeper,” http://zookeeper.apache.org, 2013.
[19] “Distributed OSGi,” http://cxf.apache.org/distributed-osgi.html, 2013.
[20] F. Curbera and F. Leymann, Web services platform architecture: SOAP,

WSDL, WS-policy, WS-addressing, WS-BPEL, WS-reliable messaging
and more. Prentice Hall PTR Englewood Cliffs, 2005.

[21] “MySQL,” http://www.mysql.com, 2013.
[22] M. Brock, “MVEL expression language,” http://mvel.codehaus.org,

2013.


	1

